Research article

Cyclostationary and energy detection spectrum sensing beyond 5G waveforms

  • Received: 31 January 2023 Revised: 21 March 2023 Accepted: 05 April 2023 Published: 17 April 2023
  • The cyclostationary spectrum (CS) method is one of the best at what it does because it effectively detects idle spectrum with low signal-to-noise ratios (SNR). In order to distinguish the signal in a noisy environment, gather more data that aids in a better analysis of signals, and use spectral correlation for dependable framework modelling, CS achieves optimal performance characteristics. High intricacy is seen as one of the CS's shortcomings. In this article, we suggest a novel CS algorithm for 5G waveforms. By restricting the computation of cyclostationary characteristics and the signal autocorrelation, the complexity of CS is reduced. To evaluate the performance of 5G waveforms, the Energy Detection (ED) and CS spectrum sensing algorithms based on cognitive radio (CR) are presented. The results of the study show that the suggested CS algorithm did a good job of detection and gained 2 dB compared to the conventional standards.

    Citation: Arun Kumar, J Venkatesh, Nishant Gaur, Mohammed H. Alsharif, Peerapong Uthansakul, Monthippa Uthansakul. Cyclostationary and energy detection spectrum sensing beyond 5G waveforms[J]. Electronic Research Archive, 2023, 31(6): 3400-3416. doi: 10.3934/era.2023172

    Related Papers:

  • The cyclostationary spectrum (CS) method is one of the best at what it does because it effectively detects idle spectrum with low signal-to-noise ratios (SNR). In order to distinguish the signal in a noisy environment, gather more data that aids in a better analysis of signals, and use spectral correlation for dependable framework modelling, CS achieves optimal performance characteristics. High intricacy is seen as one of the CS's shortcomings. In this article, we suggest a novel CS algorithm for 5G waveforms. By restricting the computation of cyclostationary characteristics and the signal autocorrelation, the complexity of CS is reduced. To evaluate the performance of 5G waveforms, the Energy Detection (ED) and CS spectrum sensing algorithms based on cognitive radio (CR) are presented. The results of the study show that the suggested CS algorithm did a good job of detection and gained 2 dB compared to the conventional standards.



