In this paper, we investigate the regularity criterion of weak solutions to three-dimensional magneto-micropolar fluid equations with fractional dissipation. A regularity criterion is established via the third component of the velocity fields, the micro-rotational velocity fields, and the magnetic fields.
Citation: Yazhou Wang, Yuzhu Wang. Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation[J]. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199
[1] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[2] | Hua Qiu, Zheng-An Yao . The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28(4): 1375-1393. doi: 10.3934/era.2020073 |
[3] | Zhi-Ying Sun, Lan Huang, Xin-Guang Yang . Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28(2): 861-878. doi: 10.3934/era.2020045 |
[4] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[5] | Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104 |
[6] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[7] | Xiaojie Yang, Hui Liu, Haiyun Deng, Chengfeng Sun . Pullback $ \mathcal{D} $-attractors of the three-dimensional non-autonomous micropolar equations with damping. Electronic Research Archive, 2022, 30(1): 314-334. doi: 10.3934/era.2022017 |
[8] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
[9] | Haibo Cui, Junpei Gao, Lei Yao . Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29(2): 2063-2075. doi: 10.3934/era.2020105 |
[10] | José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201 |
In this paper, we investigate the regularity criterion of weak solutions to three-dimensional magneto-micropolar fluid equations with fractional dissipation. A regularity criterion is established via the third component of the velocity fields, the micro-rotational velocity fields, and the magnetic fields.
In this paper, we consider the three-dimensional magneto-micropolar fluid equations with fractional dissipation
{∂tu+μ(−Δ)αu−χΔu+u⋅∇u−b⋅∇b+∇p−2χ∇×v=0,∂tv+η(−Δ)βv−κ∇∇⋅v+4χv+u⋅∇v−2χ∇×u=0,∂tb+λ(−Δ)γb+u⋅∇b−b⋅∇u=0,∇⋅u=0,∇⋅b=0, | (1.1) |
with an initial value
t=0:u=u0(x),v=v0(x),b=b0(x),x∈R3. | (1.2) |
Here u=u(x,t), v=v(x,t), b=b(x,t)∈R3, and p=p(x,t)∈R are the velocity, micro-rotational velocity, magnetic fields, and scalar pressure, respectively. μ, χ, and 1λ represent the kinematic viscosity, vortex viscosity, and magnetic Reynolds number, respectively. η and κ are angular viscosities. α, β and γ are the parameters of the fractional dissipations corresponding to the velocity, micro-rotational velocity and magnetic field, respectively. The fractional Laplace operator (−Δ)α is defined through the Fourier transform as
^(−Δ)αf(ξ)=^Λ2αf=|ξ|2αˆf(ξ). |
The incompressible magneto-micropolar fluid equations have made analytic studies a great challenge but offer new opportunities due to their distinctive mathematical features. Regularity criteria for weak solutions are established by Fan and Zhong [1] in pointwise multipliers for 1≤α=β=γ≤54. Local and global well-posedness have been established in [2,3,4], respectively. For α=β=γ=1, we refer to [5,6,7] for the existence of strong solutions and weak solutions, respectively. In the study field of the magneto-micropolar fluid equations, regularity criteria for weak solutions and blow-up criteria for smooth solutions are very important topics. The readers may refer to regularity criteria of weak solutions in Morrey-Campanato space [8], in Lorentz space [9], Besov space [10], Triebel-Lizorkin space [11] and other regularity criteria for weak solutions [12,13,14,15], and [16,17] for blow-up criteria of smooth solutions in different function spaces, respectively. Serrin-type regularity criteria for weak solutions via the velocity fields and the gradient of the velocity field were established in Yuan [13], respectively. We may refer to [18,19,20] for global well-posedness. On the other hand, the global regularity of weak solutions to (1.1) with partial viscosities becomes more complex. In the case of 2D, we may refer to [22,23,24,25], and in the case of 3D, we may refer to [26,27].
If v=0 and χ=0, then (1.1) reduces to MHD equations with fractional dissipation. The MHD equations govern the dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas, liquid metals, and salt water. We only recall regularity criteria for our purpose. If α,β>54, some regularity criteria have been established by Wu [28,29], which are given in terms of the velocity u. If 1≤α=β≤32, Zhou [30] obtained the Serrin-type criteria u∈LpTLqx with 2αp+3q≤2α−1 and 32α−1<q≤∞. Later, Yuan [14] extended the above function space Lq to Bsq,∞. Recently, the regularity criterion involving u3,b∈LωTLqx is given in [31]. We also refer to [32,33] for well-posedness and [34] for blow up criterion of smooth solutions.
Motivated by the Serrin-type regularity criterion of weak solutions to Navier-Stokes equations [35,36] and MHD equations [30,31]. The main purpose is to investigate the regularity criterion of weak solutions to the systems (1.1) and (1.2) in this paper and establish the Serrin-type regularity criterion of weak solutions involving partial components. We state our main result as follows:
Theorem 1.1. Let 1≤α=β=γ≤32 and χ,κ≥0. Assume that (u0,v0,b0)∈H1(R3) and ∇⋅u0=∇⋅b0=0. Furthermore, if
u3,v,b∈Lϱ(0,T;Lq(R3)), |
with
2αϱ+3q≤34(2α−1)+3(1−ϵ)4q, 3+ϵ2α−1<q≤∞, 0<ϵ≤13, | (1.3) |
then the solution (u,v,b) to the systems (1.1) and (1.2) remains smooth on [0,T].
Remark 1.2. Since the concrete values of the constants μ, η, and λ play no role in our proof, for this reason, we shall assume them to be all equal to one throughout this paper. For convenience of description, we define horizontal derivatives ∇h:=(∂1,∂2).
Remark 1.3. When v=0 and χ=0, the conclusion in Theorem 1.1 is reduced to the one in [31].
Remark 1.4. Compared with [31], the main difficulty in this paper comes from the nonlinear term u⋅∇v. In order to overcome the difficulty caused by the nonlinear term, owing to the energy functional (see (2.2)), we first use integrating by parts and ∇⋅u=0 to transform it into a control of the horizontal derivative, and then use Hölder's inequality, multiplicative Sobolev inequality, the Gagliardo-Nirenberg inequality, and Young's inequality to control the nonlinear term.
In this section, our main purpose is to complete the proof of Theorem 1.1. To this end, we introduce the following lemma:
Lemma 2.1. ([37]) The multiplicative Sobolev inequality
‖∇u‖L3q≤C‖∂1∇u‖13L2‖∂2∇u‖13L2‖∂3∇u‖13Lq, 1≤q<∞, | (2.1) |
holds.
In what follows, we prove Theorem 1.1.
Proof. Let
E(t):=‖∇hu(t)‖2L2+‖∇hv(t)‖2L2+‖∇hb(t)‖2L2+∫t0(‖∇hΛαu(τ)‖2L2+‖∇hΛαv(τ)‖2L2+‖∇hΛαb(τ)‖2L2)dτ+κ∫t0‖∇h∇⋅v(τ)‖2L2dτ. | (2.2) |
The proof is divided into two cases: 3+ϵ2α−1<q<∞ and q=∞. We first consider the case 3+ϵ2α−1<q<∞.
Taking the inner product of the first three equations of (1.1) with (u,v,b), and adding them up, using integrating by parts, the divergence-free condition, and Cauchy inequality, we obtain
12ddt(‖u(t)‖2L2+‖v(t)‖2L2+‖b(t)‖2L2)+‖Λαu(t)‖2L2+‖Λαv(t)‖2L2+‖Λαb(t)‖2L2+κ‖∇⋅v(t)‖2L2≤0. |
Integrating the above inequality with respect to t and then obtaining
‖u(t)‖2L2+‖v(t)‖2L2+‖b(t)‖2L2+2∫t0(‖Λαu(τ)‖2L2+‖Λαv(τ)‖2L2+‖Λαb(τ)‖2L2+κ‖∇⋅v(τ)‖2L2)dτ≤‖u0‖2L2+‖v0‖2L2+‖b0‖2L2. |
By multiplying the first three equations of (1.1) by Δhu, Δhv, and Δhb, respectively, and adding them up, using integrating by parts and the divergence-free condition, we have
12ddt(‖∇hu(t)‖2L2+‖∇hv(t)‖2L2+‖∇hb(t)‖2L2)+‖∇hΛαu(t)‖2L2+‖∇hΛαv(t)‖2L2+‖∇hΛαb(t)‖2L2+κ‖∇h∇⋅v(t)‖2L2+χ‖∇h∇u(t)‖2L2+4χ‖∇hv‖2L2:=6∑i=1Ii, | (2.3) |
where
I1=∫R3(u⋅∇u)⋅Δhudx,I2=−∫R3(b⋅∇b)⋅Δhudx,I3=∫R3(u⋅∇b)⋅Δhbdx,I4=−∫R3(b⋅∇u)⋅Δhbdx,I5=∫R3(u⋅∇v)⋅Δhvdx,I6=−2χ∫R3[(∇×v)⋅Δhu+(∇×u)⋅Δhv]dx. |
Thanks to integration by parts and Cauchy's inequality, we arrive at
I6=4χ∫R3∇h(∇×u)⋅∇hvdx≤χ‖∇h(∇×u)‖2L2+4χ‖∇hv‖2L2=χ‖∇h∇u‖2L2+4χ‖∇hv‖2L2. | (2.4) |
For I1, we divide it into the following three items: I1i(i=1,2,3) as
I1=2∑j,k=1∫R3uj∂jukΔhukdx+3∑j=1∫R3uj∂ju3Δhu3dx+2∑k=1∫R3u3∂3ukΔhukdx:=I11+I12+I13. | (2.5) |
The divergence-free condition and integration by parts entail that
I11=2∑i,j,k=1∫R3uj∂juk∂2iiukdx=−2∑i,j,k=1∫R3∂iuj∂juk∂iukdx+122∑i,j,k=1∫R3∂juj|∂iuk|2dx=−2∑i,j,k=1∫R3∂iuj∂juk∂iukdx−122∑i,k=1∫R3∂3u3|∂iuk|2dx=−∫R3∂1u1∂1u1∂1u1dx−∫R3∂1u1∂1u2∂1u2dx−∫R3∂1u2∂2u1∂1u1dx−∫R3∂1u2∂2u2∂1u2dx−∫R3∂2u1∂1u1∂2u1dx−∫R3∂2u1∂1u2∂2u2dx−∫R3∂2u2∂2u1∂2u1dx−∫R3∂2u2∂2u2∂2u2dx−122∑i,k=1∫R3∂3u3|∂iuk|2dx=−∫R3∂1u1∂1u1∂1u1dx−∫R3∂2u2∂2u2∂2u2dx+∫R3∂3u3∂2u1∂2u1dx+∫R3∂3u3∂1u2∂1u2dx+∫R3∂3u3∂2u1∂1u2dx−122∑i,k=1∫R3∂3u3|∂iuk|2dx=122∑j,k=1∫R3∂3u3∂kuj∂kujdx−∫R3∂3u3∂1u1∂2u2dx+∫R3∂3u3∂2u1∂1u2dx=−2∑j,k=1∫R3u3∂23kuj∂kujdx+∫R3u3(∂232u2∂1u1+∂231u1∂2u2)dx−∫R3u3(∂232u1∂1u2+∂231u2∂2u1)dx, | (2.6) |
and
I12=−3∑j=12∑l=1∫R3∂luj∂ju3∂lu3dx=3∑j=12∑l=1∫R3∂luju3∂2jlu3dx. | (2.7) |
Therefore, we obtain
|I1|≤C∫R3|u3||∇u||∇h∇u|dx. | (2.8) |
From Hölder's inequality, Lemma 2.1, the Gagliardo-Nirenberg inequality, and Young's inequality, it follows that
|I1|≤C∫R3|u3||∇u||∇h∇u|dx≤C‖u3‖Lq‖∇u‖Lθ1‖∇h∇u‖Lθ2≤C‖u3‖Lq‖∇h∇u‖23L2‖Δu‖13Lθ13‖∇h∇u‖Lθ2≤C‖u3‖Lq‖∇hu‖2s13L2‖∇hΛαu‖2(1−s1)3L2‖∇u‖s23L2‖Λα+1u‖1−s23L2‖∇hu‖s3L2‖∇hΛαu‖1−s3L2≤C‖u3‖Lq‖∇u‖2s13L2‖∇hΛαu‖2(1−s1)3L2‖∇u‖s23L2‖Λα+1u‖1−s23L2‖∇u‖s3L2‖∇hΛαu‖1−s3L2≤C‖u3‖Lq‖∇u‖2s13+s23+s3L2‖Λα+1u‖1−s23L2‖∇hΛαu‖2(1−s1)3+1−s3L2≤C[‖u3‖Lq‖∇u‖2s13+s23+s3L2‖Λα+1u‖1−s23L2]m′+16‖∇hΛαu‖(2(1−s1)3+1−s3)mL2, | (2.9) |
where the constants 1<θ1,θ2,m,m′<∞ and 0≤s1,s2,s3≤1 satisfy
{1θ1+1θ2+1q=1,2−32=(1−32)s1+(1+α−32)(1−s1),2−3θ1/3=(1−32)s2+(1+α−32)(1−s2),2−3θ2=(1−32)s3+(1+α−32)(1−s3),1m+1m′=1,(2(1−s1)3+1−s3)m=2. | (2.10) |
Noting that 1≤α≤32 and 3+ϵ2α−1<q≤∞, one solution to (2.10) can be written as
{θ1=18q5q−18ϵ,θ2=18q13q−18(1−ϵ),s1=1−1α,s2=1−9ϵαq,s3=1−13α−3(1−ϵ)αq,m=2αqq+3(1−ϵ),m′=2αq(2α−1)q−3(1−ϵ). | (2.11) |
To bound I3, we decompose it into three pieces as
I3=2∑j,k=1∫R3uj∂jbkΔhbkdx+2∑j=1∫R3uj∂jb3Δhb3dx+3∑k=1∫R3u3∂3bkΔhbkdx:=I31+I32+I33. | (2.12) |
By using integrating by parts (see[31]), we have
I31=2∑j,k,l=1∫R3[∂2lluj∂jbkbk+∂luj∂2ljbkbk]dx−122∑j,k,l=1∫R3[∂2ljuj∂lbkbk+∂juj∂2llbkbk]dx. | (2.13) |
Similarly, we have
I32=2∑j,l=1∫R3[∂2lluj∂jb3b3+∂luj∂2ljb3b3]dx−122∑j,k,l=1∫R3[∂2ljuj∂lb3b3+∂juj∂2llb3b3]dx, | (2.14) |
and
I33=3∑k=12∑l=1∫R3[∂23lu3∂lbkbk+∂lu3∂23lbkbk]dx+123∑k=12∑j,l=1∫R3[∂2ljuj∂lbkbk+∂juj∂2llbkbk]dx. | (2.15) |
Collecting (2.13)–(2.15), it is easy to derive that
|I3|≤C∫R3|b|(|∇u|+|∇b|)(|∇h∇u|+|∇h∇b|)dx. | (2.16) |
Furthermore, we have
|I2+I3+I4|≤C∫R3|b|(|∇u|+|∇b|)(|∇h∇u|+|∇h∇b|)dx. | (2.17) |
Similar to (2.13), it follows from Hölder's inequality, Lemma 2.1, Gagliardo-Nirenberg inequality, and Young's inequality that
|I2+I3+I4|≤C∫R3|b|(|∇u|+|∇b|)(|∇h∇u|+|∇h∇b|)dx≤C‖b‖Lq‖|∇u|+|∇b|‖Lθ1‖|∇h∇u|+|∇h∇b|‖Lθ2≤C‖b‖Lq(‖∇h∇u‖23L2‖Δu‖13Lθ13+‖∇h∇b‖23L2‖Δb‖13Lθ13)⋅(‖∇h∇u‖Lθ2+‖∇h∇b‖Lθ2)≤C‖b‖Lq(‖∇u‖2s13L2‖∇hΛαu‖2(1−s1)3L2‖∇u‖s23L2‖Λα+1u‖1−s23L2+‖∇b‖2s13L2‖∇hΛαb‖2(1−s1)3L2‖∇b‖s23L2‖Λα+1b‖1−s23L2)⋅(‖∇u‖s3L2‖∇hΛαu‖1−s3L2+‖∇b‖s3L2‖∇hΛαb‖1−s3L2)≤C‖b‖Lq(‖∇u‖2s13L2+‖∇b‖2s13L2)(‖∇hΛαu‖2(1−s1)3L2+‖∇hΛαb‖2(1−s1)3L2)⋅(‖∇u‖s23L2+‖∇b‖s23L2)(‖Λα+1u‖1−s23L2+‖Λα+1b‖1−s23L2)⋅(‖∇u‖s3L2+‖∇b‖s3L2)(‖∇hΛαu‖1−s3L2+‖∇hΛαb‖1−s3L2)≤C‖b‖Lq(‖∇u‖L2+‖∇b‖L2)2s13+s23+s3(‖Λα+1u‖L2+‖Λα+1b‖L2)1−s23⋅(‖∇hΛαu‖L2+‖∇hΛαb‖L2)2(1−s1)3+1−s3≤C[‖b‖Lq(‖∇u‖L2+‖∇b‖L2)2s13+s23+s3(‖Λα+1u‖L2+‖Λα+1b‖L2)1−s23]m′+16(‖∇hΛαu‖L2+‖∇hΛαb‖L2)(2(1−s1)3+1−s3)m, | (2.18) |
where the constants 1<θ1,θ2,m,m′<∞ and 0≤s1,s2,s3≤1 satisfy (2.10).
Similar to I3, we bound I5 as
|I5|≤C∫R3|v|(|∇u|+|∇v|)(|∇h∇u|+|∇h∇v|)dx. | (2.19) |
Using the same steps as (2.18), we obtain
|I5|≤C∫R3|v|(|∇u|+|∇v|)(|∇h∇u|+|∇h∇v|)dx≤C[‖v‖Lq(‖∇u‖L2+‖∇v‖L2)2s13+s23+s3(‖Λα+1u‖L2+‖Λα+1v‖L2)1−s23]m′+16(‖∇hΛαu‖L2+‖∇hΛαv‖L2)(2(1−s1)3+1−s3)m, |
where the constants 1<θ1,θ2,m,m′<∞ and 0≤s1,s2,s3≤1 satisfy (2.10).
Combining (2.3), (2.4), (2.9), (2.18), and (2.20), we arrive at
ddt(‖∇hu(t)‖2L2+‖∇hv(t)‖2L2+‖∇hb(t)‖2L2)+‖∇hΛαu(t)‖2L2+‖∇hΛαv(t)‖2L2+‖∇hΛαb(t)‖2L2+κ‖∇h∇⋅v(t)‖2L2≤C‖u3‖2αq(2α−1)q−3(1−ϵ)Lq‖∇u‖2((2α−1)q−3)(2α−1)q−3(1−ϵ)L2‖Λα+1u‖6ϵ(2α−1)q−3(1−ϵ)L2+‖b‖2αq(2α−1)q−3(1−ϵ)Lq(‖∇u‖L2+‖∇b‖L2)2((2α−1)q−3)(2α−1)q−3(1−ϵ)(‖Λα+1u‖L2+‖Λα+1b‖L2)6ϵ(2α−1)q−3(1−ϵ)+‖v‖2αq(2α−1)q−3(1−ϵ)Lq(‖∇u‖L2+‖∇v‖L2)2((2α−1)q−3)(2α−1)q−3(1−ϵ)(‖Λα+1u‖L2+‖Λα+1v‖L2)6ϵ(2α−1)q−3(1−ϵ)≤C(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(1−ϵ)(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2((2α−1)q−3)(2α−1)q−3(1−ϵ)(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)6ϵ(2α−1)q−3(1−ϵ). | (2.20) |
Set
Θ1=2αq(2α−1)q−3(1−ϵ),Θ2=2((2α−1)q−3)(2α−1)q−3(1−ϵ),Θ3=6ϵ(2α−1)q−3(1−ϵ). | (2.21) |
Integrating (2.20) with respect to t, we obtain
E(t)≤CJ0+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ1(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)Θ2(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)Θ3dτ, | (2.22) |
where J0=‖∇u(0)‖2L2+‖∇v(0)‖2L2+‖∇b(0)‖2L2.
By taking the inner product of the first three equations of (1.1) with (−Δu,−Δv,−Δb) and integrating by parts, the divergence-free condition, we have
12ddt(‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2)+‖Λα+1u(t)‖2L2+‖Λα+1v(t)‖2L2+‖Λα+1b(t)‖2L2+κ‖∇∇⋅v(t)‖2L2+χ‖∇∇u(t)‖2L2+4χ‖∇v(t)‖2L2:=6∑i=1Ji, | (2.23) |
where
J1=∫R3(u⋅∇u)⋅Δudx,J2=−∫R3(b⋅∇b)⋅Δudx,J3=∫R3(u⋅∇b)⋅Δbdx,J4=−∫R3(b⋅∇u)⋅Δbdx,J5=∫R3(u⋅∇v)⋅Δvdx,J6=−2χ∫R3[(∇×v)⋅Δu+(∇×u)⋅Δv]dx. |
By integration by parts and Cauchy's inequality, we arrive at
J6=4χ∫R3∇(∇×u)⋅∇vdx≤χ‖∇(∇×u)‖2L2+4χ‖∇v‖2L2=χ‖∇∇u‖2L2+4χ‖∇v‖2L2. | (2.24) |
For J1, we divide it into the following three items: J1i(i=1,2,3)
J1=∫R3u3∂3u⋅Δhudx+2∑j=1∫R3uj∂ju⋅Δudx+∫R3u3∂3u⋅∂233udx:=J11+J12+J13. | (2.25) |
Integrating by parts and using the divergence-free condition yields
J11=123∑k=12∑l=1∫R3∂3u3∂luk∂lukdx−3∑k=12∑l=1∫R3∂lu3∂3uk∂lukdx, | (2.26) |
J12=123∑j=13∑k,l=1∫R3∂juj∂luk∂lukdx−2∑j=13∑k,l=1∫R3∂luj∂juk∂lukdx, | (2.27) |
and
J13=123∑k=1∫R3(∂1u1+∂2u2)∂3uk∂3ukdx. | (2.28) |
Therefore, we have
|J1|≤C∫R3|∇hu||∇u|2dx. | (2.29) |
From Hölder's inequality and Lemma 2.1, it follows that
|J1|≤C‖∇hu‖L2‖∇u‖2L4≤C‖∇hu‖L2‖∇u‖2−32αL2‖Λαu‖32αL6≤C‖∇hu‖L2‖∇u‖2−32αL2‖∇hΛαu‖1αL2‖Λα+1u‖12αL2. | (2.30) |
By using integrating by parts and the divergence-free condition, we have
J3=−3∑j,k,l=1∫R3∂l(uj∂jbk)∂lbkdx=−3∑j,k,l=1∫R3(∂luj∂jbk∂lbk+uj∂2ljbk∂lbk)dx=3∑j,k,l=1∫R3bk∂l(∂luj∂jbk)dx=3∑j,k,l=1∫R3(bk∂2lluj∂jbk+bk∂luj∂2jlbk)dx. | (2.31) |
Then we arrive at
|J3|≤C∫R3|b|(|∇u|+|∇b|)(|Δu|+|Δb|)dx. | (2.32) |
Furthermore, we have
|J2+J3+J4|≤C∫R3|b|(|∇u|+|∇b|)(Δu|+|Δb|)dx. | (2.33) |
It follows from the same procedure (2.18) that
|J2+J3+J4|≤C∫R3|b|(|∇u|+|∇b|)(|Δu|+|Δb|)dx≤C‖b‖Lq‖|∇u|+|∇b|‖Lθ1‖|Δu|+|Δb|‖Lθ2≤C‖b‖Lq(‖Δu‖23L2‖Δu‖13Lθ13+‖Δb‖23L2‖Δb‖13Lθ13)(‖Δu‖Lθ2+‖Δb‖Lθ2)≤C‖b‖Lq(‖∇u‖2s13L2‖Λα+1u‖2(1−s1)3L2‖∇u‖s23L2‖Λα+1u‖1−s23L2+‖∇b‖2s13L2‖Λα+1b‖2(1−s1)3L2‖∇b‖s23L2‖Λα+1b‖1−s23L2)×(‖∇u‖s3L2‖Λα+1u‖1−s3L2+‖∇b‖s3L2‖Λα+1b‖1−s3L2)≤C‖b‖Lq(‖∇u‖L2+‖∇b‖L2)2s13+s23+s3(‖Λα+1u‖L2+‖Λα+1b‖L2)2(1−s1)3+1−s23+1−s3≤C‖b‖2αq(2α−1)q−3Lq(‖∇u‖2L2+‖∇b‖2L2)+18(‖Λα+1u‖2L2+‖Λα+1b‖2L2), | (2.34) |
where the constants 1<θ1,θ2,m,m′<∞ and 0≤s1,s2,s3≤1 satisfy (2.10).
Similar to J3, we bound J5 as
|J5|≤C∫R3|v|(|∇u|+|∇v|)(|Δu|+|Δv|)dx. | (2.35) |
The same procedure leads to (2.34) yields
|J5|≤C∫R3|v|(|∇u|+|∇v|)(|Δu|+|Δv|)dx≤C‖v‖2αq(2α−1)q−3Lq(‖∇u‖2L2+‖∇v‖2L2)+18(‖Λα+1u‖2L2+‖Λα+1v‖2L2). |
Combining (2.23), (2.24), (2.30), (2.34), and (2.36), we have
12ddt(‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2)+34(‖Λα+1u(t)‖2L2+‖Λα+1v(t)‖2L2)+34‖Λα+1b(t)‖2L2+κ‖∇∇⋅v(t)‖2L2≤C(‖b‖2αq(2α−1)q−3Lq+‖v‖2αq(2α−1)q−3Lq)(‖∇u‖2L2+‖∇b‖2L2+‖∇v‖2L2)+C‖∇hu‖L2‖∇u‖2−32αL2‖∇hΛαu‖1αL2‖Λα+1u‖12αL2. | (2.36) |
Integrating (2.36) over the interval (0,t) and using Hölder's inequality, it was deduced that
12(‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2)+34∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤C+C∫t0(‖b‖2αq(2α−1)q−3Lq+‖v‖2αq(2α−1)q−3Lq)(‖∇u‖2L2+‖∇b‖2L2+‖∇v‖2L2)dτ+C∫t0‖∇hu‖L2‖∇u‖2−32αL2‖∇hΛαu‖1αL2‖Λα+1u‖12αL2dτ≤C+C∫t0(‖b‖2αq(2α−1)q−3Lq+‖v‖2αq(2α−1)q−3Lq)(‖∇u‖2L2+‖∇b‖2L2+‖∇v‖2L2)dτ+Csup0≤τ≤t‖∇hu‖L2∫t0‖∇u‖2−32αL2‖∇hΛαu‖1αL2‖Λα+1u‖12αL2dτ. | (2.37) |
From Young's inequality, it follows that
Csup0≤τ≤t‖∇hu‖L2∫t0‖∇u‖2−32αL2‖∇hΛαu‖1αL2‖Λα+1u‖12αL2dτ≤Csup0≤τ≤t‖∇hu‖L2[∫t0‖∇u‖2L2dτ]1−34α[∫t0‖∇hΛαu‖2L2dτ]12α[∫t0‖Λα+1u‖2L2dτ]14α≤Csup0≤τ≤t‖∇hu‖L2[∫t0‖u‖2α1+αL2‖Λα+1u‖21+αL2dτ]1−34α[∫t0‖∇hΛαu‖2L2dτ]12α[∫t0‖Λα+1u‖2L2dτ]14α≤Csup0≤τ≤t‖∇hu‖L2[∫t0‖∇hΛαu‖2L2dτ]12α[∫t0‖Λα+1u‖2L2dτ]14α+4α−34α(1+α)≤Csup0≤τ≤t‖∇hu‖L2[(∫t0‖∇hΛαu‖2L2dτ)12+1][(∫t0‖Λα+1u‖2L2dτ)14+1]≤CE(t)[∫t0‖Λα+1u‖2L2dτ]14+Csup0≤τ≤t‖∇hu‖L2[∫t0‖Λα+1u‖2L2dτ]14+CE(t)+Csup0≤τ≤t‖∇hu‖L2≤CE(t)[∫t0‖Λα+1u‖2L2dτ]14+C(sup0≤τ≤t‖∇hu‖2L2+1)[∫t0‖Λα+1u‖2L2dτ]14+CE(t)+Csup0≤τ≤t‖∇hu‖2L2+C≤CE(t)[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0‖Λα+1u‖2L2dτ]14+CE(t)+C. | (2.38) |
Then, we have
12(‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2)+34∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤C+C∫t0(‖b‖2αq(2α−1)q−3Lq+‖v‖2αq(2α−1)q−3Lq)(‖∇u‖2L2+‖∇b‖2L2+‖∇v‖2L2)dτ+CE(t)[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0‖Λα+1u‖2L2dτ]14+CE(t)+C. | (2.39) |
By using Hölder's inequality, Young's inequality, and (2.22), we deduce that
CE(t)≤C+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ1(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)Θ2(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)Θ3dτ≤C+C[∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ]Θ2[∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ]12Θ3≤C+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ+116∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ. | (2.40) |
Similarly, it follows from (2.22) and Hölder's inequality and Young's inequality that
CE(t)[∫t0‖Λα+1u‖2L2dτ]14≤C[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0‖Λα+1u‖2L2dτ]14∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ1(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)Θ22(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)Θ3dτ≤C[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0‖Λα+1u‖2L2dτ]14[∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ]Θ22[∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ]Θ32≤C[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ]2Θ3+14⋅[∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ]Θ2≤C[∫t0‖Λα+1u‖2L2dτ]14+C[∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ]2Θ3+14⋅[∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ4(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ]3(2α−1)q+3(1−ϵ)−124[(2α−1)q−3(1−ϵ)]≤C+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ4(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ+116∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ, | (2.41) |
where Θ4=8αq3(2α−1)q+3(1−ϵ)−12.
We substitute (2.40) and (2.41) into (2.39) and then use Young's inequality to obtain
12(‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2)+34∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤C+C∫t0(‖b‖2αq(2α−1)q−3Lq+‖v‖2αq(2α−1)q−3Lq)(‖∇u‖2L2+‖∇b‖2L2+‖∇v‖2L2)dτ+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)Θ4(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ+C∫t0(‖u3‖Lq+‖b‖Lq+‖v‖Lq)2αq(2α−1)q−3(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ+18[∫t0(‖Λα+1u‖L2+‖Λα+1b‖L2+‖Λα+1v‖L2)2dτ]≤C+C∫t0(‖u3‖Θ4Lq+‖b‖Θ4Lq+‖v‖Θ4Lq)(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ+14∫t0(‖Λα+1u‖2L2+‖Λα+1b‖2L2+‖Λα+1v‖2L2)dτ. | (2.42) |
Then we have
‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2+∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤C+C∫t0(‖u3‖Θ4Lq+‖b‖Θ4Lq+‖v‖Θ4Lq)(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ. | (2.43) |
Thanks to Gronwall's inequality and condition (1.3), we obtain
‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2+∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤Cexp[C∫t0(‖u3‖Θ4Lq+‖b‖Θ4Lq+‖v‖Θ4Lq)dτ]<∞. | (2.44) |
Finally, we consider the case q=∞. By repeating the above procedure, we derive that
E(t)≤CJ0+C∫t0(‖u3‖L∞+‖b‖L∞+‖v‖L∞)2α2α−1(‖∇u‖L2+‖∇b‖L2+‖∇v‖L2)2dτ. |
Thanks to Gronwall's inequality and condition (1.3), we obtain
‖∇u(t)‖2L2+‖∇v(t)‖2L2+‖∇b(t)‖2L2+∫t0(‖Λα+1u(τ)‖2L2+‖Λα+1v(τ)‖2L2+‖Λα+1b(τ)‖2L2)dτ+∫t0κ‖∇∇⋅v(τ)‖2L2dτ≤Cexp[C∫t0(‖u3‖8α3(2α−1)L∞+‖b‖8α3(2α−1)L∞+‖v‖8α3(2α−1)L∞)dτ]<∞. | (2.45) |
By the above steps, we establish a higher-order a priori estimate of the solutions, and then we obtain that the higher-order norm of the solutions is bounded, thus proving the smoothness of the solutions. This completes the proof of Theorem 1.1.
In this paper, the regularity criterion of the weak solution of the three-dimensional magnetic micropolar fluid equation when 1≤α=β=γ≤32 is studied. However, the regularity of the weak solution of the magnetic micropolar fluid equation when 1≤α,β,γ≤32 on R3 is still an open problem, and it is hoped that the method in this paper can provide inspiration for the solution of this problem.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was supported by [the Basic Research Project of Key Scientific Research Project Plan of Universities in Henan Province (Grant No. 20ZX002)].
The authors declare there is no conflict of interest.
[1] |
J. Fan, X. Zhong, Regularity criteria for 3D generalized incompressible magneto-micropolar fluid equations, Appl. Math. Lett., 127 (2022), 107840. https://doi.org/10.1016/j.aml.2021.107840 doi: 10.1016/j.aml.2021.107840
![]() |
[2] |
H. Qiu, C. Xiao, Z. Yao, Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces, Math. Methods Appl. Sci., 46 (2023), 9617–9651. https://doi.org/10.1002/mma.9078 doi: 10.1002/mma.9078
![]() |
[3] |
B. Yuan, P. Zhang, Global well-posedness for the 3D magneto-micropolar equations with fractional dissipation, N. Z. J. Math., 51 (2021), 119–130. https://doi.org/10.53733/161 doi: 10.53733/161
![]() |
[4] |
J. Yan, Q. Xie, B. Dong, Global regularity of the 3D magneto-micropolar equations with fractional dissipation, Z. Angew. Math. Phys., 73 (2022), 1–15. https://doi.org/10.1007/s00033-021-01651-2 doi: 10.1007/s00033-021-01651-2
![]() |
[5] |
E. Ortega-Torres, M.Rojas-Medar, Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109–125. https://doi.org/10.1155/S1085337599000287 doi: 10.1155/S1085337599000287
![]() |
[6] |
M. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 307–319. https://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116
![]() |
[7] | M. Rojas-Medar, J. Boldrini, Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complutense, 11 (1998), 443–460. |
[8] |
S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space, Nonlinear Differ. Equations Appl., 17 (2010), 181–194. https://doi.org/10.1007/s00030-009-0047-4 doi: 10.1007/s00030-009-0047-4
![]() |
[9] |
Z. Li, P. Niu, New regularity criteria for the 3D magneto-micropolar fluid equations in Lorentz spaces, Math. Methods Appl. Sci., 44 (2021), 6056–6066. https://doi.org/10.1002/mma.7170 doi: 10.1002/mma.7170
![]() |
[10] |
F. Xu, Regularity criterion of weak solution for the 3D magneto-micropolar fluid equations in Besov spaces, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 2426–2433. http://doi.org/10.1016/j.cnsns.2011.09.038 doi: 10.1016/j.cnsns.2011.09.038
![]() |
[11] |
Z. Zhang, Z. Yao, X. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Anal. Theory Methods Appl., 74 (2011), 2220–2225. https://doi.org/10.1016/J.NA.2010.11.026 doi: 10.1016/J.NA.2010.11.026
![]() |
[12] |
F. Xu, X. Xu, J. Yuan, Logarithmically improved regularity criteria for the micropolar fluid equations, Appl. Math., 39 (2012), 315–328. https://doi.org/10.4064/am39-3-6 doi: 10.4064/am39-3-6
![]() |
[13] |
B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci., 30 (2010), 1469–1480. https://doi.org/10.1016/S0252-9602(10)60139-7 doi: 10.1016/S0252-9602(10)60139-7
![]() |
[14] | S. Yan, X. Chen, Regularity criterion for the 3D magneto-micropolar fluid flows in terms of pressure, J. Nonlinear Evol. Equations Appl., 2022 (2023), 127–142. |
[15] |
Z. Zhang, Regularity criteria for the 3D magneto-micropolar fluid equations via the direction of the velocity, Proc. Math. Sci., 125 (2015), 37–43. https://doi.org/10.1007/s12044-015-0213-z doi: 10.1007/s12044-015-0213-z
![]() |
[16] |
Y. Z. Wang, Y. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Math. Methods Appl. Sci., 34 (2011), 2125–2135. https://doi.org/10.1002/mma.1510 doi: 10.1002/mma.1510
![]() |
[17] |
J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113–1130. https://doi.org/10.1002/mma.967 doi: 10.1002/mma.967
![]() |
[18] |
L. Deng, H. Shang, Global well-posedness for n-dimensional magneto-micropolar equations with hyperdissipation, Appl. Math. Lett., 111 (2021), 106610. https://doi.org/10.1016/j.aml.2020.106610 doi: 10.1016/j.aml.2020.106610
![]() |
[19] |
J. Liu, S. Wang, Initial-boundary value problem for 2D micropolar equations without angular viscosity, Commun. Math. Sci., 16 (2018), 2147–2165. https://doi.org/10.4310/CMS.2018.v16.n8.a5 doi: 10.4310/CMS.2018.v16.n8.a5
![]() |
[20] |
S. Wang, W. Xu, J. Liu, Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity, Z. Angew. Math. Phys., 72 (2021), 1–23. https://doi.org/10.1007/s00033-021-01537-3 doi: 10.1007/s00033-021-01537-3
![]() |
[21] |
H. Lin, S. Liu, H. Zhang, R. Bai, Global regularity of 2D incompressible magneto-micropolar fluid equations with partial viscosity, Acta Math. Sci., 43 (2023), 1275–1300. https://doi.org/10.1007/s10473-023-0316-z doi: 10.1007/s10473-023-0316-z
![]() |
[22] |
D. Regmi, J. Wu, Global regularity for the 2D magneto-micropolar equations with partial dissipation, J. Math. Study, 49 (2016), 169–194. https://doi.org/10.4208/jms.v49n2.16.05 doi: 10.4208/jms.v49n2.16.05
![]() |
[23] |
H. Shang, J. Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal. Theory Methods Appl., 150 (2017), 194–209. https://doi.org/10.1016/j.na.2016.11.011 doi: 10.1016/j.na.2016.11.011
![]() |
[24] |
H. Shang, C. Gu, Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 70 (2019), 1–22. https://doi.org/10.1007/s00033-019-1129-8 doi: 10.1007/s00033-019-1129-8
![]() |
[25] |
H. Shang, J. Wu, Global regularity for 2D fractional magneto-micropolar equations, Math. Z., 297 (2021), 775–802. https://doi.org/10.1007/s00209-020-02532-6 doi: 10.1007/s00209-020-02532-6
![]() |
[26] |
Y. Jia, Q. Xie, B. Dong, Global regularity of the 3D magneto-micropolar equations with fractional dissipation, Z. Angew. Math. Phys., 73 (2022), 1–15. https://doi.org/10.1007/s00033-021-01651-2 doi: 10.1007/s00033-021-01651-2
![]() |
[27] |
Y. Wang, L. Gu, Global regularity of 3D magneto-micropolar fluid equations, Appl. Math. Lett., 99 (2020), 105980. https://doi.org/10.1016/j.aml.2019.07.011 doi: 10.1016/j.aml.2019.07.011
![]() |
[28] |
J. Wu, Regularity criteria for the generalized MHD equations, Commun. Partial Differ. Equations, 33 (2008), 285–306. http://doi.org/10.1080/03605300701382530 doi: 10.1080/03605300701382530
![]() |
[29] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295–305. https://doi.org/10.1007/s00021-009-0017-y doi: 10.1007/s00021-009-0017-y
![]() |
[30] |
Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré C Anal. Non. Linéaire, 24 (2007), 491–505. https://doi.org/10.1016/j.anihpc.2006.03.014 doi: 10.1016/j.anihpc.2006.03.014
![]() |
[31] |
J. Wang, W. Tan, Y. Nie, A regularity criterion for the 3D generalized MHD system involving partial components, J. Math. Phys., 64 (2023), 051505. https://doi.org/10.1063/5.0143742 doi: 10.1063/5.0143742
![]() |
[32] |
Y. Cai, Z. Lei, Global well-posedness of the incompressible Magnetohydrodynamics, Arch. Ration. Mech. Anal., 228 (2018), 969–993. https://doi.org/10.1007/s00205-017-1210-4 doi: 10.1007/s00205-017-1210-4
![]() |
[33] |
B. Yuan, J. Zhao, Global regularity of 2D almost resistive MHD equations, Nonlinear Anal. Real World Appl., 41 (2018), 53–65. https://doi.org/10.1016/j.nonrwa.2017.10.006 doi: 10.1016/j.nonrwa.2017.10.006
![]() |
[34] |
Z. Lei, On axially symmetric incompressible Magnetohydrodynamics in three dimensions, J. Differ. Equations, 259 (2015), 3202–3215. https://doi.org/10.1016/j.jde.2015.04.017 doi: 10.1016/j.jde.2015.04.017
![]() |
[35] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
![]() |
[36] |
Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496–1514. http://doi.org/10.1016/j.matpur.2005.07.003 doi: 10.1016/j.matpur.2005.07.003
![]() |
[37] |
C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141–1151. https://doi.org/10.3934/dcds.2010.26.1141 doi: 10.3934/dcds.2010.26.1141
![]() |