By making use of the multisection series method, four classes of alternating infinite series are evaluated, in closed form, by the Riemann zeta function and the Dirichlet beta function.
Citation: Zhiling Fan, Wenchang Chu. Alternating series in terms of Riemann zeta function and Dirichlet beta function[J]. Electronic Research Archive, 2024, 32(2): 1227-1238. doi: 10.3934/era.2024058
By making use of the multisection series method, four classes of alternating infinite series are evaluated, in closed form, by the Riemann zeta function and the Dirichlet beta function.
[1] | T. M. Apostol, Zeta and related functions, in NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, (2010), 601–616. |
[2] | G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl., 48 (2004), 833–839. https://doi.org/10.1016/j.camwa.2003.09.031 doi: 10.1016/j.camwa.2003.09.031 |
[3] | E. Guariglia, Fractional calculus, zeta functions and Shannon entropy, Open Math. 19 (2021), 87–100. https://doi.org/10.1515/math-2021-0010 doi: 10.1515/math-2021-0010 |
[4] | S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154 (2004), 725–733 https://doi.org/10.1016/S0096-3003(03)00746-X doi: 10.1016/S0096-3003(03)00746-X |
[5] | , W. Ramírez, D. Bedoya, A. Urieles, C. cesarano, M. Ortega, New $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomials and their matrices, Carpathian Math. Publ., 15 (2023), 449–467 https://doi.org/10.15330/cmp.15.2.449-467 doi: 10.15330/cmp.15.2.449-467 |
[6] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley Professional, Massachusetts, 1989. |
[7] | K. N. Boyadzhiev, Derivative polynomials for tanh, tan, sech and sec in explicit form, Fibonacci Quart., 45 (2007), 291–303. |
[8] | W. Chu, C. Wang, Convolution formulae for Bernoulli numbers, Integr. Transf. Spec. Funct., 21 (2010), 437–457. https://doi.org/10.1080/10652460903360861 doi: 10.1080/10652460903360861 |
[9] | K. Stromberg, An Introduction to Classical Real Analysis, American Mathematical Society, California, 1981. |
[10] | J. R. Higgins, Two basic formulae of Euler and their equivalence to Tschakalov's sampling theorem, Sampl. Theory Signal Image Process., 2 (2003), 259–270. https://doi.org/10.1007/BF03549398 doi: 10.1007/BF03549398 |