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Abstract: Films of Cu,ZnSnS, (CZTS) were successfully deposited on glass substrates using blade
technique in 5 min annealing time. The effect of heating temperature on the structural properties was
investigated. The dithiocarbamates complexes of copper, zinc and tin were used as precursors
through the blade technique. The films were kesterite phase and oriented preferentially along (112)
direction. The chemical compositions at each temperature were studied in order to optimize the film
stoichiometry. Cu/(Zn + Sn) ratio was between 0.815 and 0.877, and Zn/Sn was in the range of 0.93
to 1.
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1. Introduction

Metal xanthates [M(S,COR)y] and dithiocarbamates [M(S>;CNR3)], where R is an alkyl group,
are excellent precursors to metal sulfides [1-6]. Dithiocarbamates show high thermal stability and
their thermal decompositions generally start from 200 °C, which make them suitable to be used as
single source precursors for the growth of metal sulfides.

Semiconductor films of Cu,ZnSnS, (CZTS) have high absorption coefficient (10* cm™), and a
direct band gap of about 1.5 eV. These factors couple with the fact that CZTS semiconductor consists
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of non-toxic and earth abundant elements which makes CZTS an ideal candidate for photovoltaic
applications [7]. The photoelectrical performance of CZTS is highly dependent on good
stoichiometric control. It is well known that single phase CZTS presents in narrow range of
compositions [8], the compositional variation in range of 2-3% can make it difficult to control the
structure of the target phase and could lead to phase separation [9—-12].

CZTS films have been produced lately using different techniques such as the annealing of
Zn/Cu/Sn metals [13] or CuS/SnS/ZnS metal sulfides [14] layers under sulfur atmosphere, flux
assisted chemical spray [15], thermal evaporation under vacuum [16,17], sol-gel [18,19], spin
coating [20] and chemical vapour deposition [21].

Blade technique (BT) is a perfectly-understood laboratory method that is used to deposit
semiliquid precursors (paste) which result in high uniformly thin film. In the former technique, the
paste is deposited moderately over the substrates using a coating knife [22]. The quality of the films
is dependent on both precursor properties and the blading parameters such as gap width between
blade and substrate, annealing temperature, viscosity of the precursor and blading speed. In BT
method, the entire precursor is fully used, which makes it a completely material saving
method [23,24]. Pure metals and metal acetates have been commonly used as pastes for the
deposition of CZTS films by BT method, however CZTS films produced may contain impurities [25]
or require long heating time [26]. O’Brien et al. have reported the preparation of Co; S [27], ZnS,
CdS [28], SnS [29,30], ReS, [31], Mo;_xRexS; [32] and FeS, [33] from dithiocarbamates complexes
by aerosol assisted chemical vapour deposition (AACVD) method.

In this work, a rapid, non-vacuum and without sulfuration process to deposit CZTS films on
glass is reported. The method is based on a fast annealing schedule of the paste which contains
[Cu(S,CNEt,)z], [Zn(S,CNEt;),] and [Sn(C4Hy)2(S2CN(C,Hs),),2] as precursors. We focus on both
annealing temperature and the role of the dialkyldithiocarbamates ligand in the decomposition
process for their potential in controlling the compositional properties of the CZTS films.

2. Materials and methods

Chemicals purchased from Sigma Aldrich were sodium diethyldithiocarbamate salt, chloroform
(99.8%), toluene (99.7%), ethanol (99.8%) and methanol (99.8%). Copper(Il) sulfate (98%) was
purchased from Fisher chemical while the zinc chloride (98%) was purchased from GPR. All of the
chemicals were used without further purification.

2.1. Preparation of bis(diethyldithiocarbamato)copper(Il)

Cu(S,CNEt,), complex was prepared using the reported procedure [34] by the slow addition
of methanolic solution of CuSQO4 (2.77 g, 0.011 mol) to sodium diethyldithiocarbamate salt (5 g,
0.02219 mol) in methanol (50 mL) with a constant stirring for one hour at room temperature. A black
precipitate was obtained, filtered, and washed three times with methanol, and dried in a vacuum oven
at room temperature for 10—12 h. Recrystallization was achieved using chloroform. Percentage yield
was found to be 2.89 g, 0.008 mol, 73% yield. M.pt. = 192-197 °C. Elemental analysis: calc. for
CioH20CuN,S4 (%): C 33.37, H 5.6, N 7.79, S 35.55. Found (%): C 33.41, H 5.90, N 7.55, S 35.58.
The percentage errors for C, H, N and S were 0.12%, 5.35%, 3.08% and 0.08% respectively. FTIR
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(em™): 2972.2 (w), 2920.2 (w), 1501.8 (s), 1435.2 (s), 1352.3 (W), 1299.7 (s), 1268.4 (s), 1206.7 (s),
1146.9 (s), 1096.8 (m), 1071.7 (s), 996.53 (s), 910.23 (s), 845.15 (s), 778.13 (s) (Figure Sla).

2.2. Preparation of bis(diethyldithiocarbamato)zinc(Il)

Zn(S,CNEty), complex was prepared using the similar procedure as in 2.1 above using zinc
chloride (1.5121 g, 0.011 mol). A white precipitate was obtained and filtered by vacuum filtration.
The product was washed three times with methanol and dried in a vacuum oven at 50 °C for 10-12 h
to evaporate the remaining solvent. Recrystallization was achieved using chloroform. Percentage
yield was found to be 3.2 g, 0.0088 mol, 80.4% yield. M.pt. = 183—187 °C. Elemental analysis: calc.
for CioH20ZnN2Ss (%): C 33.20, H 5.57, N 7.75, S 35.37. Found (%): C 32.93, H 6.40, N 7.72,
S 34.97. The percentage errors for C, H, N and S were 0.81%, 14.4%, 0.38% and 1.64%, respectively.
FTIR (cm™'): 2968.87 (w), 2930.30 (w), 1499.86 (s), 1427.54 (s), 1377.40 (w), 1353.78 (m), 1297.37
(m), 1270.86 (s), 1200.47 (s), 1144.54 (m), 1096.8 (m), 1072.2 (s), 992.19 (s), 914.10 (s), 839.36 (m),
777.65 (m), 611.80 (W), 562.63 (m) (Figure S1b).

2.3. Synthesis of bis(diethyldithiocarbamato) (di-butyl) tin(IV)

Similar procedure as in 2.1 above was used to prepare [Sn(C4sHog)2(S,CN(C,Hs))2] by mixing
50 mL of di-n-butyl tin dichloride (3.37 g, 0.01 mol) in methanol and methanolic solution of sodium
diethyldithiocarbamate salt (5 g, 0.022 mol). A white precipitate was obtained which was filtered by
vacuum filtration. The product was washed three times with methanol and dried in a vacuum oven at
room temperature for one hour. The complex was recrystallized from ethanol and chloroform in ratio
1:2. Percentage yield was found to be 3.7 g, 0.007 mol, 70% yield. M.pt. = 167—172 °C. Elemental
analysis: calc. for C1sH33SnN,S, (%): C 40.86, H 7.24, N 5.29, S 24.17. Found (%): C 39.42, H 7.92,
N 4.92, S 22.93. The percentage errors for C, H, N and S were 3.52%, 9.39%, 6.99% and 5.13%
respectively. FTIR (cm '): 2955.8 (w), 2930.70 (w), 1355.20 (m), 1299.78 (m), 1265.07 (s), 1204.8
(s), 1138.27 (s), 1064.51 (s), 1016.30 (m), 993.16 (s), 915.53 (s), 872.14 (s), 839.84 (s), 776.20 (m),
688.56 (s), 568.89 (m) (Figure Slc).

2.4. Preparation of Cu;ZnSnS; films

CZTS films were deposited on glass substrates via the Blade technique. The glass substrates
were cleaned with deionized water followed by ultra-sonication for 20 min in acetone. The paste was
prepared by mixing [Cu(S,;CNEt,),] (0.005 mmol, 1.798 g), [Zn(S,CNEt;),] (0.0025 mmol, 0.9 g)
and [Sn(C4Ho)2(S2CN(CyHs)2),2] (0.0025 mmol, 1.32 g) precursors. The mixture was crushed using
the mortar and pestle. The paste was ground for about 10 min, and 3 mL of toluene was added
with continuous grinding for further two minutes. The mixture was spread using the BT apparatus
(Figure 1b) on glass substrates then, the films were loaded into a tube furnace and annealed in
nitrogen environment at 375-450 °C for five minutes. The nitrogen flow rate was constant
(140 cm®/min) during the annealing process.
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2.5. Characterization techniques

Elemental analysis of complexes was achieved using Flash 2000 TS elemental analyzer.
Thermogravimentric Analysis (TGA) was carried out by METTLER TOLEDO TGA/DSC 1 star®
system between the ranges of 30-600 °C at a heating rate of 10 °C-min”' under nitrogen atmosphere.
FTIR spectra of compounds were recorded on a Specac ATR. Scanning Electron Microscope (SEM)
analysis was observed using a Philips XL 30FEG, the molar and atomic ratios were analyzed using a
DX4 instrument. Structural characterization of the films was investigated by a Bruker D8 Advance
diffractometer with monochromatic Cu-Ka source (A = 1.5418 A) at 40 kV and 30 mA, the films
were recorded between 20° and 80°.

3. Results and discussion

The IR spectra of [Cu(S,CNEt,)], [Zn(S2CNEt,),], and [Sn(C4Ho)2(S,CN(C;,Hs),),2] show bands
corresponding to v(C-S) and v(C-N) at the ranges between 992-996 and 1499-1501 cm ',
respectively (Figure S1). The thermal decomposition behaviours of [Cu(S,;CNE,),], [Zn(S,CNEt,):],
and [Sn(C4Ho)2(S2CN(C,Hs),)2] complexes were studied using thermogravimetric analysis (Figure
la and Table S1). The major decomposition occurs from 300 to 350 °C. The residual amount of
[Cu(S,CNEt,),] complex found to be about 25.2% which is close to the calculated percentage of CuS
(26.56%). Decomposition curve of [Zn(S,CNEt;),] complex shows a steady mass loss of 94.87%
which is starting at about 230 °C and reach a plateau at 360 °C. The first decomposition of
[Sn(C4Ho)2(S2CN(C,Hs),),] complex begins at 176 °C and finished at 267 °C with a mass loss of
58.969% that correspond to the significant product of the complex. The second decomposition step
happened between 268 and 320 °C with the weight loss was of 32.11%. The residues were 4.5% and
9% of the original weight for [Zn(S,CNEt,);] and [Sn(CsH),(S;CN(C,Hs),)2] complexes
respectively. These values are lower than the theoretical percentage for ZnS (26.94%) and SnS
(28.49%). Weight losses take place due to sublimation occurs during the TGA analysis [34,30,35].
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Figure 1. (a) Thermal analysis curves of [Cu(S;CNEt),], [Zn(S:CNEt;),] and
[Sn(C4Ho)2(S2CN(C,Hs),),] complexes and (b) blade coater.

The kesterite phase of CZTS was successfully deposited by the blade technique. All of the
diffraction peaks in Figure 2 can be indexed to tetragonal phase of CZTS (JCPDS no 26-0575). The
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patterns show well-defined peaks that are assigned to (112), (220) and (312) planes of CZTS
tetragonal structure. The (112) plane is a preferred orientation of CZTS films.
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Figure 2. The powder X-ray diffraction (p-XRD) patterns of CZTS films deposited by
blade technique (BT) from [Cu(S,CNEt,),], [Zn(S,CNEL,),], and
[Sn(C4Hy)2(S,CN(C,Hs),)2] precursors.

The degree of preferred orientation of the (112), (220) and (321) planes were found through
measuring texture coefficient (Tc¢) using the literature method [14,36]. The estimated T¢ values are
presented in Table S2 and Figure 3. The values of T¢ at (112) and (321) showed a slight variation
compared to the (220). The (112) crystalline phase reveals higher T¢ = 1.42—1.53 than that of other
phases. The higher values of T¢ correspond to the increase in planar density along (112) plane [37].
The present study shows that the use of dialkyldithiocarbamates can achieve highly oriented (112)
crystalline plane through blade technique under atmospheric pressure and without sulfuration.
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Figure 3. Texture coefficient of CZTS films prepared at 375, 400, 425 and 450 °C from
[Cu(SZCNEtz)z], [Zn(SZCNEtz)z], and [SH(C4H9)2(SQCN(C2H5)2)2] precursors.
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Raman spectrum of a CZTS film heated at 375 °C is reported in Figure S2. The spectrum
showed that the dominant peak is located at 335 cm'. This peak corresponds to A vibration mode of
CZTS [38-40]. There were no signals of secondary phases such as ZnS, Cu,SnS; and Cu,S that
were found. It was noted that the Raman peak was below 337 cm ', which is the strongest peak
assigned as A mode of kesterite CZTS. In kesterite planes, when the ratio of Cu/(Zn + Sn) is less
than one (Table S2), the concentration of defects becomes larger. The random distribution of defects
appeared when Cu substitutes for Zn at the 2d site and/or Zn substitute Cu at the 2¢ site [41,42]. In
this case, the disordered kesterite CZTS will be effective. The disordered kesterite structure is similar
to stannite CZTS. Therefore, we propose that the shift toward the low wave number direction can be
attributed to the disordered kesterite CZTS [43,44].

Figure 4 shows SEM images of CZTS films annealed at 375, 400, 425 and 450 °C on a glass
substrate. The films were found to be between 1.9 and 3.4 pm thick, Grain growth occurs for the films
heated at 400 and 425 °C for 5 min and the sizes of the grains were more than 1 pm. When the
temperature was increased to 450 °C, the cube like shape particles were observed with grain size up
to 0.5 pm.

Figure 4. SEM micrograms of CZTS films deposited by blade technique annealed at (a)
375 °C, (b) 400 °C, (c) 425 °C, and (d) 450 °C.

The EDS analysis shows the elemental stoichiometry of the CZTS films. The concentrations of
dialkyldithiocarbamate precursors that have been given in the experimental section obtained films
with 2:1:1:4 elemental ratios of Cu:Zn:Sn:S. The elemental compositions are presented in Figure Sa
and Table S3. The Cu/(Zn + Sn) and the Zn/Sn ratios changed due to the annealing temperature. The
CZTS films that were heated at 375, 400, 425 and 450 °C revealed poor Cu residue and rich with Zn
content (Figure 5b). The results also show that there is slight varation in the value of copper with
increased the temperature, as well as Cu/(Zn + Sn) and Zn/Sn ratios of 0.877 and 1 was found to be
larger at 375 °C. The S/(Cu + Zn + Sn) ratio, however, does not show a clear dependence on the
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anealing tempretures. This information suggests
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Figure 5. (a) Elemental compositions and (b) compositional ratios of CZTS films
determined by energy-dispersive X-ray spectroscopy.

4. Conclusions

The decompositions of a series of N,N-dialkyldithiocarbamates complexes of copper, zinc and
tin were investigated by thermogravimetric analysis. The combination of [Cu(S,CNEt,):],
[Zn(S,CNE,),], and [Sn(C4Hog)2(S2CN(C,Hs),),] precursors was used as a paste for the formation of
Cu,yZnSnS, through doctor blade technique. The p-XRD patterns of the prepared CZTS films that
were obtained after heating at temperatures between 375 and 450 °C confirmed tetragonal phase
structure. The EDS measurements show that the Cu/(Zn + Sn) ratio was between 0.815 and 0.877.
The heating of dialkyldithiocarbamates complexes to high temperatures for short periods of time
gives kesterite phase CZTS which may be suitable for photovoltaic applications.
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