Research article

Pullback $ \mathcal{D} $-attractors of the three-dimensional non-autonomous micropolar equations with damping

  • Received: 11 August 2021 Revised: 10 October 2021 Accepted: 10 October 2021 Published: 11 January 2022
  • In this paper, we consider the three-dimensional non-autonomous micropolar equations with damping term in periodic domain $ \mathbb{T}^{3} $. By assuming external forces satisfy certain condtions, the existence of pullback $ \mathcal{D} $-attractors for the three-dimensional non-autonomous micropolar equations with damping term is proved in $ V_{1}\times V_{2} $ and $ H^{2}\times H^{2} $ with $ 3 < \beta < 5 $.

    Citation: Xiaojie Yang, Hui Liu, Haiyun Deng, Chengfeng Sun. Pullback $ \mathcal{D} $-attractors of the three-dimensional non-autonomous micropolar equations with damping[J]. Electronic Research Archive, 2022, 30(1): 314-334. doi: 10.3934/era.2022017

    Related Papers:

  • In this paper, we consider the three-dimensional non-autonomous micropolar equations with damping term in periodic domain $ \mathbb{T}^{3} $. By assuming external forces satisfy certain condtions, the existence of pullback $ \mathcal{D} $-attractors for the three-dimensional non-autonomous micropolar equations with damping term is proved in $ V_{1}\times V_{2} $ and $ H^{2}\times H^{2} $ with $ 3 < \beta < 5 $.



    加载中


    [1] X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
    [2] T. Caraballo, G. Lukasiewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484–498. https://doi.org/10.1016/j.na.2005.03.111 doi: 10.1016/j.na.2005.03.111
    [3] A. Cheskidov, S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, preprint, arXiv: 1212.4193.
    [4] A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205–217. https://doi.org/10.1016/0020-7225(64)90005-9 doi: 10.1016/0020-7225(64)90005-9
    [5] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. https://doi.org/10.1512/iumj.1967.16.16001 doi: 10.1512/iumj.1967.16.16001
    [6] G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105–108. https://doi.org/10.1016/0020-7225(77)90025-8 doi: 10.1016/0020-7225(77)90025-8
    [7] Y. J. Li, C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020–1029. https://doi.org/10.1016/j.amc.2006.11.187 doi: 10.1016/j.amc.2006.11.187
    [8] H. Liu, H. Gao, Decay of solutions for the 3D Navier-Stokes equations with damping, Appl. Math. Lett., 68 (2017), 48–54. https://doi.org/10.1016/j.aml.2016.11.013 doi: 10.1016/j.aml.2016.11.013
    [9] H. Liu, C. Sun, F. Meng, Global well-posedness of the 3D magneto-micropolar equations with damping, Appl. Math. Lett., 94 (2019), 38–43. https://doi.org/10.1016/j.aml.2019.02.026 doi: 10.1016/j.aml.2019.02.026
    [10] H. Liu, C. Sun, J. Xin, Attractors of the 3D magnetohydrodynamics equations with damping, Bull. Malays. Math. Sci. Soc., 44 (2021), 337–351. https://doi.org/10.1007/s40840-020-00949-0 doi: 10.1007/s40840-020-00949-0
    [11] H. Liu, C. F. Sun, J. Xin, Well-posedness for the hyperviscous magneto-micropolar equations, Appl. Math. Lett., 107 (2020), 106403. https://doi.org/10.1016/j.aml.2020.106403 doi: 10.1016/j.aml.2020.106403
    [12] G. Lukaszewicz, Micropolar fluids. Theory and applications, in: Modeling and Simulation in Science, Engineering and Technology, Birkhauser Boston, Inc., Boston, MA, 1999.
    [13] H. B. de Oliveira, Existence of weak solutions for the generalized Navier-Stokes equations with damping, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 797–824. https://doi.org/10.1007/s00030-012-0180-3 doi: 10.1007/s00030-012-0180-3
    [14] J. C. Robinson, J. L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations., 2016.
    [15] M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301–319. https://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116
    [16] X. L. Song, Y.R. Hou, Attractors for the three-diemensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. https://doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239
    [17] X. L. Song, F. Liang, J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Boundary Value Problems, 2016.1 (2016), 145. https://doi.org/10.1186/s13661-016-0654-z doi: 10.1186/s13661-016-0654-z
    [18] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, second edition, in: Applied Mathematical Sciences, vol. 91, Springer-Verlag, New York, 2004.
    [19] W. L. Sun, Y. P. Li, Pullback exponential attractors for the non-autonomous micropolar fluid flows, Acta Mathematica Scientia, 38.4 (2018), 1370–1392. https://doi.org/10.1016/S0252-9602(18)30820-8 doi: 10.1016/S0252-9602(18)30820-8
    [20] E. S. Titi, S. Trabelsi, Global well-posedness of a 3D MHD model in porous media, J. Geom. Mech., 11 (2019), 621–637. https://doi.org/10.3934/jgm.2019031 doi: 10.3934/jgm.2019031
    [21] L. Yang, M. H. Yang, P. Kloeden, Pullback attractors for non-autonomous quasilinear parabolic equations with a dynamical boundary condition, Discrete Contin. Dyn. Syst., Ser. B, 17 (2012), 2635–2651. https://doi.org/10.3934/dcdsb.2012.17.2635 doi: 10.3934/dcdsb.2012.17.2635
    [22] X. J. Yang, H. Liu, C. F. Sun, Global attractors of the 3D micropolar equations with damping term, Mathematical Foundations of Computing, 4.2 (2021), 117–130. https://doi.org/10.3934/mfc.2021007 doi: 10.3934/mfc.2021007
    [23] X. J. Yang, H. Liu, C. F. Sun, Pullback attractor of a non-autonomous order-2$\gamma$ parabolic equation for an epitaxial thin film growth model, Boundary Value Problems, 2020.1 (2020), 79. https://doi.org/10.1186/s13661-020-01375-8 doi: 10.1186/s13661-020-01375-8
    [24] Z. Ye, Global existence of solution to the 3D micropolar equations with a damping term, Appl. Math. Lett., 83 (2018), 188–193. https://doi.org/10.1016/j.aml.2018.04.002 doi: 10.1016/j.aml.2018.04.002
    [25] Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822–1825. https://doi.org/10.1016/j.aml.2012.02.029 doi: 10.1016/j.aml.2012.02.029
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1553) PDF downloads(118) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog