The subject of this paper concerns with the bifurcation of limit cycles for a predator-prey model with small immigration. Since, in general, the biological systems are not isolated, taking into account immigration in the model becomes more realistic. In this context, we deal with a model with a Holling type Ⅰ function response and study, using averaging theory of second order, the Hopf bifurcation that can emerge under small perturbation of the biological parameters.
Citation: Maurıicio F. S. Lima, Jaume Llibre. Hopf bifurcation for a class of predator-prey system with small immigration[J]. Electronic Research Archive, 2024, 32(7): 4604-4613. doi: 10.3934/era.2024209
The subject of this paper concerns with the bifurcation of limit cycles for a predator-prey model with small immigration. Since, in general, the biological systems are not isolated, taking into account immigration in the model becomes more realistic. In this context, we deal with a model with a Holling type Ⅰ function response and study, using averaging theory of second order, the Hopf bifurcation that can emerge under small perturbation of the biological parameters.
[1] | M. A. Abbasi, Fixed points stability, bifurcation analysis, and chaos control of a Lotka–Volterra model with two predators and their prey, Int. J. Biomath., 17 (2024), 2350032. https://doi.org/10.1142/S1793524523500328 doi: 10.1142/S1793524523500328 |
[2] | L. F. Hou, G. Q. Sun, M. Perc, The impact of heterogeneous human activity on vegetation patterns in arid environments, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107461. https://doi.org/10.1016/j.cnsns.2023.107461 doi: 10.1016/j.cnsns.2023.107461 |
[3] | J. Liang, C. Liu, G. Q. Sun, L. Li, L. Zhang, M. Hou, et al., Nonlocal interactions between vegetation induce spatial patterning, Appl. Math. Comput., 428 (2022), 127061. https://doi.org/10.1016/j.amc.2022.127061 doi: 10.1016/j.amc.2022.127061 |
[4] | J. Llibre, Y. P. Mancilla-Martinez, Global attractor in the positive quadrant of the Lotka-Volterra system in $\mathbb{R}^2.$, Int. J. Bifurcation Chaos, 33 (2023), 2350147. https://doi.org/10.1142/S021812742350147X doi: 10.1142/S021812742350147X |
[5] | I. Al-Darabsah, X. Tang, Y. Yuan, A prey-predator model with migrations and delays, Discrete Contin. Dyn. Syst. - Ser. B, 21 (2016), 737–761. https://doi.org/10.3934/dcdsb.2016.21.737 doi: 10.3934/dcdsb.2016.21.737 |
[6] | Y. Chen, F. Zhang, Dynamics of a delayed predator–prey model with predator migration, Appl. Math. Modell., 37 (2013), 1400–1412. https://doi.org/10.1016/j.apm.2012.04.012 doi: 10.1016/j.apm.2012.04.012 |
[7] | A. Samuel, A predator-prey model with logistic growth for constant delayed migration, J. Adv. Math. Comput. Sci., 35 (2020), 51–61. https://doi.org/10.9734/jamcs/2020/v35i330259 doi: 10.9734/jamcs/2020/v35i330259 |
[8] | G. Zhu, J. Wei, Global stability and bifurcation analysis of a delayed predator–prey system with prey immigration, Electron. J. Qual. Theory Differ. Equations, 13 (2016), 1–20. https://doi.org/10.14232/ejqtde.2016.1.13 doi: 10.14232/ejqtde.2016.1.13 |
[9] | T. Tahara, M. K. A. Gavina, T. Kawano, J. M. Tubay, J. F. Rabajante, H. Ito, et. al., Asymptotic stability of a modified Lotka-Volterra model with small immigrations, Sci. Rep., 8 (2018), 7029. https://doi.org/10.1038/s41598-018-25436-2 doi: 10.1038/s41598-018-25436-2 |
[10] | M. Priyanka, P. Muthukumar, S. Bhakelar, Stability and bifurcation analysis of two-species prey-predator model incorporating external factors, Int. J. Bifurcation Chaos, 32 (2022), 2250172. https://doi.org/10.1142/S0218127422501723 doi: 10.1142/S0218127422501723 |
[11] | D. Mukherjee, The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey, Nonlinear Anal. Real World Appl., 31 (2016), 277–287. https://doi.org/10.1016/j.nonrwa.2016.02.004 doi: 10.1016/j.nonrwa.2016.02.004 |
[12] | E. Diz-Pita, Global dynamics of a predator-prey system with immigration in both species, Electron. Res. Arch., 32 (2024), 762–778. https://doi.org/10.3934/era.2024036 doi: 10.3934/era.2024036 |
[13] | J. A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer, 2007. https://doi.org/10.1007/978-0-387-48918-6 |
[14] | F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlim Heidelberg New York, 1991. https://doi.org/10.1007/978-3-642-61453-8 |
[15] | J. Llibre, D. D. Novaes, M. A. Teixeira, High order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563–583. https://doi.org/10.1088/0951-7715/27/3/563 doi: 10.1088/0951-7715/27/3/563 |
[16] | N. G. Lloyd, Degree Theory, Cambridge University Press, 1978. https://doi.org/10.1112/blms/11.3.361 |