    加载中


    [1] M. H. Alsharif, M. S. Hossain, A. Jahid, M. A. Khan, B. J. Choi, S. M. Mostafa, Milestones of wireless communication networks and technology prospect of next generation (6G), Comput. Mater. Continua, 71 (2022), 4803–4818. https://doi.org/10.32604/cmc.2022.023500 doi: 10.32604/cmc.2022.023500
    [2] A. Fascista, A. De Monte, A. Coluccia, H. Wymeersch, G. Seco-Granados, Low-complexity downlink channel estimation in mmWave multiple-input single-output systems, IEEE Wireless Commun. Lett., 11 (2021), 518–522. https://doi.org/10.1109/LWC.2021.3134826 doi: 10.1109/LWC.2021.3134826
    [3] N. Garcia, A. Fascista, A. Coluccia, H. Wymeersch, C. Aydogdu, R. Mendrzik, et al., Cramér-Rao bound analysis of radars for extended vehicular targets with known and unknown shape, IEEE Trans. Signal Process., 70 (2022), 3280–3295. https://doi.org/10.1109/TSP.2022.3183853 doi: 10.1109/TSP.2022.3183853
    [4] P. Cai, Y. Zhang, Intelligent cognitive spectrum collaboration: convergence of spectrum sensing, spectrum access, and coding technology, Intell. Converged Networks, 1 (2020), 79–98. https://doi.org/10.23919/ICN.2020.0006 doi: 10.23919/ICN.2020.0006
    [5] A. Kumara, M. Gupta, A review on activities of fifth generation mobile communication system, Alexandria Eng. J., 57 (2018), 1125–1135. https://doi.org/10.1016/j.aej.2017.01.043 doi: 10.1016/j.aej.2017.01.043
    [6] A. Ali, W. Hamouda, Advances on spectrum sensing for cognitive radio networks: theory and applications, IEEE Commun. Surv. Tutorials, 19 (2017), 1277–1304. https://doi.org/10.1109/COMST.2016.2631080 doi: 10.1109/COMST.2016.2631080
    [7] S. Li, S. Xiao, M. Zhang, X. Zhang, Power saving and improving the throughput of spectrum sharing in wideband cognitive radio networks, J. Commun. Networks, 17 (2015), 394–405. https://doi.org/10.1109/JCN.2015.000070 doi: 10.1109/JCN.2015.000070
    [8] J. Zhang, L. Liu, M. Liu, Y. Yi, Q. Yang, F. Gong, MIMO spectrum sensing for cognitive radio-based internet of things, IEEE Internet Things J., 7 (2020), 8874–8885. https://doi.org/10.1109/JIOT.2020.2997707 doi: 10.1109/JIOT.2020.2997707
    [9] L. Arienzo, D. Tarchi, Statistical modeling of spectrum sensing energy in multi-hop cognitive radio networks, IEEE Signal Process Lett., 22 (2015), 356–360. https://doi.org/10.1109/LSP.2014.2360234 doi: 10.1109/LSP.2014.2360234
    [10] A. Brito, P. Sebastião, F. J. Velez, Hybrid matched filter detection spectrum sensing, IEEE Access, 9 (2021), 165504–165516. https://doi.org/10.1109/ACCESS.2021.3134796 doi: 10.1109/ACCESS.2021.3134796
    [11] A. Bollig, A. Lavrenko, M. Arts, R. Mathar, Compressive cyclostationary spectrum sensing with a constant false alarm rate, EURASIP J. Wireless Commun. Networking, 2017 (2017), 135. https://doi.org/10.1186/s13638-017-0920-5 doi: 10.1186/s13638-017-0920-5
    [12] A. Kumar, M. K. Sharma, K. Sengar, S. Kumar, NOMA based CR for QAM-64 and QAM-256, Egypt. Inf. J., 21 (2020), 67–71. https://doi.org/10.1016/j.eij.2019.10.004 doi: 10.1016/j.eij.2019.10.004
    [13] A. Maali, H. Semlali, S. Laafar, N. Boumaaz, A. Soulmani, Effect of random sampling on spectrum sensing for cognitive radio networks, TELKOMNIKA Telecommun. Comput. Electron. Control, 19 (2021), 1137–1144. https://doi.org/10.12928/telkomnika.v19i4.20399 doi: 10.12928/telkomnika.v19i4.20399
    [14] S. Yalcin, An artificial intelligence-based spectrum sensing methodology for LoRa and cognitive radio networks, Int. J. Commun. Syst., 36 (2023) e5433. https://doi.org/10.1002/dac.5433 doi: 10.1002/dac.5433
    [15] U. Mir, L. Merghem-Boulahia, D. Gaïti, Multiagent based spectrum sharing using petri nets, in Trends in Practical Applications of Agents and Multiagent Systems, (2010), 537–546. https://doi.org/10.1007/978-3-642-12433-4_63
    [16] Z. Chen, R. C. Qiu, Cooperative spectrum sensing using Q-learning with experimental validation, in 2011 Proceedings of IEEE Southeastcon, (2011), 405–408. https://doi.org/10.1109/SECON.2011.5752975
    [17] S. Serrano, M. Scarpa, A. Maali, A. Soulmani, N. Boumaaz, Random sampling for effective spectrum sensing in cognitive radio time slotted environment, Phys. Commun., 49 (2021), 101482. https://doi.org/10.1016/j.phycom.2021.101482 doi: 10.1016/j.phycom.2021.101482
    [18] C. Spiegel, A. Viessmann, A. Burnic, C. Kocks, A. Waadt, E. Scheiber, et al., A petri nets based design of cognitive radios using distributed signal processing, Procedia Earth Planet. Sci., 1 (2009), 1474–1479. https://doi.org/10.1016/j.proeps.2009.09.227 doi: 10.1016/j.proeps.2009.09.227
    [19] D. Boukredera, K. Adel-Aissanou, Modeling and performance analysis of cognitive radio networks using stochastic timed colored petri nets, Wireless Pers. Commun., 112 (2020), 1659–1687. https://doi.org/10.1007/s11277-020-07121-8 doi: 10.1007/s11277-020-07121-8
    [20] A. Viessmann, A. Burnic, C. Spiegel, G. H. Bruck, P. Jung, Petri net based controller concept for cognitive radios in wireless access networks, J. Commun., 2 (2007), 29–38. Available from: http://www.jocm.us/uploadfile/2013/0927/20130927023542527.pdf.
    [21] M. Scarpa, S. Serrano, A full Secondary User model for Cognitive Radio in a GSM-900 scenario, in 2019 International Conference on Computing, Networking and Communications (ICNC), (2019), 344–349. https://doi.org/10.1109/ICCNC.2019.8685497
    [22] X. Zhang, Y. Ma, Y. Gao, W. Zhang, Autonomous compressive-sensing-augmented spectrum sensing, IEEE Trans. Veh. Technol., 67 (2018), 6970–6980. https://doi.org/10.1109/TVT.2018.2822776 doi: 10.1109/TVT.2018.2822776
    [23] D. M. M. Plataa, Á. G. A. Reátiga, Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold, Procedia Eng., 35 (2012), 135–143. https://doi.org/10.1016/j.proeng.2012.04.174 doi: 10.1016/j.proeng.2012.04.174
    [24] Y. Arjoune, Z. E. Mrabet, H. E. Ghazi, A. Tamtaoui, Spectrum sensing: enhanced energy detection technique based on noise measurement, in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), (2018), 828–834. https://doi.org/10.1109/CCWC.2018.8301619
    [25] K. kockaya, I. Develi, Spectrum sensing in cognitive radio networks: threshold optimization and analysis, EURASIP J. Wireless Commun. Networking, 2020 (2020), 255. https://doi.org/10.1186/s13638-020-01870-7 doi: 10.1186/s13638-020-01870-7
    [26] J. Luo, G. Zhang, C. Yan, An energy detection-based spectrum-sensing method for cognitive radio, Wireless Commun. Mobile Comput., 2022 (2022), 3933336. https://doi.org/10.1155/2022/3933336 doi: 10.1155/2022/3933336
    [27] F. Salahdine, H. E. Ghazi, N. Kaabouch, W. F. Fihri, Matched filter detection with dynamic threshold for cognitive radio networks, in 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), (2015), 1–6. https://doi.org/10.1109/WINCOM.2015.7381345
    [28] G. Alnwaimia, H. Boujemaab, Enhanced spectrum sensing using a combination of energy detector, matched filter and cyclic prefix, Digital Commun. Networks, 6 (2020), 534–541. https://doi.org/10.1016/j.dcan.2019.08.009 doi: 10.1016/j.dcan.2019.08.009
    [29] Y. Arjoune, N. Kaabouch, A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions, Sensors, 19 (2019), 126. https://doi.org/10.3390/s19010126 doi: 10.3390/s19010126
    [30] A. Kumar, P. NandhaKumar, OFDM system with cyclostationary feature detection spectrum sensing, ICT Express, 5 (2019), 21–25. https://doi.org/10.1016/j.icte.2018.01.007 doi: 10.1016/j.icte.2018.01.007
    [31] A. D. L. Lima, L. F. Q. Silveiraa, S. Xavier-de-Souzaa, Spectrum sensing with a parallel algorithm for cyclostationary feature extraction, Comput. Electr. Eng., 71 (2018), 151–161. https://doi.org/10.1016/j.compeleceng.2018.07.016 doi: 10.1016/j.compeleceng.2018.07.016
    [32] M. K. Al-Haddad, H. T. Ziboon, Cyclostationary feature detection scheme for FBMC and OFDM cognitive radio, Int. J. Intell. Eng. Syst., 13 (2020), 399–407. https://doi.org/10.22266/ijies2020.0831.35 doi: 10.22266/ijies2020.0831.35
    [33] J. Lorincz, I. Ramljak, D. Begusic, Algorithm for evaluating energy detection spectrum sensing performance of cognitive radio MIMO-OFDM systems, Sensors, 21 (2021), 6881. https://doi.org/10.3390/s21206881 doi: 10.3390/s21206881
    [34] P. Nandhakumar, A. Kumar, Analysis of OFDM system with energy detection spectrum sensing, Indian J. Sci. Technol., 9 (2016), 1–6.
    [35] K. Danesh, S. Vasuhi, An effective spectrum sensing in cognitive radio networks using improved convolution neural network by glow worm swarm algorithm, Trans. Emerging Telecommun. Technol., 32 (2021), e4328. https://doi.org/10.1002/ett.4328 doi: 10.1002/ett.4328
    [36] C. Vlădeanu, O. M. K. Al-Dulaimi, A. Marţian, A modified double-threshold spectrum sensing algorithm based on adaptive-threshold mean energy detection, in 2021 International Symposium on Signals, Circuits and Systems (ISSCS), (2021), 1–4. https://doi.org/10.1109/ISSCS52333.2021.9497419
    [37] N. A. El-Alfi, H. M. Abdel-Atty, M. A. Mohamed, Sub-Nyquist cyclostationary detection of GFDM for wideband spectrum sensing, IEEE Access, 7 (2019), 86403–86411. https://doi.org/10.1109/ACCESS.2019.2925047 doi: 10.1109/ACCESS.2019.2925047
    [38] C. B. Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, et al., Full-duplex OFDM radar with LTE and 5G NR waveforms: challenges, solutions, and measurements, IEEE Trans. Microwave Theory Tech., 67 (2019), 4042–4054. https://doi.org/10.1109/TMTT.2019.2930510 doi: 10.1109/TMTT.2019.2930510
    [39] S. A. Mousavifar, C. Leung, Energy efficient collaborative spectrum sensing based on trust management in cognitive radio networks, IEEE Trans. Wireless Commun., 14 (2014), 1927–1939. https://doi.org/10.1109/TWC.2014.2377017 doi: 10.1109/TWC.2014.2377017
    [40] A. Martian, M. J. A. Al Sammarraie, C. Vlădeanu, D. C. Popescu, Three-event energy detection with adaptive threshold for spectrum sensing in cognitive radio systems, Sensors, 20 (2020), 3614. https://doi.org/10.3390/s20133614 doi: 10.3390/s20133614
    [41] J. Wang, R. Gao, D. Ye, Z. Zhang, Blind detection of cyclostationary signals based on multi-antenna beamforming technology, IET Commun., 15 (2021), 2439–2447. https://doi.org/10.1049/cmu2.12282 doi: 10.1049/cmu2.12282
    [42] A. Bagwari, G. S. Tomar, S. Verma, Cooperative spectrum sensing based on two-stage detectors with multiple energy detectors and adaptive double threshold in cognitive radio networks, Can. J. Electr. Comput. Eng., 36 (2014), 172–180. https://doi.org/10.1109/CJECE.2014.2303519 doi: 10.1109/CJECE.2014.2303519
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1553) PDF downloads(124) Cited by(14)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog