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Abstract: Decision-making in a railway station regarding the compatibility of the positions of the
switches of the turnouts and the indications (proceed/stop) of the railway colour light signals is a
safety-critical issue that is considered very labor-intensive. Different authors have proposed alternative
solutions to automate its supervision, which is performed by the so-called railway interlocking systems.
The classic railway interlocking systems are route-based and their compatibility is predetermined (usu-
ally by human experts): only some chosen routes are simultaneously allowed. Some modern railway
interlocking systems are geographical and make decisions on the fly, but are unsuitable if the station is
very large and the number of trains is high. In this paper, we present a completely new algebraic model
for decision-making in railway interlocking systems, based on other computer algebra techniques, that
bypasses the disadvantages of the approaches mentioned above (its performance does not depend on
the number of trains in the railway station and can be used in large railway stations). The main goal
of this work is to provide a mathematical solution to the interlocking problems. We prove that our
approach solves it in linear time. Although our approach is interesting from a theoretical perspective, it
has a significant limitation: it can hardly be adopted in an actual interlocking implementation, mainly
due to the heavy certification requirements for this kind of safety-critical application. Nevertheless, the
results may be useful for simulations that do not require certification credit.
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1. Introduction

Rail transportation is an important mode of transportation around the world. It is a reliable and
efficient way to transport goods and people over long distances. According to a literature review on
resilience in railway transport systems, rail transportation is a critical infrastructure that plays a vital
role in the economy and society [1, 2].

Railway interlocking is a safety-critical system that ensures trains do not collide on the tracks. It
is a complex problem that has been studied extensively in the literature. One source that provides
an overview of railway signalling principles is Pachl [3]. Recent research has explored the use of
artificial intelligence to detect faults in railway signal interlocking systems [4]. Other researchers have
compared different methods for verifying the safety of railway interlockings [5]. There has also been
work on developing formal model-based methodologies to support railway engineers in specifying and
verifying interlocking systems [6]. Overall, the railway interlocking problem is an important and active
area of research with many different approaches being explored.

Ensuring the compatibility of switch positions and signal indications at a railway station is crucial
for safety. Interlocking is a safety measure that prevents improper changes to traffic signals and turnout
switches. A railway station consists of sections connected by traffic signals and turnouts, which define
the possible movement of trains. A route is a sequence of connected sections that a train can travel
along partitioned into several blocks. To prevent collisions and dangerous situations, two trains may
never be in the same block of a route. Two intersection routes (or the relevant blocks thereof) must be
allocated to trains at the same time, to prevent collisions. Once a route is set and a train receives the
signal to proceed, all switches and signals along the route are locked until the train has passed through.

A possible classification of computer-based railway interlocking systems could be as follows:

• Route-table based: For every route request, an algorithm checks its feasibility using a “control
table”. The software consists of a single algorithm, independent of the topology.
• Geographical: The interlocking program is made up of instances of software objects that mimic

the behavior of physical objects. The configuration of this program depends on the topology.
Within this category, we can distinguish between:

– Route-based: Routes are defined a priori, and their definitions constitute data shared by the
instantiated objects.

– On-demand route definition: There is no a priori definition of routes. Instead, a train’s request
to the interlocking system is given only as the final destination that the train must reach.
Instantiated software objects are responsible for exploring possible routes to the destination
and choosing one of them. Our approach lies in this category.

Classical railway interlocking systems are route-based and the compatibility of routes is decided
(usually by human experts) in advance [7] (although unacceptable errors have been found in real rail-
way interlocking systems [8]).

Some modern railway interlocking systems can make decisions on the fly. This makes them more
flexible as routes are not predetermined. However, before authorizing any changes to signals or switch
positions, it is necessary to check if two trains would travel on intersecting routes (including the same
route) and potentially collide. If this is the case, changes are not made and it may be necessary to wait
for a train to leave the station.
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The first railway interlocking systems were developed in the nineteenth century (they were complex
mechanical devices with levers and interacting bars). Typical railway interlocking systems of the mid
twentieth century were based on the use of electric relays and needed complicated electric circuits
translating the connectivity of the railway station. In the 1980’s, the first computer-controlled railway
interlocking systems are installed [9–12]. The first geographical railway interlocking system installed
in Spain is dated on 1993 [13].

All modern railway interlocking systems are computer based (either geographical or route-based).
Naive implementations of geographical algorithms may run into exponential complexity problems con-
cerning the running time needed for finding safe routes through the railway network. Efficient data
validation for geographical interlocking systems has also been studied [14]. Another approach to veri-
fying geographically distributed interlocking systems is through model checking using UMC [15]. The
approach presented here describes the configuration of the railway station through a single algebraic
structure in which safety can be checked by a single algebraic operation. The main goal of our work is
mainly theoretical. Nevertheless, it has the limitation that it cannot be certified and applied in practice.
However we think that our approach can also be used for simulations that do not require certification
credit and it is interesting from a theoretical point of view. Indeed, our approach represents a step on
our research on proposing algorithms to solve railway interlocking problems for any railway station us-
ing an algebraic model similar to those used in Artificial Intelligence for implementing expert systems
based on polynomials, ideals, and Groebner basis [16]. Our proposal offers significant advantages over
previous approaches. The motivation for our work is as follows:

• Our approach relates two seemingly different fields: computational algebra and interlocking prob-
lems. Indeed the model we propose here proves that an interlocking problem can be solved by
applying a division algorithm. This relation is not only interesting and inspiring from a theoretical
point of view, but also has certain practical benefits: a possible proposal for improvement in the
division algorithm in the field of computational algebra directly results in faster performance in
solving interlocking problems.
• By expressing the interlocking problem as an algebraic system similar to those used in expert

systems, we can address problems related to expert systems in railway stations. We believe that
once the problem is described in algebraic terms, it will be possible to develop expert systems
based on these algebraic systems to solve more complex problems in the future. For example, such
systems could detect which signals and switches cannot change the state due to safety concerns
and provide recommendations for changing the configuration of switches and signals to allow
trains to move safely to specific locations.
• Unlike our previously proposed models that used algebraic systems [17–19], the model we pro-

pose now has great advantages over the others:

– It eliminates the need for calculating Groebner bases, a task that is known to be very slow
due to its exponential complexity. Indeed, in contrast to our previous approaches, the present
model guarantees a linear complexity.

– As a result, our new model is much faster than our previous models and has been shown to
have linear complexity.

– In contrast to our previous approaches, we use different polynomials to represent the static
and dynamic topology of the railway station. The static topology is represented by a set of
polynomials while the dynamic topology is represented by a monomial. Another monomial is
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used to represent the position of trains. This allows for immediate updates to the polynomials
representing the problem when there are changes in train positions or the configuration of the
railway station.

The paper is structured as follows. In Section 2 we discuss other approaches related to the one
proposed here. In Section 3 we propose a possible formalisation of the concepts related to a railway
interlocking system. In Section 4 we describe our method (as a black box) for determining the safety
of a proposed situation in a railway interlocking system. In Section 5 the worst case complexity of the
new model in calculated. In Section 6 the extension of the model to trains occupying more than one
section of the layout is detailed. In Section 7 we show that the new model is much faster than previous
ones. Finally, in Section 8 we set our conclusions.

2. Related works

An overview of different existing approaches to decision making in a railway interlocking system
is given afterwards.

The paths (lists of consecutive sections) along the railway station are called routes. An example can
be a route from an entrance of a station to a given track beside a certain platform. Establishing a route
requires setting the turnouts and colour light signals along the route appropriately.

Many approaches have been applied to decision making in a railway interlocking system. Although
out of date, [20] includes an interesting annotated bibliography.

In the classic approaches, the routes of the railway interlocking system are predefined. Moreover,
the compatibility of routes is determined in advance (traditionally by human experts). They are usually
denoted tabular railway interlocking systems.

The railway interlocking system is usually denoted geographical if the problem is translated into
computational notation and decisions are made on the fly.

Geographical approaches do not depend on the track layout of the railway station. An inference
engine extracts knowledge in a rule-based expert system and is independent of the given rules and
facts stated as true. Similarly, a geographical railway interlocking system can decide upon the safety
of any proposed situation in any given railway station.

The [21] uses a theorem prover implemented in a higher-order logic to decide on the safety of a
situation. This work is revisited using an annotated logic program with temporal reasoning in [22].

Meanwhile, [7] uses ordered binary decision diagrams to model railway interlocking systems.
A specific work for the Slovak National Railways is [23], that uses Z notation.
Another specific work, in this case for the Danish State Railways is [24], that uses the Vienna

Development Method (VDM).
The [25] presents an early but sophisticated formal model that can deal with complex topologies

including reversing loops and reversing triangles. It uses Petri nets and graphs and is implemented in
Objective-C and PROLOG.

Another model (component-based) is used in the interesting approach [26–28]. The railway station
is abstracted as a set of connected components.

Another example is [29], where CAD, RailML, and logic programming are used. It is applied to a
Norwegian railways station.

Electronic Research Archive Volume 31, Issue 10, 6160–6196.



6164

A very interesting approach that also uses RailML to describe the topology of the railway station
and UML class diagrams and is applied to a Dutch station is [30].

We will describe afterwards some models for decision making in railway interlocking systems de-
signed and implemented by the authors. All these models are topologically-independent and do not
have restrictions on the direction of the trains.

• Model based on the use of graphs [31]: Our approach is based on graph theory and Boolean
matrices (adjacency matrices). This approach is slow and can only be applied to small railways
stations because, although the matrices are sparse, their number of rows and columns is the num-
ber of sections of the network.
• Algebraic model [17, 32]: Here, our approach is based on algebraic terms which requires calcu-

lating a Groebner basis [33, 34] of a polynomial ideal. Since the algorithm for calculating this
Groebner basis involves a long time, this approach is not suitable for large stations.
• Model based on Boolean propositional logic [35]: This approach is based on propositional logic:

sections are represented by Boolean propositional variables and connectivity between sections
are represented by a Boolean propositional formula. The safety of a railway station is detected by
solving a SAT problem for each section in the railway station. All techniques, like DPLL [36], to
solve a SAT problem involve exponential complexity. However, the high number of SAT problems
required in this approach makes it impossible for large stations.
• Logic-algebraic model [18]: The advantage with respect to the algebraic model mentioned above

is that in this case, the polynomial ring where computations take place is Boolean and conse-
quently, Groebner bases and normal forms calculations required are much faster. In fact, this
model is much faster than the three previous ones. However, the algorithm for calculating a
Groebner basis involves high complexity computations and therefore, this approach is not suit-
able for large stations.
• ASP model [37]: This approach is based on the answer set programming (ASP) paradigm. Con-

nectivity and safety relations are defined by relations and derived relations through logic program-
ming. This approach is further more efficient than previous ones and may be suitable for larger
railway stations. However, this is not a polynomial complexity approach and consequently, it is
not scalable.
• Model based on preprocess and Boolean Polynomials: An algebraic approach that represents the

proposed configuration of the railway station and the position of the trains using Boolean polyno-
mials and Groebner bases is detailed in [19]. The set of polynomials for which the Groebner basis
is computed does not depend on the position of the trains. A new Groebner basis has to be com-
puted if any changes in the aspect of the colour light signals or the position switches take place.
Although faster than previous approaches, it can still be slow if the railway station is really large.

As may be seen, many of these approaches are based on translating the topology of the railway
station into polynomials with several variables and require calculating Groebner bases since they are
usually required to solve many algebraic problems involving polynomials with several variables. Un-
fortunately, calculating a Groebner basis requires a very long time, and consequently, all these ap-
proaches are not suitable for very large railway stations with many trains since they need a long time
to make a decision upon the safety of the proposed situation.

In this paper, we propose a completely new algebraic approach that does not require computing
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Groebner bases and is much faster than our previous ones. In our approach, the computational com-
plexity of deciding upon the safety of a proposed situation is linear with respect to the number of
sections and trains in the railway station (see Section 5). Therefore, it is completely suitable for very
large railway stations (even if there are many trains involved).

3. A formalisation of the safety of a proposed situation in a railway station

In this section we will define some formal concepts that allow us to prove the validity of our ap-
proach.

A railway station is a set of sections {S 1 . . . S N} and a binary relation defining the connection be-
tween sections by means of colour light signals and turnouts. There may be trains placed in the sections
of a railway station. In this paper, we will initially consider that each train is placed in just one section.
Nevertheless, we will generalize our results for the general case that a train can be placed in different
sections in Section 6.

A colour light signal is defined as (S i, S j), a pair of connected sections. If the indication of the
colour light signal is proceed, then a train may pass from section S i to section S j. If the indication of
the colour light signal is stop, then trains are not allowed to pass from section S i to section S j.

A turnout is defined as (S i, S j, S k), an array of three connected sections. If the switch of the turnout
is in the direct track position, then a train may pass from section S i to section S j (and conversely). If
the switch of the turnout is in the diverted track position, then a train may pass from section S i to S k

(and conversely).
The potential connectivity of a railway station derives from the situation of the colour light signals

and the situation of the turnouts (that is, from the so called topology of the station). We define the
relation E for describing the potential connectivity between sections. Formally, E is a set of pair of
sections (i, j) indicating that the section S i is connected to section S j (by means of a colour light signal
and/or a turnout).

Definition 3.1. We define the set E ⊂ Z × Z as:

E = {(i, j)|S i is connected to S j or S j is connected to S i

by means of a colour light signal or a turnout}

Consequently, the relation E is symmetric.

Remark 3.1. In the case that there are a series of n turnouts, we assume the presence of intermediate
sections between them. Consequently, in a railway station, each section is connected to a maximum of
three other sections on each extreme through a turnout. This means that each section can be connected
to a maximum of six other sections. Therefore, the size of E is less than or equal to 6 · N where N is
the number of sections. As a result, the number of elements in E, is O(N).

The indications of the colour light signals and the position of the switches of the turnouts (that is,
the configuration of the railway station) define if a section is reachable from another. A configuration
of the railway station is defined by a subset P ⊆ E. (S i, S j) ∈ P if and only if it is possible to pass
from the section S i to the section S j according to the indications of the colour light signals and the
position of the switches of the turnouts (obviously a necessary condition is that section S i is connected
to section S j).
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Remark 3.2. In this model of railway interlocking systems we assume that if the switch of the turnout
(S i, S j, S k) is in the direct track position, a train is not allowed to pass from S k to S i. Similarly, if the
switch of the turnout (S i, S j, S k) is in the diverted track position, a train should not try to pass from S j

to S i. We will consider that turnouts are always properly protected by colour light signals.

Remark 3.3. Two sections are connected by means of either a colour light signal or a turnout, but not
both. If the latter was the case, we introduce a section in between (like S 9 between S 10 and (S 2, S 3, S 9)
in Figure 3.2). Similarly, we include sections between two semaphores or turnouts.

Remark 3.4. Note that, despite the fact that turnouts can be long apparatuses, they are not considered
sections in this model, but connections between sections.

The set P determines the possible paths of the railway station. A path is a list of sections [u1 . . . un]
such that for every i (ui, ui+1) ∈ P. The set P fulfills the following important property: For every pair
of sections i and j, there is at most one path in P from section i to section j.

Remark 3.5. For the property in the previous paragraph to hold we are considering paths defined by
P (not by E). Besides, we are considering in this model only “usual” railway terminus stations or
railway overtaking stations (unlike toy trains where one side of the overtaking station is connected to
the other side). In these “usual” stations, we have that for every pair of sections i and j, there is at
most one path in P from section i to section j.

Example 3.1. Let us consider the railway station of Figure 3.1.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 3.1. Track layout of a very simple railway station.

As may be seen, the railway station is divided into sections S 1 . . . S 11 and there are seven colour
light signals (for example, there is a colour light signal between sections S 1 and S 2) and two turnouts
(for example, a turnout connecting sections S 2, S 3 and S 9). Note that signalling is on the right hand
side of the track.

According to Definition 3.1, the set E is:

E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}

Note that the set E is defined independently from the specific configuration of the elements of the
railway station (from the indications of the colour light signals and the positions of the switches of the
turnouts).

Let us consider the configuration depicted in Figure 3.2. The position of the switches of the turnouts
is represented by:

• a small segment, if the switch is in the direct track position (see for instance the turnout between
sections S 2 and S 3, S 9 in Figure 3.2), or

Electronic Research Archive Volume 31, Issue 10, 6160–6196.



6167

• a small angle, if the switch is in the diverted track position (see for instance the turnout between
sections S 6 and S 5, S 11 in Figure 3.2).

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 3.2. A possible configuration of the railway station of Figure 3.1.

In view that the figures are printed in black and white, the aspect of the colour light signals will be
represented by a black circle (indication stop) or white circle (indication proceed).

Now, we will determine the subset P ⊆ E given by the indications of the colour light signals and the
position of the switches of the turnouts in Figure 3.2:

P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1),
(11, 10), (5, 4), (3, 2), (6, 11), (8, 7)}

As may be seen, (10, 9) < P because the indication of the colour light signal connecting sections
S 10 and S 9 is stop. In the same way, (2, 9) < P because the switch of the turnout (S 2, S 3, S 9) is in direct
track position.

We would like to emphasize here that remark 3.5 holds in Figure 3.2. Although it is apparent that
there are sections connected by more than one path, there are no loops once P is defined. That is to
say, for every sections i and j there is at most one path in P from i to j.

Let us formally define the set P.

Definition 3.2. We define the subset P ⊆ E as the set of (i, j) ∈ E such that exactly one of these
conditions holds (with the conditions imposed in this model the conditions are mutually exclusive):

• It is always possible to pass from section S i to section S j (regardless of the configuration of the
railway station).
For example, (2, 1) ∈ P in the configuration of Figure 3.2 since it is always possible to pass from
section S 2 to section S 1.
• There is a colour light signal (S i, S j) and its indication is proceed.

For example, (1, 2) ∈ P in the configuration of Figure 3.2 since the indication of the colour light
signal (S 1, S 2) (controlling the pass from section S 1 to section S 2) is proceed.
• There is a turnout (S i, S j, S k) or a turnout (S j, S i, S k) and its switch is in the direct track position.

For example, (2, 3) ∈ P and (3, 2) ∈ P in the configuration of Figure 3.2 since the switch of the
turnout (S 2, S 3, S 9) is in the direct track position.
• There is a turnout (S i, S k, S j) or a turnout (S j, S k, S i) and its switch is in the diverted track

position.
For example, (6, 11) ∈ P and (11, 6) ∈ P in the configuration of Figure 3.2 since the switch of the
turnout (S 6, S 5, S 11) is in the diverted track position.

Definition 3.3. We define the multiset Q as the set of sections in which a train is placed: the number
of times that element i appears in Q represents the number of trains located in section S i.
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We will consider that Q is a multiset instead of a set, since Q will have repeated elements in case
that two different trains are placed in the same section (which is dangerous).

Definition 3.4. Let us consider a railway station and let the relation E describe its potential connectiv-
ity (see Definition 3.1). A railway interlocking problem is an ordered pair (P,Q), where P is the set of
Definition 3.2, describing a certain configuration of the elements of the railway station (indications of
the colour light signals and positions of the switches of the turnouts) and Q is the multiset of Definition
3.3, describing the positions of the trains.

Definition 3.5. We will say that the railway interlocking problem (P,Q) is in a dangerous situation if
and only if there are two lists of integers [u1, . . . un] and [v1, . . . vm] such that all the following conditions
hold:

(1) For all 0 < i < n, we have that (ui, ui+1) ∈ P. That is to say, consecutive sections in the list
[u1, . . . un] must be connected.

(2) For all 0 < j < m, we have that (v j, v j+1) ∈ P. That is to say, consecutive sections in the list
[v1, . . . vm] must be connected.

(3) {u1, v1} ⊆ Q. That is to say, there must be a train in u1 and v1.
(4) un = vm. That is to say, both paths reach the same section (there is a possible collision).
(5) For all 1 < i < n ui < Q and for all 1 < j < m v j < Q. That is to say, intermediate sections in

the list must be free of trains so that trains from from section u1 and section v1 may reach section
un = vm.

(6) For all 1 < i < n and for all 1 < j < m we have ui , v j. That is to say, the possible collision
happens at the end of the paths.

(7) For all i , j we have ui , u j. That is to say, the path [u1, . . . un] does not contain cycles.
(8) For all i , j we have vi , v j. That is to say, the path [v1, . . . vm] does not contain cycles.

We will say that the railway interlocking problem (P,Q) is in a safe situation if and only if (P,Q) is
not in a dangerous situation.

Example 3.2. Let us recall the railway station of Figure 3.1 and its possible configuration shown in
Figure 3.2. Figure 3.3 depicts the placement of one train in section S 1 and another train in section
S 10. Therefore, in this case: Q = {1, 10}

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 3.3. A possible placement of trains in the configuration of the railway station of
Figure 3.1 shown in Figure 3.2.

Clearly, this situation is safe:

• the train located in section S 1 could stay in section S 1 or move to sections S 1, S 2, S 3, S 4,
• the train located in section S 10 could stay in section S 10 or move to sections S 11, S 6, S 7, S 8.
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Example 3.3. However, if a new train were allocated in section S 8, that is to say Q = {1, 8, 10} (Figure
3.4), the situation would turn into a dangerous one: the trains situated in sections S 10 and S 8 could
collide in sections S 7 and S 8. Following the formalization of Definition 3.5:

• lists [10, 11, 6, 7] and [8, 7] fulfil the conditions Definition 3.5 (representing a possible collision
in section S 7),
• lists [10, 11, 6, 7, 8] and [8] fulfil the conditions Definition 3.5 (representing a possible collision

in section S 8).

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 3.4. Another possible placement of trains in the configuration of the railway station
of Figure 3.1. The proposed situation is dangerous.

Example 3.4. In case the aspect of the colour light signal between section S 10 and section S 11 were
changed, now indicating stop, the situation would be safe again (Figure 3.5).

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 3.5. Another possible configuration of the railway station of Figure 3.1 with the
placement of trains proposed in Figure 3.4. The proposed situation is safe.

4. Overview of the new approach

In this section we will extensively describe our algebraic approach based on the use of polynomials.
As we will see, the potential connectivity of a railway station is represented by a set of polynomials
with coefficients in the field Z2. A specific configuration of the railway station is represented by a
polynomial with coefficients in the same field. The same happens with a specific placement of trains in
the railway station. In order to detect whether a proposed situation is dangerous or not, we only need
to check if the remainder of dividing a polynomial by a set of polynomials is zero or not.

4.1. The algebraic model

Our approach is based on defining a set of polynomials in the variables ti, li j and mi j, where:

• ti: a variable ti is considered for each section S i in the railway station.
• li j,mi j: two variables, li j and mi j, are considered for each pair of sections S i and S j when (i, j) ∈ E.

That is to say, we consider the variables li j and mi j if the topology of the station allows to pass
from section S i to section S j (in some configuration of the railway station).
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We will work hereinafter in the polynomial ring

A = Z2[li j, . . . ,mi j, . . . , ti, . . .]

and we will use the lexicographical order given by li j > mi j > ti. The set of polynomials representing
the potential connectivity of the railway station, the polynomial describing the specific configuration of
the railway station and the polynomial describing the specific placement of trains in the railway station
are constructed as follows.

The list of polynomials E representing the railway station. Through the set E (see Definition 3.1,
the set of ordered pairs of integer numbers describing the potential connectivity of a railway
station, we will define E as the list of polynomials ofA formed by:

• ∀(i, j) ∈ E, the two polynomials:

gi j = li jl jiti + mi jm jitit j

g′i j = li jm jiti + mi jm jitit j

• For each variable ti:
t2
i

As may be seen, the list of polynomials E depends only on E and, therefore, it is defined inde-
pendently from the specific configuration of the elements of the railway station (from indications
of the colour light signals and the position of the switches of the turnouts).

The polynomial p representing a given configuration of the railway station. For each set of or-
dered pairs of integers P ⊆ E representing a given configuration of the railway station (see
Definition 3.2), we will consider the monomial p ∈ A:

p =
∏

(i, j)∈P

li j

∏
(i, j)∈E−P

mi j

As may be seen, this monomial is defined according to the configuration of the railway station
in the following way (note that the symbol | represents the relation is a divisor of or divides, for
example, xz|xyz because xz divides xyz):

• If it is always possible to pass from section S i to section S j (regardless of the configuration
of the railway station), then li j|p.
• If there is a colour light signal between section S i and section S j, then:

– if the indication of the colour light signal is proceed, then li j|p.
– if the indication of the colour light signal is stop, then mi j|p.

• If there is a turnout connecting section S i to either section S j or section S k then:
– if the switch is in the straight track position, then li jl jimikmki|p.
– if the switch is in the diverted track position, then liklkimi jm ji|p.

As may be seen, a variable li j in p represents that it is possible to pass from section S i to section
S j. In the same way, a variable mi j in p represents that it is not possible to pass from section S i to
section S j
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The polynomial q representing the placement of the trains. Let us consider that there are trains
placed in sections S i1 , . . . , S im . We define the monomial q ∈ A:

q =
m∏

i∈Q

ti

As may be seen, a variable ti in q represents that there is a train in section S i.

4.2. Decision making in the algebraic model

Here we will summarize the steps required to solve a railway interlocking problem.

Step 1. Given a railway station by the set describing its potential connectivity, E, we obtain the list E.
We would like to emphasize that this list E is calculated only once for every railway interlocking
problem associated to E. We do not need to recalculate this set if there are movements of trains
or if there are changes in the configuration of the railway station. Besides, this set only contains
2K + N polynomials (where K is the size of E and N is the number of sections).

Step 2. Given a configuration of the railway station, P, we calculate the monomial p.
As may be seen, for every change of the configuration in the railway station, we need to calculate
p, but this monomial contains K variables where K is O(N).

Step 3. Given a placement of the trains, Q, we need to calculate the monomial q.
As may be seen, for every change of the placement of the trains, we need to calculate q, but this
monomial contains at most N variables.

Step 4. In order to solve the (P,Q) railway interlocking problem we need to compute:

NR(p · q,E)

where NR represents the remainder of the monomial pq respect to the list E. If this value is 0,
the railway interlocking problem is in a dangerous situation, otherwise it is in a safe situation (see
Theorem A.11). This may be calculated with any Computer Algebra System (CAS). In this paper
we will use the CAS CoCoA 5.2 [38, 39].

As we will see in Section 7, all these steps can be completed in less than 1 s for very large railway
stations using a conventional computer.

4.3. Examples of application of the algebraic method proposed

We will use the CAS CoCoA in order to show how to solve some railway interlocking problems for
the railway station of Example 3.1 (depicted in Figure 3.1) using the algebraic approach proposed in
this paper.

Example 4.1. Let us recall the potential connectivity of the railway station of Example 3.1. Let us
remember that in this case:

E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}
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The process starts as follows:

Step 1. We define the polynomial ring and the list E corresponding to the topology of this railway station
as described in Section 4.1. The variables of the polynomial ring are:

• variables: t1 . . . t11 (since this railway station contains 11 sections)
and
• variables: l1,2, l2,9, l9,10, l10,11, l11,6, l2,3, l3,4, l4,5, l5,6, l6,7, l7,8,

l2,1, l9,2, l10,9, l11,10, l6,11, l3,2, l4,3, l5,4, l6,5, l7,6, l8,7,

m1,2,m2,9,m9,10,m10,11,m11,6,m2,3,m3,4,m4,5,m5,6,m6,7,m7,8,

m2,1,m9,2,m10,9,m11,10,m6,11,m3,2,m4,3,m5,4,m6,5,m7,6,m8,7

In CoCoA syntax:

use ZZ/(2)[l1_2, l2_9, l9_10, l10_11, l11_6, l2_3, l3_4, l4_5, l5_6, l6_7,

l7_8, l2_1, l9_2, l10_9, l11_10, l6_11, l3_2, l4_3, l5_4, l6_5, l7_6, l8_7,

m1_2, m2_9, m9_10, m10_11, m11_6, m2_3, m3_4, m4_5, m5_6, m6_7, m7_8, m2_1,

m9_2, m10_9, m11_10, m6_11, m3_2, m4_3, m5_4, m6_5, m7_6, m8_7,t[1..11]],

lex;

The polynomials in the list E are defined as described in Section 4.2.

• l1,2l2,1t1 + m1,2m2,1t1t2 (because (1, 2) ∈ E),
• l1,2m2,1t1 + m1,2m2,1t1t2 (because (1, 2) ∈ E),
• . . .

In CoCoA syntax:

E:=[l1_2*l2_1*t[1]+m1_2*m2_1*t[1]*t[2], l1_2*m2_1*t[1]+m1_2*m2_1*t[1]*t[2],

l2_9*l9_2*t[2]+m2_9*m9_2*t[2]*t[9], l2_9*m9_2*t[2]+m2_9*m9_2*t[2]*t[9],

l9_10*l10_9*t[9]+m9_10*m10_9*t[9]*t[10],

l9_10*m10_9*t[9]+m9_10*m10_9*t[9]*t[10],

l10_11*l11_10*t[10]+m10_11*m11_10*t[10]*t[11],

l10_11*m11_10*t[10]+m10_11*m11_10*t[10]*t[11],

l11_6*l6_11*t[11]+m11_6*m6_11*t[11]*t[6],

l11_6*m6_11*t[11]+m11_6*m6_11*t[11]*t[6],

l2_3*l3_2*t[2]+m2_3*m3_2*t[2]*t[3], l2_3*m3_2*t[2]+m2_3*m3_2*t[2]*t[3],

l3_4*l4_3*t[3]+m3_4*m4_3*t[3]*t[4], l3_4*m4_3*t[3]+m3_4*m4_3*t[3]*t[4],

l4_5*l5_4*t[4]+m4_5*m5_4*t[4]*t[5], l4_5*m5_4*t[4]+m4_5*m5_4*t[4]*t[5],

l5_6*l6_5*t[5]+m5_6*m6_5*t[5]*t[6], l5_6*m6_5*t[5]+m5_6*m6_5*t[5]*t[6],

l6_7*l7_6*t[6]+m6_7*m7_6*t[6]*t[7], l6_7*m7_6*t[6]+m6_7*m7_6*t[6]*t[7],

l7_8*l8_7*t[7]+m7_8*m8_7*t[7]*t[8], l7_8*m8_7*t[7]+m7_8*m8_7*t[7]*t[8],

l2_1*l1_2*t[2]+m2_1*m1_2*t[2]*t[1], l2_1*m1_2*t[2]+m2_1*m1_2*t[2]*t[1],

l9_2*l2_9*t[9]+m9_2*m2_9*t[9]*t[2], l9_2*m2_9*t[9]+m9_2*m2_9*t[9]*t[2],

l10_9*l9_10*t[10]+m10_9*m9_10*t[10]*t[9],

l10_9*m9_10*t[10]+m10_9*m9_10*t[10]*t[9],

l11_10*l10_11*t[11]+m11_10*m10_11*t[11]*t[10],

Electronic Research Archive Volume 31, Issue 10, 6160–6196.



6173

l11_10*m10_11*t[11]+m11_10*m10_11*t[11]*t[10],

l6_11*l11_6*t[6]+m6_11*m11_6*t[6]*t[11],

l6_11*m11_6*t[6]+m6_11*m11_6*t[6]*t[11],

l3_2*l2_3*t[3]+m3_2*m2_3*t[3]*t[2], l3_2*m2_3*t[3]+m3_2*m2_3*t[3]*t[2],

l4_3*l3_4*t[4]+m4_3*m3_4*t[4]*t[3], l4_3*m3_4*t[4]+m4_3*m3_4*t[4]*t[3],

l5_4*l4_5*t[5]+m5_4*m4_5*t[5]*t[4], l5_4*m4_5*t[5]+m5_4*m4_5*t[5]*t[4],

l6_5*l5_6*t[6]+m6_5*m5_6*t[6]*t[5], l6_5*m5_6*t[6]+m6_5*m5_6*t[6]*t[5],

l7_6*l6_7*t[7]+m7_6*m6_7*t[7]*t[6], l7_6*m6_7*t[7]+m7_6*m6_7*t[7]*t[6],

l8_7*l7_8*t[8]+m8_7*m7_8*t[8]*t[7], l8_7*m7_8*t[8]+m8_7*m7_8*t[8]*t[7],

t[1]ˆ2, t[2]ˆ2, t[3]ˆ2, t[4]ˆ2, t[5]ˆ2, t[6]ˆ2, t[7]ˆ2, t[8]ˆ2, t[9]ˆ2,

t[10]ˆ2, t[11]ˆ2];

Step 2. Let us now consider the configuration of Example 3.1 (Figure 3.2). In this configuration:

P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1),
(11, 10), (5, 4), (3, 2), (6, 11), (8, 7)}

E − P = {(2, 9), (4, 5), (5, 6), (9, 2), (10, 9), (4, 3), (6, 5), (7, 6)}

so we define the monomial p as follows:

p = l1,2m2,9l9,10l10,11l11,6l2,3l3,4m4,5m5,6l6,7l7,8l2,1m9,2m10,9l11,10l6,11l3,2m4,3l5,4m6,5m7,6l8,7

As may be seen, the variable m29 appears in the monomial p since it is not possible to pass from
section S 2 to section S 9. Similarly, the variable l12 appears in p since it is possible to pass from section
S 1 to section S 2.

In CoCoA syntax:

p:=l1_2*m2_9*l9_10*l10_11*l11_6*l2_3*l3_4*m4_5*m5_6*l6_7*l7_8*l2_1*m9_2*

m10_9*l11_10*l6_11*l3_2*m4_3*l5_4*m6_5*m7_6*l8_7;

Example 4.2. Let us now consider the placement of trains of Example 3.2 (Figure 3.3): there are two
trains located in sections 1 and 10, respectively.

Step 3. In this case: Q = {1, 10}. Therefore, we define the monomial

q = t1t10

In CoCoA syntax:

q:= t[1]*t[10];

Step 4. In order to solve the railway interlocking problem (P,Q) we need to check whether NR(pq,E) =
0 or not. In CoCoA syntax:

NR(p*q,E)=0;

As the output of CoCoA is “false”, the proposed situation is safe.

Example 4.3. Let us now consider the placement of trains of Example 3.3 (Figure 3.4) instead: a new
train is placed in section S 8. We only need to perform Steps 3 and 4.
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Step 3. We need to recalculate the polynomial q. Now: Q = {1, 10, 8}, and, therefore, we define the
monomial

q = t1t10t8

In CoCoA syntax:

q:= t[1]*t[10]*t[8];

Step 4. Again, we need to check whether NR(pq,E) = 0 or not. In CoCoA syntax:

NR(p*q,E)=0;

The output of CoCoA is “true” in this case. Consequently, the proposed situation is dangerous.

Example 4.4. If the aspect of the colour light signal between section S 10 and section S 11 were changed,
now indicating stop (see Figure 3.5 in Example 3.4), we would only need to recompute Steps 2 and 4.

Step 2. We need to recalculate the polynomial p. Now we have:

P = {(1, 2), (9, 10), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1),
(11, 10), (5, 4), (3, 2), (6, 11), (8, 7)}

E − P = {(2, 9), (10, 11), (4, 5), (5, 6), (9, 2), (10, 9), (4, 3), (6, 5), (7, 6)}

and therefore:

p = l1,2m2,9l9,10m10,11l11,6l2,3l3,4m4,5m5,6l6,7l7,8l2,1m9,2m10,9l11,10l6,11l3,2m4,3l5,4m6,5m7,6l8,7

(l10,11 has been substituted by m10,11). In CoCoA syntax:

p:=l1_2*m2_9*l9_10*m10_11*l11_6*l2_3*l3_4*m4_5*m5_6*l6_7*l7_8*l2_1*m9_2*

m10_9*l11_10*l6_11*l3_2*m4_3*l5_4*m6_5*m7_6*l8_7;

Step 4. We need to check if the situation is dangerous. In CoCoA syntax:

NR(p*q,E)=0;

returns “false”. Consequently, the proposed situation is safe.

4.4. Intuition of our approach

In this section, we will provide the intuition behind the choice of polynomials and the reason why
the division algorithm provides the solution for detecting whether an interlocking problem is in a
dangerous situation or not.

As may be seen in the previous section, in order to detect if an interlocking problem (P,Q) is in a
dangerous situation we need to check if NR(pq,E) = 0. Although the definition NR is not simple and
requires many technical details, we provide the intuition behind the value NR(pq,E): the remainder of
the polynomial, pq by a list of polynomials E.

In the same way as ordinary division (for polynomials with one variable and natural numbers),
the division of a polynomial p (with several variables) by a list of polynomials G = [ f1 . . . fm] is
p = α1 f1 + . . . αm fm + r. The value NR(p,G) just denotes r, the remainder of the division.
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The algorithm for calculating NR(p,G),in the same way as ordinary division, involves calculating
intermediate dividends: it sets r0 = pq and for each step i, it choose a polynomial f ∈ G and obtain a
new intermediate dividend ri+1, fulfilling

ri = f · zi+1 + ri+1

where zi+1 is another polynomial. The new intermediate dividend ri+1 is a polynomial ‘simpler’* than ri.
The last intermediate dividend rn is one such that it not possible to obtain a polynomial rn+1 simpler than
rn. By definition, the value NR(pq,E) is the last intermediate dividend rn. That is to say, NR(p,G) = rn.
In Definition A.6 in Appendix A we give more details of this operator.

In our approach, we calculate NR(pq,E) where pq represents the interlocking problem (P,Q). As
we will see in Appendix A, each intermediate dividend ri is a polynomial with the form piqi such that
ri represents an interlocking problem (Pi,Qi). This interlocking problem (Pi,Qi) is strongly related to
(P,Q). Indeed, (Pi,Qi) is in a dangerous situation if and only if (P,Q) is in a dangerous situation. By
means of this property, we can, consequently, detect if (P,Q) is in a dangerous situation by checking if
(Pn,Qn) (the interlocking problem associated to rn = NR(pq,E)) is in a dangerous situation. Besides,
we will prove in Appendix A another important property: the interlocking problem (Pn,Qn) is in a
dangerous situation if and only if rn = 0. By means of these two properties we conclude that (P,Q)
is in a dangerous situation if and only if NR(pq,E) = 0. We will prove all these previous results in
Appendix A.

We will illustrate all these ideas by means of an example. We will consider the intermediate divi-
dends of NR(pq,E) for the interlocking problem in Figure 3.4 and the interlocking problems associated
to them in Figure 4.1.

• The interlocking problem A in Figure 4.1 is the same as the interlocking problem in Figure 3.4.
The monomial pA and qA are the following:

– pA = l1,2m2,9l9,10l10,11l11,6l2,3l3,4m4,5m5,6l6,7l7,8l2,1m9,2m10,9l11,10l6,11l3,2m4,3l5,4m6,5m7,6l8,7

– qA = t1t10t8

• In the interlocking problem A in Figure 4.1 there is a train located in section s10 that can pass
from s10 to s11. We can use the polynomial g10,11 = l10,11l11,10t10 + m10,11m11,10t10t11 ∈ E in the
algorithm of division and we have that:

pAqA = z1 · g10,11 + r1

where:

– z1 = l1,2m2,9l9,10l11,6l2,3l3,4m4,5m5,6l6,7l7,8l2,1m9,2m10,9l6,11l3,2m4,3l5,4m6,5m7,6l8,7t1t8. The mono-
mial zB is irrelevant for our purpose.

– r1 = pBqB is the first intermediate dividend, where pB and qB are monomials describing the
interlocking problem B in Figure 4.1:

* pB = l1,2m2,9l9,10m10,11l11,6l2,3l3,4m4,5m5,6l6,7l7,8l2,1m9,2m10,9m11,10l6,11l3,2m4,3l5,4m6,5m7,6l8,7

* qB = t1t10t8t11

*Obviously, in order to provide a formal definition, it is required to consider many mathematical issues: define when ri+1 is simpler
than ri (this is done by means of leading terms of the polynomial); analyze if the output takes into account the election of f when several
choices are possible. All these mathematical questions are deeply considered in [34]. We will briefly describe them in Section A.
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The interlocking problems A and B are closely related: A is in a dangerous situation if and only
if B is in dangerous situation.
• In the interlocking problem B in Figure 4.1 there is a train located in section s8 that can pass from

s8 to s7. We can use the polynomial g8,7 = l8,7l7,8t8 + m8,7m7,8t8t7 ∈ E in the algorithm of division
and we have that:

pBqB = z2 · g8,7 + r2

where:

– z2 = l1,2m2,9l9,10m10,11l11,6l2,3l3,4m4,5m5,6l6,7l2,1m9,2m10,9m11,10l6,11l3,2m4,3l5,4m6,5m7,6t1t10t11. The
monomial zC is irrelevant for our purpose.

– r2 = pCqC is the second intermediate dividend, where pC and qC are monomials describing
the interlocking problem C in Figure 4.1:

* pC = l1,2m2,9l9,10m10,11l11,6l2,3l3,4m4,5m5,6l6,7m7,8l2,1m9,2m10,9m11,10l6,11l3,2m4,3l5,4m6,5m7,6m8,7

* qC = t1t10t8t11t7

In the same way, the interlocking problems B and C are closely related: B is in a dangerous
situation if and only if C is in dangerous situation.
• In the interlocking problem C in Figure 4.1 there is a train located in section s11 that can pass

from s11 to s6. We can use the polynomial g11,6 = l11,6l6,11t11 +m11,6m6,11t11t6 ∈ E in the algorithm
of division and we have that:

pCqC = z3 · g11,6 + r3

where:

– z3 = l1,2m2,9l9,10m10,11l2,3l3,4m4,5m5,6l6,7m7,8l2,1m9,2m10,9m11,10l3,2m4,3l5,4m6,5m7,6m8,7t1t10t1t10t8t7.
The monomial zD is irrelevant for our purpose.

– r3 = pDqD is the third intermediate dividend, where pD and qD are monomials describing the
interlocking problem D in Figure 4.1:

* pD = l1,2m2,9l9,10m10,11m11,6l2,3l3,4m4,5m5,6l6,7m7,8l2,1m9,2m10,9m11,10m6,11l3,2m4,3l5,4m6,5m7,6m8,7

* qD = t1t10t8t11t7t6

In the same way, the interlocking problems C and D are closely related: C is in a dangerous
situation if and only if D is in dangerous situation.
• In the interlocking problem D in Figure 4.1 there is a train located in section s7 that can pass from

s7 to s6. We can use the polynomial g′6,7 = l6,7m7,6t6 +m6,7m7,6t7t6 ∈ E in the algorithm of division
and we have that:

pDqD = z4 · g′6,7 + r4

where:

– z4 = l1,2m2,9l9,10m10,11m11,6l2,3l3,4m4,5m5,6m7,8l2,1m9,2m10,9m11,10m6,11l3,2m4,3l5,4m6,5m8,7t1t10t8t11t7.
The monomial zE is irrelevant for our purpose.

– r4 = pEqE is the fourth intermediate dividend, where pE and qE are monomials describing
the interlocking problem E in Figure 4.1:

* pE = l1,2m2,9l9,10m10,11m11,6l2,3l3,4m4,5m5,6m6,7m7,8l2,1m9,2m10,9m11,10m6,11l3,2m4,3l5,4m6,5m7,6m8,7

* qE = t1t10t8t11t7t2
6
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• In the interlocking problem E in Figure 4.1 there are two trains located in section s6 (we will
say that it as a trivial interlocking problem), and, therefore, the interlocking problem E is in a
dangerous situation. Consequently, our original interlocking problem A is also in a dangerous
situation. We can use the polynomial t2

6 ∈ E in the algorithm of division and we have that:

pEqE = z5 · t2
6 + r5

where

– z5 = l1,2m2,9l9,10m10,11m11,6l2,3l3,4m4,5m5,6m6,7m7,8l2,1m9,2m10,9m11,10m6,11l3,2m4,3l5,4m6,5m7,6m8,7t1t10t8t11t7.
The monomial zE is irrelevant for our purpose.

– r5 = 0.

We have that r5 is the last intermediate dividend. Therefore, NR(pAqA,E) = r5 = 0.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

S1

S9

S2 S3 S4 S5
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S11

S6 S8S7
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C
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D

A

E

Figure 4.1. Successive interlocking problems associated to intermediate dividends obtained
by calculating NR(pq,E).
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5. Worst case computational complexity

In this section we will discuss that the complexity of every step of our approach is linear. We will
consider that N is the number of sections in the railway station and K is the size of the set E (see
Definition 3.1).

Step 1. Obtaining E. The number of variables of the polynomial ring is N + 3K. Since K is O(N), we
have that the number of variables is O(N). The number of polynomials in E′ is N + 2K. Since K
is O(N) (see Remark 3.1), we have that the number of polynomials is O(N). Each polynomials is
the sum of two monomials at most. Consequently, the time complexity of this step is O(N).

Step 2. Calculating the polynomial p. Since the number of variables in the polynomial ring is O(N),
we have that the time complexity of this step is O(N).

Step 3. Calculating the polynomial q. Since the number of variables in the polynomial ring is O(N),
we have that the time complexity of this step is O(N).

Step 4. Checking NR(pq,E) = 0. The complexity of generic algorithms for calculating the normal
remainder of a polynomial pq with respect to a list of polynomials like E strongly depends on the
structure used for representing the polynomials and the kind of polynomials in the list (E in our
case). The polynomials in E are just sum of two monomials with a constant number of variables
and pq is a monomial with a high number of variables. In Appendix B we describe an algorithm
with complexity O(N) for calculating this task when pq and the polynomials in E fulfill these
characteristics.

6. Model extension for trains occupying more than one section at the same time

Till now, we have analysed the case where trains are placed just in one section. Here we will see
that the railway interlocking problems for trains placed in more than one section can be reduced to
railway interlocking problems for trains placed in one section.

Let us consider a railway interlocking problem (P,Q). Lets us suppose that a train is placed in
sections {S v1 , . . . , S vm}, where (vi, vi+1) ∈ E, i ∈ {1 . . .m−1}. Clearly, the proposed railway interlocking
problem is equivalent to consider that the train is just in S v1 and that it is possible to pass from section
S vi to S vi+1 and from section S vi+1 to S vi for every i ∈ {1 . . .m − 1}. In other words, if there are colour
light signals along the train occupying more than one section, it is considered that the indication of
them all is proceed, whichever their real indications are. This can be achieved by considering the
railway interlocking problem (P′,Q) where:

P′ = P ∪ {(vi, vi+1) | (vi, vi+1) < P, i ∈ {1 . . .m − 1}}∪
∪ {(vi+1, vi) | (vi+1, vi) < P, i ∈ {1 . . .m − 1}}

instead of (P,Q).
Consequently, we can reduce the general case to the specific one in which every train is placed in

just one section.

Example 6.1. We will illustrate this in the example of the railway station with the specific configuration
depicted in Figure 3.2 (Example 3.1, Section 3). There we have:
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E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}

P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1), (11, 10),
(5, 4), (3, 2), (6, 11), (8, 7)}

In Figure 6.1, we have a situation in which some trains are placed in more than one section: there
is a train placed in sections [S 1, S 2] and there is a train placed in sections [S 3, S 4, S 5].

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 6.1. A configuration of the railway station.

The general railway interlocking problem of Figure 6.1 is equivalent to the railway interlocking
problem (P′,Q′) depicted in Figure 6.2, in which all trains are placed in just one section, and where:

P′ = P ∪ {(1, 2), (2, 1), (3, 4), (4, 3), (4, 5), (5, 4)} =
= {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8),

(2, 1), (11, 10), (5, 4), (3, 2), (6, 11), (8, 7), (4, 3), (4, 5)}
Q′ = {1, 3, 8}

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

Figure 6.2. A configuration of the railway station.

7. Experimental evaluation

In this section we analyse the performance of the approach presented in this paper, comparing it with
other previous algebraic approaches. Indeed, we have made a comparison between the times required
to decide upon the safety of a proposed situation in very large stations, with different numbers of
sections (N) and trains (M). As may be seen, the new method proposed is always much more efficient
than the other approaches proposed by the authors. This is possible because the present approach has
worst case linear complexity (see Section 5).

In Table 1, we show the times required to decide upon the safety of different proposed situations
(we have not included model in [31] because its performance is very poor bad for large stations).
These times refer to the average performance of ten different configurations (both safe and unsafe) of
a railway station with N sections and M trains involved.

Indeed, our new approach takes always less than 1 second to decide upon the safety of the proposed
situation, even when the number of sections is huge, while the other approaches are much slower. In
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this case the first column corresponds to the track layout of a former Spanish railway station. The next
columns correspond to concatenating that station with itself several times (we have observed that there
are no significant changes in the performance of our approach if we add these stations in parallel by
means of turnouts).

Time of our approach include the four steps in Section 4.2: it includes the calculation of the poly-
nomials of the polynomials for the topology, configuration and trains.

Table 1. Time comparative of different methods implemented for deciding upon the safety
of a situation proposed to a railway interlocking system in certain railway stations with N
sections and M trains involved.

N = 52 N = 156 N = 260 N = 520 N = 780 N = 1040 N = 1560
M = 5 M = 15 M = 25 M = 50 M = 75 M = 100 M = 150

Model described in [35] 10.23 s 250.250 s > 1 h > 1h > 1 h > 1 h > 1 h
Model described in [17] 15.356 s 380.368 s > 1 h > 1h > 1 h > 1 h > 1 h
Model described in [18] 1.124 s 38.292 s 554.180 s > 1 h > 1 h > 1 h > 1 h
Model described in [19] 0.320 s 0.920 s 2.180 s > 1 h > 1 h > 1 h > 1 h
Model described in [37] 0.020 s 0.047 s 1.038 s 16.458 s > 1 h > 1 h > 1 h
Our approach in CoCoA < 0.001s 0.015 s 0.015 s 0.078 s 0.156 s 0.250 s 0.610 s

Madrid-Chamartı́n-Clara Campoamor is the biggest railway station in Spain. Now it has 21 passing
tracks of two gauges (15 of the Iberian gauge, traditionally used in Spain and Portugal, and 6 of the
standard gauge, used in the Spanish high-speed lines) [40]. The railway station is under renovation and
it will have in the next future 25 passing tracks (13 of Iberian gauge and 12 of standard gauge) [41].
We have considered in Table 2 the track layout of this railway station when all its tracks were of
Iberian gauge (in order to consider a real world example as big as possible). This stations contains 250
sections, 81 semaphores, 100 turnouts.

Table 2. Time comparative of different methods implemented for deciding upon the safety
of a situation proposed to a railway interlocking system in Madrid Chamartin railway station
when all its tracks were Iberian gauge (and there are M trains involved). The models [17,18,
35] are not used because their timings are too long.

M = 10 M = 20 M = 30 M = 50 M = 100
Model described in [37] 646 ms 799 ms 1045 ms 1124 ms 1522 ms
Model described in [19] 2340 ms 2340 ms 2340 ms 2340 ms 2340 ms
Our approach 0.14 ms 0.14 ms 0.14 ms 0.14 ms 0.14 ms

8. Conclusions

In this paper we have presented a new algebraic model for detecting dangerous situation in a railway
station. According to this model, the position of trains in a railway station configuration is considered
unsafe if and only if the remainder of a certain monomial (representing the configuration and the cur-
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rent position of the trains) divided by a list of polynomials vanishes. This connects two seemingly
different fields: computer algebra and interlocking problems. Not only is this interesting from a the-
oretical perspective, but it also offers practical advantages. We have implemented this in CoCoA,
resulting in very short program code. In this way, any improvement in the implementation of division
algorithms immediately results in faster performance in our program. We have compared execution
times with other fast models previously implemented by the authors and found that our approach elim-
inates the need to calculate a Groebner basis. Besides, our approach can be used as ‘accelerated-time
simulations’, allowing for the analysis of different modifications in a railway network without the need
to physically implement them with the enormous cost that it would require [42–45].

However, our approach has a significant limitation. While it is mathematically interesting, Com-
puter Algebra Systems have not been certified for use in safety-critical implementations [46]. Ob-
taining ad hoc certification is much more costly than certifying a search engine over a table. As a
result, our approach currently has no chance of being implemented in real-world systems. Neverthe-
less, we believe that our approach has value from a mathematical perspective and can be extended in
several directions:

• Develop a library that allows for easy definition of the list E for any topology; that defines switch
changes and semaphore colors through functions and train movements. Updates to the polynomi-
als p and q through multiplication and division of variables.
• Develop a graphical environment that allows for the visual design of a station and obtains the

polynomials in E, p, and q in a computer algebra system like CoCoA.
• Extend our model. Although usual stations do not contain cycles and for each pair of sections

there is only one path, it would be interesting from a theoretical point of view to extend the model
so that this restriction is not necessary.
• Study alternatives for general graphs, not just those derived from railway stations.
• Extend the interlocking problem to include other problems related to expert systems in railway

stations, such as automatically detecting which semaphores and switches cannot be changed be-
cause they would imply a dangerous situation. Since our approach expresses the interlocking
problem as an algebraic system similar to those used for implementing expert systems [16], we
believe that our model can be easily integrated into these expert systems.
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6. G. Lukács, T. Bartha, Conception of a formal model-based methodology to support railway
engineers in the specification and verification of interlocking systems, in 2022 IEEE 16th In-
ternational Symposium on Applied Computational Intelligence and Informatics (SACI), (2022),
000283–000288. https://doi.org/10.1109/SACI55618.2022.9919532

7. K. Winter, W. Johnston, P. Robinson, P. Strooper, L. van den Berg, Tool support for checking
railway interlocking designs, in 10th Australian Workshop on Safety Re-lated Programmable
Systems (SCS’05), Australian Computer Society, Sydney, 55 (2006), 101–107. Available from:
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV55Winter.pdf.

8. A. Borälv, Case study: formal verification of a computerized railway interlocking, Formal Aspects
Comput., 10 (1998), 338–360. https://doi.org/10.1007/s001650050021

9. Anonymous, Proyecto y obra del enclavamiento electrónico de la estación de Madrid-Atocha,
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A. Proof of our approach

In this section, we will formally prove that the new algebraic approach works.

Distinguishing different kinds of railway interlocking problems

Given the details of a railway station through its potential connectivity, E (see Definition 3.1), we
will study the relation between different possible railway interlocking problems for this railway station.

We will start defining when railway interlocking problem is trivial.

Definition A.1. Given the potential connectivity of railway station, E, a configuration in it, P, and a
placement of trains, Q, we say that the railway interlocking problem (P,Q) is trivial if and only if Q
contains two repeated elements.

Obviously, a trivial railway interlocking problem is always in a dangerous situation (because there
is more than one train at a certain section).

We will define a transitive relation between railway interlocking problems (see Definition A.2). To
illustrate the intuition behind this definition, consider Figure A.1. On the right side of the figure, there is
a railway interlocking problem A where a train is in Section S i (i.e., i ∈ Q), and can move from section
S i to section S j. From this interlocking problem A, we can derive another railway interlocking problem,
B, illustrated on the left side of the figure. In this interlocking problem, B, there is another train in
section S j but sections S i and S j are now separated: it is no longer possible to move from Section S i

to section S j or vice versa. We say that the interlocking problem B is derived from A. Problems B and
A are closely related. According to Proposition A.1 we can detect if A is in a dangerous situation by
analyzing B. That is to say, A is in a dangerous situation if and only if B is in a dangerous situation.
As may be seen, the first and the third items of the formal definition (see Definition A.2) extend this
idea so that this relation is reflective and transitive. The relation “is derived from” records possible
train movements (Q2 contains both old and new train positions) while changing the configuration of
the possible movements in the railway network (P2 does not correspond to the configuration resulting
from the train movement from i to j).
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Si Sj

is derived from A:(P,Q)B:(P-{(i,j),(j,i)},Q U {j})

Si Sj

Figure A.1. Illustration of the relation “is derived from”.

Definition A.2. Let (P1,Q1) and (P2,Q2) be two possible railway interlocking problems in a railway
station detailed by E. We will say that (P2,Q2) is immediately derived from (P1,Q1) if and only if
∃(i, j) ∈ P1 such that:

• i ∈ Q1

and
• P2 = P1 − {(i, j), ( j, i)}

and
• Q2 = Q1 ∪ { j}

We define the relation “derived from” as the transitive and reflexive closure of the “immediately
derived from” relation. That is to say: (P2,Q2) is derived from (P1,Q1) if and only if

• P1 = P2 and Q1 = Q2

• (P1,Q1) is immediately derived from (P2,Q2)
• there is a railway interlocking problem (P3,Q3) of E such that (P2,Q2) is derived from (P3,Q3)

and (P3,Q3) is derived from (P1,Q1).

(The key idea underlying the second condition is that if there is a train in a section S i and (i, j) ∈ P,
we can consider instead that such train can reach S j, adding that section to Q2 and to erase (i, j) and
( j, i) from P2 –if they belong to P2.)

In Figure 4.1 there are more examples of this relation: the interlocking problem B is derived from
A, C is derived from B, D is derived from C, E is derived from D.

Proposition A.1. Let (P1,Q1) and (P2,Q2) be two railway interlocking problems in a railway station
detailed by E such that (P2,Q2) is derived from (P1,Q1). We have that:

(P1,Q1) is in a dangerous situation⇔ (P2,Q2) is in a dangerous situation.

Proof. As (P2,Q2) is derived from (P1,Q1), from Definition A.2 it follows that we can suppose that
(i, j) ∈ P1, i ∈ Q1, P2 = P1 − {(i, j), ( j, i)} and Q2 = Q1 ∪ { j}.

⇒) (P1,Q1) is in a dangerous situation. Let [u1, . . . un] and [v1 . . . vm] be two paths fulfilling Defini-
tion 3.5 for (P1,Q1).

We will consider the following cases:

Case ∃k < n such that uk = j and uk+1 = i. By (7) in Definition 3.5, we have that for every 1 ≤ k′ ≤ k
uk′ , i and, therefore, (uk′ , uk′+1) < {(i, j), ( j, i)}. Therefore, [u1 . . . uk] and [ j] fulfil all conditions
in Definition 3.5 for (P2,Q2).

Case ∃k′ < m such that vk′ = j and vk′+1 = i. It is analogous to the previous case.
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Case ∃k < n such that uk = i and uk+1 = j. Since i ∈ Q1, by (5) in Definition 3.5, we have that u1 = i.
We will consider the following subcases:

v1 = i. Then [u1] and [v1] fulfil all conditions in Definition 3.5 for (P2,Q2).

v1 , i. Since u1 = i, by (6) in Definition 3.5, we have that for every 1 ≤ k′ < m, vk′ , i. Besides,
we have that vm , i since vm = un , u1 = i, by (4) and (7) in Definition 3.5 (since we are
considering that n > 1 in this case). Therefore, (vk′ , vk′+1) < {(i, j), ( j, i)}.
Since u1 = i, by (7) in Definition 3.5 we have that for every 2 ≤ k ≤ n uk , i, and therefore,
(uk, uk+1) < {(i, j), ( j, i)}.
Consequently, [u2, . . . un] and [v1 . . . vm] fulfil all conditions in Definition 3.5 for (P2,Q2).

Case ∃k′ such that vk′ = i and vk′+1 = j. It is analogous to the previous case.

Case for every 1 ≤ k < n (uk, uk+1) < {(i, j), ( j, i)} and for every 1 ≤ k′ < m (vk′ , vk′+1) < {(i, j), ( j, i)}.
It is immediate to prove that [u1, . . . un] and [v1 . . . vm] fulfil all conditions in Definition 3.5 for
(P2,Q2).

⇐) Let [u1 . . . un] and [v1 . . . vm] be paths fulfilling Definition 3.5 for the railway interlocking problem
(P2,Q2). Since P2 ⊂ P1, we have that for every 1 ≤ k < n (uk, uk+1) ∈ P1 and that for every 1 ≤ k′ < m
(vk′ , vk′+1) ∈ P1. We will consider the following cases:

Case 1. u1 = j = v1. We have that [i, j] and [ j] are paths fulfilling Definition 3.5 for (P1,Q1).

Case 2. u1 , j , v1. We have that [u1 . . . un] and [v1 . . . vm] are paths fulfilling Definition 3.5 for
(P1,Q1).

Case 3. u1 = j , v1. We have that v1 , i. Otherwise, we would have that [v1, u1 . . . , un] and [v1 . . . vm]
would be two different paths from v1 to vm = un for (P1,Q1) and this is excluded (see Remark 3.5).
Consequently, [i, u1 . . . un] and [v1 . . . vm] are paths fulfilling Definition 3.5 for (P1,Q1) because:

• (i, u1) = (i, j) ∈ P1.
• {v1, i} ⊆ Q1 because i ∈ Q1, v1 , i, and, since v1 , j v1 ∈ Q1.

Case 4. v1 = j , u1. It is analogous to the previous case.

Although every trivial railway interlocking problem is in a dangerous situation, not all railway
interlocking problems in a dangerous situations are trivial ones. However, a trivial railway interlocking
problem can be derived from any railway interlocking problem in a dangerous situation (Theorem A.1).

Theorem A.1. A railway interlocking problem (P,Q) is in a dangerous situation if and only if a trivial
railway interlocking problem is derived from (P,Q).

Proof. ⇒) Let us suppose that (P,Q) is in a dangerous situation.
Let [u1, . . . , un] and [v1, . . . , vm] be paths fulfilling Definition 3.5. That is to say, we have that un = vm,
(ui, ui+1) ∈ P, (vi, vi+1) ∈ P, u1 ∈ Q and v1 ∈ Q.

We’ll proceed by induction on the sum of the lengths of the two paths, n + m.

Case n = m = 1: The paths are [u1] and [v1]. Since u1 = v1 we have that this is a trivial railway
interlocking problem.
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Case n > 1 or m > 1. Let us suppose that n > 1 (the case m > 1 is identical). Since (u1, u2) ∈ P and
u1 ∈ Q, we have that (P2,Q2) = (P − {(u1, u2), (u2, u1)},Q ∪ {u2}) is derived from (P,Q). Then
(P2,Q2) is in a dangerous situation because the paths [u2, . . . , un] and [v1, . . . , vm] fulfil the condi-
tions in Definition 3.5. By induction hypothesis, a trivial railway interlocking problem is derived
from (P2,Q2), and therefore, this trivial railway interlocking problem is derived from (P,Q).

⇐) Let us suppose that a trivial railway interlocking problem is derived from the railway interlocking
problem (P,Q). As a consequence of Definition A.1, a trivial railway interlocking problem is always in
a dangerous situation, and therefore, by Proposition A.1, we have that (P,Q) is in a dangerous situation
too.

Algebraic Preliminaries. Some introductory notes about polynomial rings

In this section we will briefly describe some results about polynomial rings that we will need to
prove the validity of our approach (see, for instance, [34], for a detailed introduction to the topic).

Definition A.3. A monomial in x1, . . . , xN is a product of the form xα1
1 · x

α2
2 · . . . x

αN
N . An element in the

polynomial ring K[x1, . . . , xN] is a polynomial in the variables x1, . . . , xN whose coefficients lie in the
field K, that is, a finite linear combination of monomials with coefficients in K:∑

α=(α1,α2,...,αN )

a(α1,α2,...,αN )x
α1
1 xα2

2 . . . x
αN
N

where a(α1,α2,...,αN ) ∈ K and α1, α2, ..., αN ∈ Z≥0, written sometimes, for the sake of brevity∑
α

aαxα , aα ∈ K , α ∈ ZN
≥0

If a(α1,α2,...,αN ) , 0 then a(α1,α2,...,αN )xα1 xα2 . . . xαN is called a term. If K = Q, an example of polynomial
in Q[x1, x2, x3] is p = 2x2

1 + 7x1x2x3 − x3 +
1
2 x2x3.

Later in this paper we will focus on the case K = Z2. An element in the polynomial ring A =
Z2[x1, . . . , xN] is a polynomial in the variables x1, . . . , xN whose coefficients lie in the field Z2 = {0, 1}.
An example of this kind of polynomials is p = x1x2 + x3 + x2x3. We must take into account that the
coefficients lie in Z2, and therefore, we have that, for instance, (since 1+1=0 in Z2):

x1x2 + x3x4 + x3x4 = x1x2 + (1 + 1)x3x4 = x1x2

The algebraic structure ideal is key in our approach.

Definition A.4. An ideal of a commutative ring is a subring that verifies that the product of any element
of the ring by any element of the subring belongs to the subring.

Example A.1. For instance, the set of even numbers is an ideal of Z. For example, the set of polyno-
mials in Z[x] with a trailing coefficient equal to 0 (i.e., the multiples of x) form an ideal of Z[x].

Proposition A.2. Given a set of polynomials G = { f1, . . . , fm} ⊆ K[x1, . . . , xN], the smallest ideal
containing G, denoted ⟨ f1, . . . , fm⟩, turns out to be:

⟨ f1, . . . , fm⟩ = {α1 f1 + . . . αm fm |α1, . . . , αm ∈ K[x1, . . . , xN]}
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Notation A.1. For the sake of simplicity, if G is a list of polynomials, we will denote ⟨G⟩ the ideal
generated by the polynomials in G.

Once an order for the variables is given, for instance x1 > x2 > . . . > xm, a total order for the
monomials can be defined (see [34], pp. 52–57). Although there are many monomial orderings, we
will use the pure lexicographical order in this paper. Simplifying it, if we have, for instance, x < y
and the monomials x2y = xxy and x3 = xxx, think of them as if they were words to be ordered in a
dictionary: xxx < xxy.

Definition A.5. The leading monomial of a polynomial p ∈ K[x1, . . . , xN], denoted LM(p), is its
greatest monomial with respect to the chosen monomial ordering. The corresponding term is its leading
term, and is denoted LT(p).

Example A.2. For example, in R[x1, x2, x3] with x1 > x2 > x3 and the lexicographic monomial order:

LM(2x2
1 + 7x1x2x3 − x3 +

1
2

x2x3) = x2
1

and
LT (2x2

1 + 7x1x2x3 − x3 +
1
2

x2x3) = 2x2
1

Remark A.1. In this paper we will focus on the case K = Z2, and, obviously, in these polynomial
rings: LT (p) = LM(p).

Theorem A.2. Once the monomial ordering is defined in K[x1, . . . , xN], the division of a polynomial p
by an ordered m-list of polynomials G = ( f1, . . . , fm) can be defined. This division outputs:

p = α1 f1 + . . . + αm fm + r

where α1, . . . , αm, r ∈ K[x1, . . . , xN] and either r = 0 or r is a linear combination of monomials, none
of which is divisible by any of LT( f1) . . .LT( fm).
A proof can be found in (see [34], pp. 62–64).

Notation A.2. The polynomial r, remainder of p on division by G, will be denoted NR(p,G) or pG.

The proof in [34] (pp. 62–64) provides an algorithm to find the polynomials α1, . . . αm, r ∈
K[x1, . . . , xN] in Theorem A.2. In each step of this algorithm we obtain an intermediate-dividend.
We will require only some of the first intermediate-dividends of this algorithm.

Definition A.6. Given p ∈ K[x1, . . . , xN] and an ordered m-list of polynomials G = ( f1, . . . , fm) ⊆
K[x1, . . . , xN], we recursively define the first-intermediate-dividends of p on division by G, r0, . . . , rn ∈

K[x1, . . . , xN], as follows:

• r0 = p,
• if i > 0 then

– if ∃ j ∈ {1, . . . ,m} such that LT( f j)|LT(ri) then

ri+1 = ri −
LT(ri)
LT( fk)

fk

where k is the minimum j such that LT( f j)|LT(ri),
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– if ∀ j ∈ {1, . . . ,m},LT( f j)̸ |LT(ri) then rn = ri.

According to the proof [34] (pp. 62–64), we have:

Proposition A.3. Let p ∈ K[x1, . . . , xN] and let G = ( f1, . . . , fm) ⊆ K[x1, . . . , xN] be an ordered m-list
of polynomials. Let r0, . . . rn ∈ K[x1, . . . , xN] be the first-intermediate-dividends of p on division by G.
We have that:

rn = 0 if and only if NR(p,G) = 0

Groebner bases are very special ideal bases: among other nice properties, they allow to decide
whether a polynomial belongs to the ideal or not (see Theorem A.3). As we wil see, Grobener bases
will play an important role in the proof in our main result, Theorem A.11.

Theorem A.3. Let p be a polynomial in K[x1, . . . , xN] and let G be a Groebner basis for an ideal
I ⊂ K[x1, . . . , xN]. Then we have that:

p ∈ I ⇔ NR(p,G) = 0

A proof can be found in [34] (Proposition 1 and Corollary 2, pp. 79–80).

Notation A.3. Let p1, p2 ∈ K[x1, . . . , xN]. LCM(p1, p2) denotes least common multiple of p1 and p2.

Definition A.7. Let p1, p2 ∈ K[x1, . . . , xN]. The S-polynomial of p1 and p2 is:

S (p1, p2) =
LCM(LM(p1),LM(p2))

LT(p1)
p1 −

LCM(LM(p1),LM(p2))
LT(p2)

p2

Remark A.2. Obviously, in case the polynomial ring considered is A = Z2[x1, . . . , xN], the − in
Definition A.7 can be substituted by a +.

Remark A.3. In case the polynomial ring considered is A = Z2[x1, . . . , xN], if p ∈ A, p , 0, then
LM(p) = LT(p).

The following theorem allows to verify if G is a Groebner basis:

Theorem A.4. Let I be a polynomial ideal in K[x1, . . . , xN] and let G = { f1, . . . , fm} be a basis of I.
Then:

G is a Groebner basis⇔ S ( fi, f j)
G∗
= 0

(where G∗ is an an ordered m-list of the polynomials in G, ordered in some way).

A proof can be found in [34] (Theorem 6, pp. 82–85).

The railway interlocking problem in algebraic terms

Given a railway station and the description, E, of its potential connectivity between sections (see
Definition 3.1), we will define the list E′ from the list E (see Section 4.1) as follows:

E′ = E ∪
⋃

(i, j)∈E

m2
i j
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Lemma A.5. Let E be the description of the potential connectivity between sections of a railway
station. Then:

E′ is a Groebner basis of ⟨E′⟩.

Proof. It is enough to prove that ∀ f1, f2 ∈ E
′, S ( f1, f2)

E′

= 0. But the elements of E′ are of the form
gi j or g′i j or t2

i or m2
i j, and, although tedious, it can be easily checked by hand or using a CAS, that in

the 42 possible combinations, the S-polynomial vanishes.

Hereinafter, p and q are the polynomials representing the given configuration of the railway station,
P, and the placement of the trains, Q, respectively (see Section 4.1).

Lemma A.6. Let (P,Q) be a railway interlocking problem for a railway station whose connectivity
is described by E. Let r0, r1 . . . rn be the first-intermediate-dividends of pq on division by any chosen
ordering of the elements E′ . Then:

i) ∀i ∈ {0, . . . , n − 1} there is a railway interlocking problem (Pi,Qi) derived from (P,Q) such that
ri = piqi.

ii) If NR(pq,E′) = 0 the railway interlocking problem (P,Q) is in a dangerous situation.

Proof.

i) For i = 0, we have that r0 = pq and, therefore, (P0,Q0) = (P,Q) is a railway interlocking problem
derived from (P,Q).
Suppose that 0 < i < n, ri−1 = pi−1qi−1 and (Pi−1,Qi−1) is a railway interlocking problem derived
from (P,Q). We will prove that ri represents a railway interlocking problem, (Pi,Qi), derived
from (P,Q). According to Definition A.6, we have that:

ri = ri−1 −
LT(ri−1)
LT( fk)

fk

where fk is a polynomial in E′ such that LT( fk)|LT(ri−1). We have also that LT(ri−1) =
LT(pi−1qi−1) = pi−1qi−1, where pi−1 is a monomial that contains only variables of the kind lxy

and mxy, and qi−1 is a monomial that contains only variables of the kind tx (see Section 4.1).
We have that fk , t2

k . Otherwise, we would have that ri = 0, and therefore, i = n (but we have
supposed that i < n).
We have that fk , m2

xy because pq is a monomial where the exponent of the mxy variables is at
most 1.
Consequently, there are two cases left:

Case fk = gxy. We have that gxy is of the form:
gxy = lxylyxtx + mxymyxtxty.
Since LT( fk)|LT(ri−1) we have that LT(gx,y) = lxylyxtx|pi−1qi−1. Thus, we have that lxylyx|pi and
tx|qi (remember that pi−1 is a monomial that contains only variables of the kind lxy and mxy,
and qi−1 is a monomial that contains only variables of the kind tx). Consequently:

– pi−1 is of the form pi−1 = p′ · lxylyx where p′ is a monomial.
– qi−1 is of the form qi−1 = q′ · tx where q′ is a monomial.
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Therefore, we have that

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = p′ · mxymyxq′ · txty

We define:

– pi = p′ · mxymyx

– qi = q′ · txty

Just observe that pi is a monomial that contains the same variables as pi−1 except that lx,y and
ly,x in pi−1 have respectively turned to be mx,y and my,x. In the same way, qi is a monomial
that contains all the variables in qi−1 and also the variable ty. Consequently, we have that
ri = piqi are polynomials representing the railway interlocking problem (Pi,Qi) where Pi =

Pi−1 − {(x, y), (y, x)} and Qi = Qi−1 ∪ {y}.

Case fk = g′x,y. We have that g′xy is of the form:
g′xy = lxymyxtx + mxymyxtxty.
Since LT( fk)|LT(ri−1) we have that LT(g′x,y) = lxymyxtx|pi−1qi−1. Thus, we have that lxymyx|pi

and tx|qi (remember that pi−1 is a monomial that contains only variables of the kind lxy and
mxy, and qi−1 is a monomial that contains only variables of the kind tx). Consequently:

– pi−1 is of the form pi−1 = p′ · lxymyx where p′ is a monomial
– qi−1 is of the form qi−1 = q′ · tx where q′ is a monomial

Therefore, we have that:

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = p′ · mxymyxq′ · txty

We define:

– pi = p′ · mxymyx

– qi = q′ · txty

Just observe that pi is a monomial that contains the same variables as pi−1 except that lx,y in
pi−1 has turned to be mx,y. In the same way, qi is a monomial that contains all the variables in
qi−1 and also the variable ty. Consequently, we have that ri = piqi is a monomial representing
the railway interlocking problem (Pi,Qi) where Pi = Pi−1 − {(x, y)} = Pi−1 − {(x, y), (y, x)}
(just observe that (y, x) < Pi−1) and Qi = Qi−1 ∪ {y}.

Consequently, we have that ri = piqi represents that the interlocking problem (Pi,Qi) is derived
from (Pi−1,Qi−1). By the transitivity property of the derived relation between railway interlocking
problems (see Definition A.2), we have that (Pi,Qi) is also derived from (P,Q).

ii) According to Proposition A.3, we have that rn = NR(pq,E′) = 0. Consequently,

0 = rn−1 −
LT(rn−1)
LT( fk)

fk

That is to say, pn−1qn−1 =
pn−1qn−1
LT( fk) fk

Since pn−1qn−1 is a monomial, we have that fk must be also a monomial. Consequently, fk cannot
be either of the form gi j or the form g′i j. Besides, fk cannot be either of the form m2

i since pq is a
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monomial where the exponent of the mi j variables is at most 1. Therefore, we have that fk = t2
x.

Since LT( fk)|LT(rn−1), we have that t2
x |pn−1qn−1, and consequently, the interlocking problem

(Pn−1,Qn−1) is a trivial railway interlocking because Qn−1 contains a repeated element x.
Therefore,(Pn−1,Qn−1) is in a dangerous situation.
By i) we have that (Pn−1,Qn−1) is derived from (P,Q). Since (Pn−1,Qn−1) is in a dangerous situa-
tion, by Theorem A.1, we have that (P,Q) is also in a dangerous situation.

Lemma A.7. Let (P,Q) be a railway interlocking problem for a railway station described by E. We
have that:

NR(pq,E) = NR(pq,E′)

Proof. Since the algorithm for calculating NR(pq,E′) in Lemma A.6 discards the case fk = m2
i j, we

have that NR(pq,E) = NR(pq,E′).
According to previous results (see ii in Lemmas A.6 and A.7), we have a sufficient condition to de-

tect if an interlocking problem (P,Q) is in a dangerous situation: if NR(pq,E) = 0 then the interlocking
problem (P,Q) is in a dangerous situation. Now, we will prove that this is also a necessary condition:
if the interlocking problem (P,Q) is in a dangerous situation, then NR(pq,E) = 0. This proof is
more complicated and requires translating the problem in terms of a ideal membership problem. An
important result for the proof will be that E′ is a Groebner basis.

Lemma A.8. Let (P0,Q0) be a trivial railway interlocking problem for a railway station described by
E. We have that:

p0q0 ∈ ⟨E
′⟩

Proof. According to Definition A.1, i must appear more than once in Q0. Let k be the number of times
i appears in Q0. Since k ≥ 2, we have that k = m + 2 where m ≥ 0. Therefore, we have that q0 is of the
form q0 = q′ · tk

i = q′ · tm+2
i = q′ · tm

i · t
2
i where q′ is a monomial. Consequently, p0q0 = p0 ·q′ · tm

i · t
2
i ∈ ⟨E

′⟩

since t2
i ∈ E

′.

Lemma A.9. Let (P1,Q1) and (P2,Q2) be two railway interlocking problems for a railway station
described by E such that (P2,Q2) is derived from (P1,Q1). We have that:

p1q1 ∈ ⟨E
′⟩ ⇔ p2q2 ∈ ⟨E

′⟩

Proof. Let (i, j) ∈ P1 be such that i ∈ Q1

and P2 = P1 − {(i, j), ( j, i)}
and Q2 = Q1 ∪ { j}.
Since i ∈ Q1 and Q2 = Q1 ∪ { j}, we have that q1 and q2 are of the form (for a certain monomial q):
q1 = q · ti

q2 = q · tit j

Since (i, j) ∈ P1 we have that li|p1.
We will consider two cases:

Case ( j, i) ∈ P1. We have that l ji|p1. Since P2 = P1 ∪ {(i, j)( j, i)}, we have that p1 and p2 are of the
form (for a certain monomial p):
p1 = p · li jl ji

p2 = p · mi jm ji
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Besides, we have that gi j = li jl jiti + mi jm jitit j ∈ E
′. Therefore, we have that:

pq · gi j = pq · li jl jiti + pq · mi jm jitit j = p1q1 + p2q2

Consequently,
p1q1 ∈ ⟨E

′⟩ ⇔ p2q2 ∈ ⟨E
′⟩

Case ( j, i) < P1. We have that m ji|p1. Since P2 = P1 ∪ {(i, j), ( j, i)}, we have that the monomials p1, p2

are of the form (where p is a certain monomials):
p1 = p · li jm ji

p2 = p · mi jm ji

Besides, we have that g′i j = li jm jiti + mi jm jitit j ∈ E
′. Therefore, we have that:

pq · g′i j = pq · li jm jiti + pq · mi jm jitit j = p1q1 + p2q2

Consequently,
p1q1 ∈ ⟨E

′⟩ ⇔ p2q2 ∈ ⟨E
′⟩

We have the following theorem:

Theorem A.10. Let (P,Q) be a railway interlocking problem for a railway station described by E.

(P,Q) is in a dangerous situation⇔ pq ∈ ⟨E′⟩

Proof. ⇒) Let (P,Q) be a railway interlocking problem in a dangerous situation. According to The-
orem A.1, we have that a trivial railway interlocking problem is derived from (P,Q). According to
Lemmas A.8 and A.9, we have that pq ∈ ⟨E′⟩.
⇐) Suppose that pq ∈ ⟨E′⟩. Since E′ is a Groebner basis (see Lemma A.5), we have, by Theorem A.3,
that NR(pq,E′) = 0. Consequently, by Lemma A.6, we have that (P,Q) is in a dangerous situation.

Since the list E′ is indeed a Groebner basis (see Lemma A.5), the ideal membership problem of the
previous theorem can be easily solved (see Theorem A.11).

Theorem A.11. Let (P,Q) be a railway interlocking problem for a railway station described by E. We
have that:

(P,Q) is in a dangerous situation⇔ NR(pq,E) = 0

Proof. This is a immediate consequence of Theorem A.3, Lemma A.5, Theorem A.10 and Lemma A.7.

B. A linear algorithm for calculating NR for our algebraic approach

Here we will propose an efficient algorithm for calculating NR(p,E) for the specific case that:

• The coefficients of polynomials lie in Z2.
• p is a monomial.
• E = {gi} is a list of polynomials such that each gi is the sum of two monomials pi and qi. That is

to say, gi = pi + qi where pi > qi. We will use the notation LT(gi) = pi and M(gi) = qi.

In this specific case, the general algorithm for calculating NR can be simplified since all intermedi-
ate dividends are monomials and the algorithm can run in O(N) if we use appropriate data structures:
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• In order to represent p =
∏

j x j
v j we use the array [v1 . . . vN]. An empty array [] will represent

the monomial p = 0. We will use this data structure to represent the intermediate dividends
of the algorithm. For example, we represent the monomial p = x1x3

2 by means of the array
p : [1, 3, 0, . . . , 0].
• In order to represent the monomials pi and qi in gi = pi + qi we use a list with the form {(xi, vi)}.

In this case a list {(x j, v j)} will represent the monomial qi =
∏

j x j
v j . For example, we represent

the monomial qi = x1x3
2 by means of the list {(x1, 1), (x2, 3)}.

• In order to represent the polynomial gi = pi+qi, we use two lists: one for representing pi, another
for representing qi. For example, for E = {g1, g2, g3} where g1 = x1x2 + x2x3; g2 = x2

2 + x5x6; g3 =

x3 + x5 we represent each polynomial gi in the following way:

– g1 = x1x2 + x2x3 is represented by these two lists: LT(g1) = {(1, 1), (2, 1)}; M(g1) =
{(2, 1), (3, 1)}.

– g2 = x2
2 + x5x6 is represented by these two lists: LT(g2) = {(2, 2)}; M(g2) = {(5, 1), (6, 1)}.

– g3 = x3 + x5 is represented by these two lists: LT(g3) = {(3, 1)}; M(g3) = {(5, 1)}.

• For each variable x j we consider Fx j , the list of the polynomials gi ∈ E such that the variables are
in LT(g): that is to say, there is some natural e such that (x j, e) ∈ LT(g). For example, in case that
E = [g1, g2, g3] = [x1x2 + x2x3, x2

2 + x5x6, x3 + x5], we have that:

– Fx1 = {g1} because x1 appears in the monomial LT(g1).
– Fx2 = {g1, g2} because x2 appears in the monomials LT(g1) and LT(g2).
– Fx3 = {g3} because x2 appears in the monomial LT(g3).
– Fx4 = Fx5 = Fx6 = ∅ because x4, x5, x6 do not appear in LT(gi) for any gi.

• For each polynomial gi, we consider Vgi , the set of the variables that are in M(gi). For example,
in case that E = [g1, g2, g3] = [x1x2 + x2x3, x2

2 + x5x6, x3 + x5], we have that:

– Vg1 = {2, 3} because x2 and x3 appears in M(g1).
– Vg2 = {5, 6} because x5 and x6 appears in M(g2).
– Vg3 = {5} because x5 appears in M(g3).

The algorithm for calculating the remainder of a monomial p with respect to a list of polynomials
E is the following:

NR(int[] monomial, list of polynomials E)

(1) int[] p = Clone monomial

(2) Calculate F_i for every variable i

(3) Calculate V_g for every polynomial g in E

(4) Stack<Polynomial> check = E

(5) do

(6) g = check.Pop();

(7) if (CanBeUsedToReduce(g, p))

(8) Reduce(g,p);

(9) if (p==[]) return;

(10) for each Variable j in V_g)

(11) for each (Polynomial f in F_j)

(12) check.Push(f);
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(13) while (check.Count > 0);

(14) return p;

The algorithm CanBeUsedToReduce(g,p) outputs true if LT(g)∥p (that is to say, if the polyno-
mial g can be used to reduce the monomial p). This algorithm is very simple and checks for every
(a, b) ∈ LT(g) if p[a]> b. Since the size of LT(g) is constant in our algebraic model, this algorithm
runs in O(1).

The algorithm Reduce(g,p) calculates a new intermediate dividend (that is to say, reduces the
monomial p with respect to the polynomial g). This algorithm is also very simple due to the data
structures used. For every (a, b) ∈ LT(g) and (a, c) ∈ M(g), we update p[a] with the value p[a]-b+c.
Since the size of the sets LT(g) and M(g) are constant in our algebraic model, this algorithm runs in
O(1).

The algorithm uses a stack, check, in which the algorithm stores the polynomials gi that may be
used to reduce the monomial p. The algorithm NR runs in O(N) since the step Reduce can only be
applied N times at most and every time the monomial is reduced, the number of polynomials added to
check is constant.
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