Research article Special Issues

Decision making in railway interlocking systems based on calculating the remainder of dividing a polynomial by a set of polynomials

  • Received: 19 March 2023 Revised: 28 July 2023 Accepted: 05 September 2023 Published: 15 September 2023
  • Decision-making in a railway station regarding the compatibility of the positions of the switches of the turnouts and the indications (proceed/stop) of the railway colour light signals is a safety-critical issue that is considered very labor-intensive. Different authors have proposed alternative solutions to automate its supervision, which is performed by the so-called railway interlocking systems. The classic railway interlocking systems are route-based and their compatibility is predetermined (usually by human experts): only some chosen routes are simultaneously allowed. Some modern railway interlocking systems are geographical and make decisions on the fly, but are unsuitable if the station is very large and the number of trains is high. In this paper, we present a completely new algebraic model for decision-making in railway interlocking systems, based on other computer algebra techniques, that bypasses the disadvantages of the approaches mentioned above (its performance does not depend on the number of trains in the railway station and can be used in large railway stations). The main goal of this work is to provide a mathematical solution to the interlocking problems. We prove that our approach solves it in linear time. Although our approach is interesting from a theoretical perspective, it has a significant limitation: it can hardly be adopted in an actual interlocking implementation, mainly due to the heavy certification requirements for this kind of safety-critical application. Nevertheless, the results may be useful for simulations that do not require certification credit.

    Citation: Antonio Hernando, Eugenio Roanes-Lozano, José Luis Galán-García, Gabriel Aguilera-Venegas. Decision making in railway interlocking systems based on calculating the remainder of dividing a polynomial by a set of polynomials[J]. Electronic Research Archive, 2023, 31(10): 6160-6196. doi: 10.3934/era.2023313

    Related Papers:

  • Decision-making in a railway station regarding the compatibility of the positions of the switches of the turnouts and the indications (proceed/stop) of the railway colour light signals is a safety-critical issue that is considered very labor-intensive. Different authors have proposed alternative solutions to automate its supervision, which is performed by the so-called railway interlocking systems. The classic railway interlocking systems are route-based and their compatibility is predetermined (usually by human experts): only some chosen routes are simultaneously allowed. Some modern railway interlocking systems are geographical and make decisions on the fly, but are unsuitable if the station is very large and the number of trains is high. In this paper, we present a completely new algebraic model for decision-making in railway interlocking systems, based on other computer algebra techniques, that bypasses the disadvantages of the approaches mentioned above (its performance does not depend on the number of trains in the railway station and can be used in large railway stations). The main goal of this work is to provide a mathematical solution to the interlocking problems. We prove that our approach solves it in linear time. Although our approach is interesting from a theoretical perspective, it has a significant limitation: it can hardly be adopted in an actual interlocking implementation, mainly due to the heavy certification requirements for this kind of safety-critical application. Nevertheless, the results may be useful for simulations that do not require certification credit.



    加载中


    [1] N. Bešinović, Resilience in railway transport systems: a literature review and research agenda, Transport Rev., 40 (2020), 457–478. https://doi.org/10.1080/01441647.2020.1728419 doi: 10.1080/01441647.2020.1728419
    [2] Y. Zhou, J. Wang, H. Yang, Resilience of transportation systems: concepts and comprehensive review, IEEE Trans. Intell. Transp. Syst., 20 (2019), 4262–4276. https://doi.org/10.1109/TITS.2018.2883766 doi: 10.1109/TITS.2018.2883766
    [3] J. Pachl, Railway signalling principles, 2021. Available from: http://www.joernpachl.de/rsp.htm.
    [4] H. Lian, X. Wang, A. Sharma, M. A. Shah, Application and study of artificial intelligence in railway signal interlocking fault, Informatica, 46 (2022), 343–354. https://doi.org/10.31449/inf.v46i3.3961 doi: 10.31449/inf.v46i3.3961
    [5] A. Fantechi, G. Gori, A. E. Haxthausen, C. Limbrée, Compositional verification of railway interlockings: comparison of two methods, in Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, (2022), 3–19. https://doi.org/10.1007/978-3-031-05814-1_1
    [6] G. Lukács, T. Bartha, Conception of a formal model-based methodology to support railway engineers in the specification and verification of interlocking systems, in 2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI), (2022), 000283–000288. https://doi.org/10.1109/SACI55618.2022.9919532
    [7] K. Winter, W. Johnston, P. Robinson, P. Strooper, L. van den Berg, Tool support for checking railway interlocking designs, in 10th Australian Workshop on Safety Re-lated Programmable Systems (SCS'05), Australian Computer Society, Sydney, 55 (2006), 101–107. Available from: https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV55Winter.pdf.
    [8] A. Borälv, Case study: formal verification of a computerized railway interlocking, Formal Aspects Comput., 10 (1998), 338–360. https://doi.org/10.1007/s001650050021 doi: 10.1007/s001650050021
    [9] Anonymous, Proyecto y obra del enclavamiento electrónico de la estación de Madrid-Atocha, Proyecto Técnico, Siemens, Madrid, 1988.
    [10] Anonymous, Microcomputer interlocking hilversum, Siemens, Munich, 1986.
    [11] Anonymous, Microcomputer interlocking rotterdam, Siemens, Munich, 1989.
    [12] Anonymous, Puesto de enclavamiento con microcomputadoras de la estación de Chiasso de los SBB, Siemens, Munich, 1989.
    [13] L. Villamandos, Sistema informático concebido por Renfe para diseñar los enclavamientos, Vía Libre, 348 (1993), 65.
    [14] J. Peleska, N. Krafczyk, A. E. Haxthausen, R. Pinger, Efficient data validation for geographical interlocking systems, Formal Aspects Comput., 33 (2021), 925–955. https://doi.org/10.1007/s00165-021-00551-6 doi: 10.1007/s00165-021-00551-6
    [15] A. Fantechi, A. E. Haxthausen, M. B. R. Nielsen, Model checking geographically distributed interlocking systems using UMC, in 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), (2017), 278–286. https://doi.org/10.1109/PDP.2017.66
    [16] A. Hernando, E. Roanes-Lozano, An algebraic model for implementing expert systems based on the knowledge of different experts, Math. Comput. Simul., 107 (2015), 92–107. https://doi.org/10.1016/j.matcom.2014.05.003 doi: 10.1016/j.matcom.2014.05.003
    [17] E. Roanes-Lozano, E. Roanes-Macías, L. Laita, Railway interlocking systems and Gröbner bases, Math. Comput. Simul., 51 (2000), 473–481. https://doi.org/10.1016/S0378-4754(99)00137-8 doi: 10.1016/S0378-4754(99)00137-8
    [18] A. Hernando, E. Roanes-Lozano, R. Maestre-Martínez, J. Tejedor, A logic-algebraic approach to decision taking in a railway interlocking system, Ann. Math. Artif. Intell., 65 (2012), 317–328. https://doi.org/10.1007/s10472-012-9321-y doi: 10.1007/s10472-012-9321-y
    [19] A. Hernando, R. Maestre, E. Roanes-Lozano, A new algebraic approach to decision making in a railway interlocking system based on preprocess, Math. Probl. Eng., 2018 (2018), 4982974. https://doi.org/10.1155/2018/4982974 doi: 10.1155/2018/4982974
    [20] D. Bjørner, The FMERail/TRain Annotated Rail Bibliography, 1999. Available from: http://www2.imm.dtu.dk/db/fmerail/fmerail/.
    [21] M. J. Morley, Modelling British Rail's Interlocking Logic: Geographic Data Correctness, LFCS, Department of Computer Science, University of Edinburgh, 1991.
    [22] K. Nakamatsu, Y. Kiuchi, A. Suzuki, EVALPSN based railway interlocking simulator, in Knowledge-Based Intelligent Information and Engineering Systems, Berlin - Heidelberg, (2004), 961–967. https://doi.org/10.1007/978-3-540-30133-2_127
    [23] A. Janota, Using Z specification for railway interlocking safety, Period. Polytech. Transp. Eng., 28 (2000), 39–53. Available from: https://pp.bme.hu/tr/article/view/1963.
    [24] K. M. Hansen, Formalising railway interlocking systems, in Nordic Seminar on Dependable Computing Systems, Lyngby, (1994), 83–94.
    [25] M. Montigel, Modellierung und Gewährleistung von Abhängigkeiten in Eisenbahnsicherungsanlagen, Ph.D thesis, ETH Zurich, Zurich, 1994. Available from: http://www.inf.ethz.ch/research/disstechreps/theses.
    [26] X. Chen, H. Huang, Y. He, Automatic generation of relay logic for interlocking system based on statecharts, in 2010 Second World Congress on Software Engineering, (2010), 183–188. https://doi.org/10.1109/WCSE.2010.31
    [27] X. Chen, Y. He, H. Huang, An approach to automatic development of interlocking logic based on Statechart, Enterp. Inf. Syst., 5 (2011), 273–286. https://doi.org/10.1080/17517575.2011.575475 doi: 10.1080/17517575.2011.575475
    [28] X. Chen, Y. He, H. Huang, A component-based topology model for railway interlocking systems, Math. Comput. Simul., 81 (2011), 1892–1900. https://doi.org/10.1016/j.matcom.2011.02.007 doi: 10.1016/j.matcom.2011.02.007
    [29] B. Luteberget, C. Johansen, Efficient verification of railway infrastructure designs against standard regulations, Formal Methods Syst. Des., 52 (2018), 1–32. https://doi.org/10.1007/s10703-017-0281-z doi: 10.1007/s10703-017-0281-z
    [30] M. Bosschaart, E. Quaglietta, B. Janssen, R. M. P. Goverde, Efficient formalization of railway interlocking data in RailML, Inf. Syst., 49 (2015), 126–141. https://doi.org/10.1016/j.is.2014.11.007 doi: 10.1016/j.is.2014.11.007
    [31] E. Roanes-Lozano, L. M. Laita, An applicable topology-independent model for railway interlocking systems, Math. Comput. Simul., 45 (1998), 175–183. https://doi.org/10.1016/S0378-4754(97)00093-1 doi: 10.1016/S0378-4754(97)00093-1
    [32] E. Roanes-Lozano, L. M. Laita, E. Roanes-Macías, An application of an AI methodology to railway interlocking systems using computer algebra, in Tasks and Methods in Applied Artificial Intelligence, (1998), 687–696. https://doi.org/10.1007/3-540-64574-8_455
    [33] B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput., 41 (2006), 475–511. https://doi.org/10.1016/j.jsc.2005.09.007 doi: 10.1016/j.jsc.2005.09.007
    [34] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-16721-3.
    [35] E. Roanes-Lozano, A. Hernando, J. A. Alonso, L. M. Laita, A logic approach to decision taking in a railway interlocking system using Maple, Math. Comput. Simul., 82 (2011), 15–28. https://doi.org/10.1016/j.matcom.2010.05.024 doi: 10.1016/j.matcom.2010.05.024
    [36] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Commun. ACM, 5 (1962), 394–397. https://doi.org/10.1145/368273.368557 doi: 10.1145/368273.368557
    [37] E. Roanes-Lozano, J. A. Alonso, A. Hernando, An approach from answer set programming to decision making in a railway interlocking system, Rev. R. Acad. Cienc. Exactas, Fis. Nat. Ser. A Mat., 108 (2014), 973–987. https://doi.org/10.1007/s13398-013-0155-1 doi: 10.1007/s13398-013-0155-1
    [38] J. Abbott, A. M. Bigatti, CoCoALib: a C++ library for doing Computations in Commutative Algebra, 2019. Available from: http://cocoa.dima.unige.it/cocoalib.
    [39] J. Abbott, A. M. Bigatti, CoCoA: a system for doing Computations in Commutative Algebra, 2010. Available from: http://cocoa.dima.unige.it.
    [40] Ministerio de Transportes, Movilidad y Agenda Urbana, Estudio Informativo del Nuevo Complejo Ferroviario de la Estación de Madrid-Chamartín. Available from: https://www.mitma.gob.es/ferrocarriles/estudios-en-tramite/estudios-y-proyectos-entramite/chamartin.
    [41] Anonympus, Adjudicada la Modificación de Las Instalaciones de Seguridad, ERTMS, Comunicaciones y Energía de Madrid-Chamartín, Vía Libre, 2021. Available from: https://www.vialibre-ffe.com/noticias.asp?not = 33047 & cs = infr.
    [42] G. Aguilera-Venegas, J. L. Galán-García, E. Mérida-Casermeiro, P. Rodríguez-Cielos, An accelerated-time simulation of baggage traffic in an airport terminal, Math. Comput. Simul., 104 (2014), 58–66. https://doi.org/10.1016/j.matcom.2013.12.009 doi: 10.1016/j.matcom.2013.12.009
    [43] G. Aguilera, J. L. Galán, J. M. García, E. Mérida, P. Rodríguez, An accelerated-time simulation of car traffic on a motorway using a CAS, Math. Comput. Simul., 104 (2014), 21–30. https://doi.org/10.1016/j.matcom.2012.03.010 doi: 10.1016/j.matcom.2012.03.010
    [44] J. L. Galán-García, G. Aguilera-Venegas, M. Á. Galán-García, P. Rodríguez-Cielos, A new Probabilistic Extension of Dijkstra's Algorithm to simulate more realistic traffic flow in a smart city, Appl. Math. Comput., 267 (2015), 780–789. https://doi.org/10.1016/j.amc.2014.11.076 doi: 10.1016/j.amc.2014.11.076
    [45] J. L. Galán-García, G. Aguilera-Venegas, P. Rodríguez-Cielos, An accelerated-time simulation for traffic flow in a smart city, J. Comput. Appl. Math., 270 (2014), 557–563. https://doi.org/10.1016/j.cam.2013.11.020 doi: 10.1016/j.cam.2013.11.020
    [46] A. Iliasov, D. Taylor, L. Laibinis, A. B. Romanovsky, SafeCap: from formal verification of railway interlocking to its certification, 2021.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1102) PDF downloads(83) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog