Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation

  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the L2 and L error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.

    Citation: Akeel A. AL-saedi, Jalil Rashidinia. Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation[J]. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216

    Related Papers:

    [1] Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975
    [2] H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy . Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features. AIMS Mathematics, 2024, 9(12): 34224-34247. doi: 10.3934/math.20241630
    [3] Osama Moaaz, Wedad Albalawi . Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Mathematics, 2023, 8(6): 12729-12750. doi: 10.3934/math.2023641
    [4] Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197
    [5] Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally . Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Mathematics, 2023, 8(7): 16291-16307. doi: 10.3934/math.2023834
    [6] Clemente Cesarano, Osama Moaaz, Belgees Qaraad, Ali Muhib . Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Mathematics, 2021, 6(10): 11124-11138. doi: 10.3934/math.2021646
    [7] Maryam AlKandari . Nonlinear differential equations with neutral term: Asymptotic behavior of solutions. AIMS Mathematics, 2024, 9(12): 33649-33661. doi: 10.3934/math.20241606
    [8] Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073
    [9] Bouharket Bendouma, Fatima Zohra Ladrani, Keltoum Bouhali, Ahmed Hammoudi, Loay Alkhalifa . Solution-tube and existence results for fourth-order differential equations system. AIMS Mathematics, 2024, 9(11): 32831-32848. doi: 10.3934/math.20241571
    [10] Ali Muhib, Hammad Alotaibi, Omar Bazighifan, Kamsing Nonlaopon . Oscillation theorems of solution of second-order neutral differential equations. AIMS Mathematics, 2021, 6(11): 12771-12779. doi: 10.3934/math.2021737
  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the L2 and L error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.



    In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential equation of the form

    {(r(t)Φp1[w(t)])+q(t)Φp2(u(ϑ(t)))=0,r(t)>0, r(t)0, tt0>0, (1.1)

    where w(t):=u(t)+a(t)u(τ(t)) and the first term means the p-Laplace type operator (1<p<). The main results are obtained under the following conditions:

    L1: Φpi[s]=|s|pi2s, i=1,2,

    L2: rC[t0,) and under the condition

    t01r1/(p11)(s)ds=. (1.2)

    L3: a,qC[t0,), q(t)>0, 0a(t)<a0<, τ,ϑC[t0,), τ(t)t, limtτ(t)=limtϑ(t)=

    By a solution of (1.1) we mean a function u C3[tu,), tut0, which has the property r(t)(w(t))p11C1[tu,), and satisfies (1.1) on [tu,). We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [tu,), and otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are oscillatory.

    We point out that delay differential equations have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems, such as electrical power systems, control systems, networks, materials, see [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics.

    During the past few years, there has been constant interest to study the asymptotic properties for oscillation of differential equations with p-Laplacian like operator in the canonical case and the noncanonical case, see [2,3,4,11] and the numerical solution of the neutral delay differential equations, see [5,6,7]. The oscillatory properties of differential equations are fairly well studied by authors in [16,17,18,19,20,21,22,23,24,25,26,27]. We collect some relevant facts and auxiliary results from the existing literature.

    Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with damping of the form

    {(r(t)Φ(y(n1)(t)))+a(t)Φ(y(n1)(t))+q(t)Φ(y(g(t)))=0,Φ=|s|p2s, tt0>0,

    where n is even. This time, the authors used comparison method with second order equations.

    The authors in [9,10] have established sufficient conditions for the oscillation of the solutions of

    {(r(t)|y(n1)(t)|p2y(n1)(t))+ji=1qi(t)g(y(ϑi(t)))=0,j1, tt0>0,

    where n is even and p>1 is a real number, in the case where ϑi(t)υ (with rC1((0,),R), qiC([0,),R), i=1,2,..,j).

    We point out that Li et al. [3] using the Riccati transformation together with integral averaging technique, focuses on the oscillation of equation

    {(r(t)|w(t)|p2w(t))+ji=1qi(t)|y(δi(t))|p2y(δi(t))=0,1<p<, , tt0>0.

    Park et al. [8] have obtained sufficient conditions for oscillation of solutions of

    {(r(t)|y(n1)(t)|p2y(n1)(t))+q(t)g(y(δ(t)))=0,1<p<, , tt0>0.

    As we already mentioned in the Introduction, our aim here is complement results in [8,9,10]. For this purpose we discussed briefly these results.

    In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows. In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give some examples to illustrate the main results.

    For convenience, we denote

    A(t)=q(t)(1a0)p21Mp1p2(ϑ(t)), B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t), ϕ1(t)=tA(s)ds,R1(t):=(p11)μt22r1/(p11)(t),ξ(t):=q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21),η(t):=(1a0)p2/p1Mp2/(p12)2t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ,ξ(t)=tξ(s)ds, η(t)=tη(s)ds,

    for some μ(0,1) and every M1,M2 are positive constants.

    Definition 1. A sequence of functions {δn(t)}n=0 and {σn(t)}n=0 as

    δ0(t)=ξ(t), and σ0(t)=η(t),δn(t)=δ0(t)+tR1(t)δp1/(p11)n1(s)ds, n>1σn(t)=σ0(t)+tσp1/(p11)n1(s)ds, n>1. (2.1)

    We see by induction that δn(t)δn+1(t) and σn(t)σn+1(t) for tt0, n>1.

    In order to discuss our main results, we need the following lemmas:

    Lemma 2.1. [12] If the function w satisfies w(i)(ν)>0, i=0,1,...,n, and w(n+1)(ν)<0  eventually. Then, for every ε1(0,1), w(ν)/w(ν)ε1ν/n eventually.

    Lemma 2.2. [13] Let u(t) be a positive and n-times differentiable function on an interval [T,) with its nth derivative u(n)(t) non-positive on [T,) and not identically zero on any interval of the form [T,), TT and u(n1)(t)u(n)(t)0, ttu then there exist constants θ, 0<θ<1  and ε>0 such that

    u(θt)εtn2u(n1)(t),

    for all sufficient large t.

    Lemma 2.3 [14] Let uCn([t0,),(0,)). Assume that u(n)(t) is of fixed sign and not identically zero on [t0,) and that there exists a t1t0 such that u(n1)(t)u(n)(t)0 for all tt1. If limtu(t)0, then for every μ(0,1) there exists tμt1 such that

    u(t)μ(n1)!tn1|u(n1)(t)| for ttμ.

    Lemma 2.4. [15] Assume that (1.2) holds and u is an eventually positive solution of (1.1). Then, (r(t)(w(t))p11)<0 and there are the following two possible cases eventually:

    (G1) w(k)(t)>0, k=1,2,3,(G2) w(k)(t)>0, k=1,3, and w(t)<0.

    Theorem 2.1. Assume that

    liminft1ϕ1(t)tB(s)ϕp1(p11)1(s)ds>p11pp1(p11)1. (2.2)

    Then (1.1) is oscillatory.

    proof. Assume that u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. Since r(t)>0, we have

    w(t)>0, w(t)>0, w(t)>0, w(4)(t)<0 and (r(t)(w(t))p11)0, (2.3)

    for tt1. From definition of w, we get

    u(t)w(t)a0u(τ(t))w(t)a0w(τ(t))(1a0)w(t),

    which with (1.1) gives

    (r(t)(w(t))p11)q(t)(1a0)p21wp21(ϑ(t)). (2.4)

    Define

    ϖ(t):=r(t)(w(t))p11wp11(ζϑ(t)). (2.5)

    for some a constant ζ(0,1). By differentiating and using (2.4), we obtain

    ϖ(t)q(t)(1a0)p21wp21(ϑ(t)).wp11(ζϑ(t))(p11)r(t)(w(t))p11w(ζϑ(t))ζϑ(t)wp1(ζϑ(t)).

    From Lemma 2.2, there exist constant ε>0, we have

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)r(t)(w(t))p11εϑ2(t)w(ϑ(t))ζϑ(t)wp1(ζϑ(t)).

    Which is

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εr(t)ϑ2(t)ζϑ(t)(w(t))p1wp1(ζϑ(t)),

    by using (2.5) we have

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t). (2.6)

    Since w(t)>0, there exist a t2t1 and a constant M>0 such that

    w(t)>M.

    Then, (2.6), turns to

    ϖ(t)q(t)(1a0)p21Mp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t),

    that is

    ϖ(t)+A(t)+B(t)ϖp1/(p11)(t)0.

    Integrating the above inequality from t to l, we get

    ϖ(l)ϖ(t)+ltA(s)ds+ltB(s)ϖp1/(p11)(s)ds0.

    Letting l and using ϖ>0 and ϖ<0, we have

    ϖ(t)ϕ1(t)+tB(s)ϖp1/(p11)(s)ds.

    This implies

    ϖ(t)ϕ1(t)1+1ϕ1(t)tB(s)ϕp1/(p11)1(s)(ϖ(s)ϕ1(s))p1/(p11)ds. (2.7)

    Let λ=inftTϖ(t)/ϕ1(t) then obviously λ1. Thus, from (2.2) and (2.7) we see that

    λ1+(p11)(λp1)p1/(p11)

    or

    λp11p1+(p11)p1(λp1)p1/(p11),

    which contradicts the admissible value of λ1 and (p11)>0.

    Therefore, the proof is complete.

    Theorem 2.2. Assume that

    liminft1ξ(t)tR1(s)ξp1/(p11)(s)ds>(p11)pp1/(p11)1 (2.8)

    and

    liminft1η(t)t0η2(s)ds>14. (2.9)

    Then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases (G1) and (G2).

    For case (G1). Define

    ω(t):=r(t)(w(t))p11wp11(t).

    By differentiating ω and using (2.4), we obtain

    ω(t)q(t)(1a0)p21wp21(ϑ(t))wp11(t)(p11)r(t)(w(t))p11wp1(t)w(t). (2.10)

    From Lemma 2.1, we get

    w(t)w(t)3ε1t.

    Integrating again from t to ϑ(t), we find

    w(ϑ(t))w(t)ε1ϑ3(t)t3. (2.11)

    It follows from Lemma 2.3 that

    w(t)μ12t2w(t), (2.12)

    for all μ1(0,1) and every sufficiently large t. Since w(t)>0, there exist a t2t1 and a constant M>0 such that

    w(t)>M, (2.13)

    for tt2. Thus, by (2.10), (2.11), (2.12) and (2.13), we get

    ω(t)+q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21)+(p11)μt22r1/(p11)(t)ωp1/(p11)(t)0,

    that is

    ω(t)+ξ(t)+R1(t)ωp1/(p11)(t)0. (2.14)

    Integrating (2.14) from t to l, we get

    ω(l)ω(t)+ltξ(s)ds+ltR1(s)ωp1/(p11)(s)ds0.

    Letting l and using ω>0 and ω<0, we have

    ω(t)ξ(t)+tR1(s)ωp1/(p11)(s)ds. (2.15)

    This implies

    ω(t)ξ(t)1+1ξ(t)tR1(s)ξp1/(p11)(s)(ω(s)ξ(s))p1/(p11)ds. (2.16)

    Let λ=inftTω(t)/ξ(t) then obviously λ1. Thus, from (2.8) and (2.16) we see that

    λ1+(p11)(λp1)p1/(p11)

    or

    λp11p1+(p11)p1(λp1)p1/(p11),

    which contradicts the admissible value of λ1 and (p11)>0.

    For case (G2). Integrating (2.4) from t to m, we obtain

    r(m)(w(m))p11r(t)(w(t))p11mtq(s)(1a0)p21wp21(ϑ(s))ds. (2.17)

    From Lemma 2.1, we get that

    w(t)ε1tw(t) and hence w(ϑ(t))ε1ϑ(t)tw(t). (2.18)

    For (2.17), letting mand using (2.18), we see that

    r(t)(w(t))p11ε1(1a0)p21wp21(t)tq(s)ϑp21(s)sp21ds.

    Integrating this inequality again from t to , we get

    w(t)ε1(1a0)p2/p1wp2/p1(t)t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ, (2.19)

    for all ε1(0,1). Define

    y(t)=w(t)w(t).

    By differentiating y and using (2.13) and (2.19), we find

    y(t)=w(t)w(t)(w(t)w(t))2y2(t)(1a0)p2/p1M(p2/p1)1t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ, (2.20)

    hence

    y(t)+η(t)+y2(t)0. (2.21)

    The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Theorem 2.3. Let δn(t) and σn(t) be defined as in (2.1). If

    limsupt(μ1t36r1/(p11)(t))p11δn(t)>1 (2.22)

    and

    limsuptλtσn(t)>1, (2.23)

    for some n, then (1.1)is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases.

    In the case (G1), proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows from Lemma 2.3 that

    w(t)μ16t3w(t). (2.24)

    From definition of ω(t) and (2.24), we have

    1ω(t)=1r(t)(w(t)w(t))p111r(t)(μ16t3)p11.

    Thus,

    ω(t)(μ1t36r1/(p11)(t))p111.

    Therefore,

    limsuptω(t)(μ1t36r1/(p11)(t))p111,

    which contradicts (2.22).

    The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Corollary 2.1. Let δn(t) and σn(t) be defined as in (2.1). If

    t0ξ(t)exp(tt0R1(s)δ1/(p11)n(s)ds)dt= (2.25)

    and

    t0η(t)exp(tt0σ1/(p11)n(s)ds)dt=, (2.26)

    for some n, then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases (G1) and (G2).

    In the case (G1), proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from (2.15) that ω(t)δ0(t).  Moreover, by induction we can also see that ω(t)δn(t) for tt0, n>1. Since the sequence {δn(t)}n=0 monotone increasing and bounded above, it converges to δ(t). Thus, by using Lebesgue's monotone convergence theorem, we see that

    δ(t)=limnδn(t)=tR1(t)δp1/(p11)(s)ds+δ0(t)

    and

    δ(t)=R1(t)δp1/(p11)(t)ξ(t). (2.27)

    Since δn(t)δ(t), it follows from (2.27) that

    δ(t)R1(t)δ1/(p11)n(t)δ(t)ξ(t).

    Hence, we get

    δ(t)exp(tTR1(s)δ1/(p11)n(s)ds)(δ(T)tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)ds).

    This implies

    tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)dsδ(T)<,

    which contradicts (2.25). The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Example 2.1. Consider the differential equation

    (u(t)+12u(t2))(4)+q0t4u(t3)=0,  (2.28)

    where q0>0 is a constant. Let p1=p2=2, r(t)=1, a(t)=1/2, τ(t)=t/2, ϑ(t)=t/3 and q(t)=q0/t4. Hence, it is easy to see that

    A(t)=q(t)(1a0)(p21)Mp2p1(ϑ(t))=q02t4, B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)=εt227

    and

    ϕ1(t)=q06t3,

    also, for some ε>0, we find

    liminft1ϕ1(t)tB(s)ϕp1/(p11)1(s)ds>(p11)pp1/(p11)1.liminft6εq0t3972tdss4>14q0>121.5ε.

    Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if q0>121.5ε.

    Example 2.2. Consider a differential equation

    (u(t)+a0u(τ0t))(n)+q0tnu(ϑ0t)=0, (2.29)

    where q0>0 is a constant. Note that p=2, t0=1, r(t)=1, a(t)=a0, τ(t)=τ0t, ϑ(t)=ϑ0t  and q(t)=q0/tn.

    Easily, we see that condition (2.8) holds and condition (2.9) satisfied.

    Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory.

    Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

    {(r(t)|y(t)|p12y(t))+a(t)f(y(t))+ji=1qi(t)|y(σi(t))|p22y(σi(t))=0,tt0, σi(t)t, j1,, 1<p2p1<.

    The paper is devoted to the study of oscillation of fourth-order differential equations with p-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations, and they essentially improves the related contributions to the subject.

    Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of (1.1) under the condition υ01r1/(p11)(s)ds<.

    The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.

    The author declares that there is no competing interest.



    [1] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [2] O. Nikan, Z. Avazzadeh, J. A. Tenreiro Machado, A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer, J. Adv. Res. 32 (2021), 45–60. https://doi.org/10.1016/j.jare.2021.03.002 doi: 10.1016/j.jare.2021.03.002
    [3] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transfer, 111 (2020), 104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443 doi: 10.1016/j.icheatmasstransfer.2019.104443
    [4] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad., Numerical investigation of the nonlinear modified anomalous diffusion process, Nonlinear Dyn., 97 (2019), 2757–2775. https://doi.org/10.1007/s11071-019-05160-w doi: 10.1007/s11071-019-05160-w
    [5] H. Mesgarani, J. Rashidinia, Y. Esmaeelzade Aghdam, O. Nikan, Numerical treatment of the space fractional advection–dispersion model arising in groundwater hydrology, Comput. Appl., Math., 40 (2021). https://doi.org/10.1007/s40314-020-01410-5 doi: 10.1007/s40314-020-01410-5
    [6] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments, Appl. Math. Modell., 89 (2021), 819–836. https://doi.org/10.1016/j.apm.2020.07.021 doi: 10.1016/j.apm.2020.07.021
    [7] O. Nikan, A. Golbabai, J. T. Machado, T. Nikazad, Numerical approximation of the time fractional cable model arising in neuronal dynamics, Eng. Comput., 38 (2022), 155–173. https://doi.org/10.1007/s00366-020-01033-8 doi: 10.1007/s00366-020-01033-8
    [8] Z. Avazzadeh, O. Nikan, A. T. Nguyen, A localized hybrid kernel meshless technique for solving the fractional Rayleigh–Stokes problem for an edge in a viscoelastic fluid, Eng. Anal. Boundary Elem., 146 (2023), 695–705. https://doi.org/10.1016/j.enganabound.2022.11.003 doi: 10.1016/j.enganabound.2022.11.003
    [9] R. AlAhmad, Q. AlAhmad, A. Abdelhadi, Solution of fractional autonomous ordinary differential equations, J. Math. Comput. Sci., 27(2022), 59–64. http://dx.doi.org/10.22436/jmcs.027.01.05 doi: 10.22436/jmcs.027.01.05
    [10] O. Nikan, S. M. Molavi-Arabshai, H. Jafari, Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discrete Contin. Dyn. Syst. -S, 14 (2021), 3685–3701. https://doi.org/10.3934/dcdss.2020466 doi: 10.3934/dcdss.2020466
    [11] Y. Cao, O. Nikan, Z. Avazzadeh, A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels, Appl. Numer. Math., 183 (2023), 140–156. https://doi.org/10.1016/j.apnum.2022.07.018 doi: 10.1016/j.apnum.2022.07.018
    [12] A. Golbabai, O. Nikan, T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Math., 5 (2019), 1–22. https://doi.org/10.1007/s40819-019-0635-x doi: 10.1007/s40819-019-0635-x
    [13] N. H. Can, O. Nikan, M. N. Rasoulizadeh, H. Jafari, Y. S. Gasimov, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel, Therm. Sci., 24 (2020), 49–58.
    [14] T. Guo, O. Nikan, Z. Avazzadeh, W. Qiu, Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems, Comput. Appl. Math., 41 (2022), 236. https://doi.org/10.1007/s40314-022-01934-y doi: 10.1007/s40314-022-01934-y
    [15] H. K. Jassim, M. A. Shareef, On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator, J. Math. Comput. Sci., 23 (2021), 58–66. http://dx.doi.org/10.22436/jmcs.023.01.06 doi: 10.22436/jmcs.023.01.06
    [16] B. Kalimbetov, E. Abylkasymova, G. Beissenova, On the asymptotic solutions of singulary perturbed differential systems of fractional order, J. Math. Comput. Sci., 24, (2022), 165–172. http://dx.doi.org/10.22436/jmcs.024.02.07 doi: 10.22436/jmcs.024.02.07
    [17] S. Al-Ahmad, I. M. Sulaiman, M. M. A. Nawi, M. Mamat, M. Z. Ahmad, Analytical solution of systems of Volterra integro-differential equations using modified differential transform method, J. Math. Comput. Sci., 26 (2022), 1–9. http://dx.doi.org/10.22436/jmcs.026.01.01 doi: 10.22436/jmcs.026.01.01
    [18] A. Alia, M. Abbasb, T. Akramc, New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation, J. Math. Comput. Sci., 22 (2021), 119–127. http://dx.doi.org/10.22436/jmcs.022.02.03 doi: 10.22436/jmcs.022.02.03
    [19] T. Akram, M. Abbas, A. Ali, A numerical study on time-fractional Fisher equation using an extended cubic B-spline approximation, J. Math. Comput. Sci., 22 (2021), 85–96. http://dx.doi.org/10.22436/jmcs.022.01.08 doi: 10.22436/jmcs.022.01.08
    [20] M. Luo, W. Qiu, O. Nikan, Z. Avazzadeh, Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 440 (2023), 127655. https://doi.org/10.1016/j.amc.2022.127655 doi: 10.1016/j.amc.2022.127655
    [21] P. Darania, A. Ebadian, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188 (2007), 657–668. https://doi.org/10.1016/j.amc.2006.10.046 doi: 10.1016/j.amc.2006.10.046
    [22] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [23] J. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. Escobar-Jiménez, V. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017). https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7
    [24] Y. Li, N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Comput. Math. Appl., 62 (2011), 1046–1054, https://doi.org/10.1016/j.camwa.2011.03.032 doi: 10.1016/j.camwa.2011.03.032
    [25] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [26] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, C. M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62 (2011), 1038–1045. https://doi.org/10.1016/j.camwa.2011.04.024 doi: 10.1016/j.camwa.2011.04.024
    [27] Z. Odibat, On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 2956–2968. https://doi.org/10.1016/j.cam.2010.12.013 doi: 10.1016/j.cam.2010.12.013
    [28] A. Yokus, D. Kaya, Numerical and exact solutions for time fractional Burgers' equation, Nonlinear Sci. Appl., 10 (2017), 3419–3428. http://dx.doi.org/10.22436/jnsa.010.07.06 doi: 10.22436/jnsa.010.07.06
    [29] A. Esen, F. Bulut, Ö. Oruç, A unified approach for the numerical solution of time fractional Burgers' type equations, Eur. Phys. J. Plus, 131 (2016). https://doi.org/10.1140/epjp/i2016-16116-5 doi: 10.1140/epjp/i2016-16116-5
    [30] C. S. Liu, J. R. Chang, Recovering a source term in the time-fractional Burgers equation by an energy boundary functional equation, Appl. Math. Lett., 79 (2018), 138–145. https://doi.org/10.1016/j.aml.2017.12.010 doi: 10.1016/j.aml.2017.12.010
    [31] M. Li, O. Nikan, W. Qiu, D. Xu, An efficient localized meshless collocation method for the two-dimensional Burgers-type equation arising in fluid turbulent flows, Eng. Anal. Boundary Elem., 144 (2022), 44–54. https://doi.org/10.1016/j.enganabound.2022.08.007 doi: 10.1016/j.enganabound.2022.08.007
    [32] W. Qiu, H. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017
    [33] T. Guo, M. A. Zaky, A. S. Hendy, W. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2022), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023
    [34] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burger's equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [35] T. Guo, D. Xu, W. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570
    [36] F. Safari, W. Chen, Numerical approximations for space-time fractional Burgers' equations via a new semi-analytical method, Comput. Math. Appl., 96 (2021), 55–66. https://doi.org/10.1016/j.camwa.2021.03.026 doi: 10.1016/j.camwa.2021.03.026
    [37] T. Wang, G. Chai, Composite spectral method for the Neumann problem of the Burgers equation on the half line, Comput. Math. Appl., 134 (2023), 194–206. https://doi.org/10.1016/j.camwa.2023.01.018 doi: 10.1016/j.camwa.2023.01.018
    [38] Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alexandria Eng. J., 64 (2022), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033
    [39] X. Hu, S. Zhu, Isogeometric analysis for time-fractional partial differential equations, Numer. Algor., 85 (2020), 909–930. https://doi.org/10.1007/s11075-019-00844-1 doi: 10.1007/s11075-019-00844-1
    [40] F. Soleymani, S. Zhu, Error and stability estimate of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 425 (2023), 115075. https://doi.org/10.1016/j.cam.2023.115075 doi: 10.1016/j.cam.2023.115075
    [41] D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [42] P. M. Prenter, Spline and Variational Methods, John Wiley & Sons, New York, 1975.
    [43] Z. Chen, The Finite Element Method: Its Fundamentals and Applications in Engineering, World Scientific: Hackensack, NJ, USA, 2011.
    [44] S. Kutluay, A. Esen, I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167 (2004), 21–33. https://doi.org/10.1016/j.cam.2003.09.043 doi: 10.1016/j.cam.2003.09.043
    [45] A. Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal., 182 (2013), 260–273. https://doi.org/10.3846/13926292.2013.783884 doi: 10.3846/13926292.2013.783884
    [46] M. Li, X. Ding, Q. Xu, Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation, Adv. Differ. Equations, 2018 (2018), 1–15. https://doi.org/10.1186/s13662-018-1743-3 doi: 10.1186/s13662-018-1743-3
    [47] M. K. Jain, Numerical Solution of Differential Equations, John Wiley & Sons, New York, 1985.
    [48] Siraj-ul-Islam, A. J. Khattak, I. A. Tirmizi, A meshfree method for numerical solution of KdV equation, Eng. Anal. Bound. Elem., 32 (2008), 849–855. https://doi.org/10.1016/j.enganabound.2008.01.003 doi: 10.1016/j.enganabound.2008.01.003
    [49] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation by cubic B-spline finite elements, Medidterr. J. Math., 13 (2016), 1325–1337. https://doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x
    [50] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation, Acta Univ. Sapientiae Math., 7 (2016), 167–185. https://doi.org/10.1515/ausm-2015-0011 doi: 10.1515/ausm-2015-0011
  • This article has been cited by:

    1. Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani, Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization, 2021, 0, 2155-3297, 0, 10.3934/naco.2021001
    2. Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, 2023, 8, 2473-6988, 16291, 10.3934/math.2023834
    3. Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1631) PDF downloads(76) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog