Research article

Schur's test, Bergman-type operators and Gleason's problem on radial-angular mixed spaces

  • Received: 07 February 2023 Revised: 06 June 2023 Accepted: 07 June 2023 Published: 06 September 2023
  • Let $ 0 < p, q < \infty $, $ \Phi $ be a generalized normal function and $ L_{p, q}(\Phi) $ the radial-angular mixed space. In this paper, we first generalize the classical Schur's test to radial-angular mixed spaces setting and then find the sufficient and necessary condition for the boundedness of integral operators from $ L_{p_1, p_2}(\Phi) $ to $ L_{q_1, q_2}(\Phi) $ for $ 1\leq p_i, q_i\leq \infty $ with $ i\in\{1, 2\} $. Moreover, we also establish the boundedness of Bergman-type operators $ P_{s, t} $, where $ s\in {\mathbb R} $ and $ t > 0 $, on holomorphic radial-angular mixed space $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $. As an application, we finally solve Gleason's problem on $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $.

    Citation: Long Huang, Xiaofeng Wang. Schur's test, Bergman-type operators and Gleason's problem on radial-angular mixed spaces[J]. Electronic Research Archive, 2023, 31(10): 6027-6044. doi: 10.3934/era.2023307

    Related Papers:

  • Let $ 0 < p, q < \infty $, $ \Phi $ be a generalized normal function and $ L_{p, q}(\Phi) $ the radial-angular mixed space. In this paper, we first generalize the classical Schur's test to radial-angular mixed spaces setting and then find the sufficient and necessary condition for the boundedness of integral operators from $ L_{p_1, p_2}(\Phi) $ to $ L_{q_1, q_2}(\Phi) $ for $ 1\leq p_i, q_i\leq \infty $ with $ i\in\{1, 2\} $. Moreover, we also establish the boundedness of Bergman-type operators $ P_{s, t} $, where $ s\in {\mathbb R} $ and $ t > 0 $, on holomorphic radial-angular mixed space $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $. As an application, we finally solve Gleason's problem on $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $.



    加载中


    [1] K. Zhu, Operator Theory in Function Spaces, 2nd edition, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/138
    [2] J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), 1–28. https://doi.org/10.1515/crll.1911.140.1 doi: 10.1515/crll.1911.140.1
    [3] E. Gagliardo, On integral trasformations with positive kernel, Proc. Amer. Math. Soc., 16 (1965), 429–434. https://doi.org/10.2307/2034667 doi: 10.2307/2034667
    [4] R. Zhao, Generalization of Schur's test and its application to a class of integral operators on the unit ball of $\mathbb{C}^n$, Integr. Equations Oper. Theory, 82 (2015), 519–532. https://doi.org/10.1007/s00020-014-2215-0 doi: 10.1007/s00020-014-2215-0
    [5] G. Ren, U. Kähler, J. Shi, C. Liu, Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory, 6 (2012), 373–396. https://doi.org/10.1007/s11785-010-0123-0 doi: 10.1007/s11785-010-0123-0
    [6] L. Huang, X. Wang, Z. Zeng, $L^{\vec{p}}-L^{\vec{q}}$ boundedness of multiparameter Forelli-Rudin type operators on the product of unit balls of $\mathbb{C}^n$, preprint, arXiv: 2304.04942. https://doi.org/10.48550/arXiv.2304.04942
    [7] R. Zhao, L. Zhou, $L^p-L^q$ boundedness of Forelli-Rudin type operators on the unit ball of $\mathbb{C}^n$, J. Funct. Anal., 282 (2022) 109345. https://doi.org/10.1016/j.jfa.2021.109345
    [8] K. Zhu, Embedding and compact embedding of weighted Bergman spaces, Illinois J. Math., 66 (2022), 435–448. https://doi.org/10.1215/00192082-10120480 doi: 10.1215/00192082-10120480
    [9] G. Ren, J. Shi, Bergman type operator on mixed norm spaces with applications, Chin. Ann. of Math., 18 (1997), 265–276.
    [10] Y. Liu, Boundedness of the Bergman type operators on mixed norm spaces, Proc. Amer. Math. Soc., 130 (2002), 2363–2367. https://doi.org/10.1090/S0002-9939-02-06332-3 doi: 10.1090/S0002-9939-02-06332-3
    [11] Z. Lou, A note on the boundedness of Bergman-type operators on mixed norm spaces, J. Aust. Math. Soc., 82 (2007), 395–402. https://doi.org/10.1017/S1446788700036181 doi: 10.1017/S1446788700036181
    [12] A. M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125–132.
    [13] K. Zhu, The Bergman spaces, the Bloch space, and Gleason's problem, Trans. Amer. Math. Soc., 309 (1988), 253–268. https://doi.org/10.2307/2001168
    [14] B. R. Choe, Projections, the weighted Bergman spaces, and the Bloch space, Proc. Amer. Math. Soc., 108 (1990), 127–136. https://doi.org/10.1090/S0002-9939-1990-0991692-0
    [15] Z. Hu, Gleason's problem for harmonic mixed norm and Bloch spaces in convex domains, Math. Nachr., 279 (2006), 164–178. https://doi.org/10.1002/mana.200310353 doi: 10.1002/mana.200310353
    [16] A. Benedek, R. Panzone, The space $L^p$, with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1215/S0012-7094-61-02828-9 doi: 10.1215/S0012-7094-61-02828-9
    [17] K. Zhu, Spaces of Holomorphic Functions in the Unit ball, Springer-Verlag, New York, 1994.
    [18] S. Li, A class of integral operators on mixed norm spaces in the unit ball, Czechoslovak Math. J., 57 (2007), 1013–1023. https://doi.org/10.1007/s10587-007-0091-3 doi: 10.1007/s10587-007-0091-3
    [19] A. L. Shields, D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162 (1971), 287–302. https://doi.org/10.2307/1995754 doi: 10.2307/1995754
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(839) PDF downloads(50) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog