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Abstract: The cyclostationary spectrum (CS) method is one of the best at what it does because it 
effectively detects idle spectrum with low signal-to-noise ratios (SNR). In order to distinguish the 
signal in a noisy environment, gather more data that aids in a better analysis of signals, and use spectral 
correlation for dependable framework modelling, CS achieves optimal performance characteristics. 
High intricacy is seen as one of the CS’s shortcomings. In this article, we suggest a novel CS algorithm 
for 5G waveforms. By restricting the computation of cyclostationary characteristics and the signal 
autocorrelation, the complexity of CS is reduced. To evaluate the performance of 5G waveforms, the 
Energy Detection (ED) and CS spectrum sensing algorithms based on cognitive radio (CR) are 
presented. The results of the study show that the suggested CS algorithm did a good job of detection 
and gained 2 dB compared to the conventional standards. 
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1. Introduction  

The exponential increase in wireless applications with better quality of service (QoS) in the B5G 
radio system will demand a rigorous prerequisite, apart from low latency and the ability to handle 
massive devices and enhance mobile broadband. The requirements of the different sectors will be 
different and require complex technology to accomplish them. Hence, there will be more challenges 
to deploying a B5G radio network. There are advanced methods such as m-wave, M-MIMO and 
reconfigurable intelligent systems (RIS), which can be integrated with B5G to enhance the QoS. The 
utilization of RIS in M-MIMO will perform accurate analysis of the users with low power consumption 
and high spectral efficiency, and also reduce the complexity as no A/Ds are required [1]. It is also seen 
that the channel state information will play an important role in MIMO, and it will become more 
complex for the single antenna user equipment [2]. The authors in [3] proposed a novel algorithm that 
can efficiently determine the channel state of the framework with minimal complexity. The utilization 
of the cellular framework has been tremendously increasing, but the availability of the spectrum is 
becoming more and more congested. Hence, it is important to explore the new spectrum band. The 
congestion in the spectrum is also due to the static spectrum sharing regulation of the Federal 
Communication Commission (FCC) [4]. It is observed that the spectrum is not utilized in an efficient 
manner, and more than 70% of the spectrum is wasted [5]. The spectrum remains idle in many 
applications; it is not accessed 24/7 by the users. The idle spectrum cannot be shared with other devices. 
The low spectral access of the bandwidth can be solved by using cognitive radio (CR) [6]. CR is based 
on the spectrum sensing (SS) algorithms, which can identify idle bandwidth and allocate the idle 
spectrum to other devices and subscribers. The CR detects the spectrum from primary users (Pu), also 
known as licensed users, and shares the spectrum with the secondary user (Su), also known as an 
unlicensed user [7]. The allocation of spectrum from Pu to Su should take place without any 
interference, and the quality of service (QoS) should not be compromised. In order to identify idle 
bandwidth, the Pu should be continuously monitored and analyzed [8]. In the latest decade, it has been 
seen that CR-based spectrum sensing algorithms such as energy detection (ED) [9], matched filter 
detection (MF) [10] and cyclostationary detection (CS) [11] have been comprehensively investigated. 
The primary task of the SS algorithm is to locate idle spectrum. The idle spectrum is identified by 
estimating the energy of the device and comparing it with a predefined threshold value. If the energy 
of the device is greater than or equal to the defined threshold, it indicates the availability of the 
spectrum, and vice versa [12]. In the conventional SS algorithms, the sharing of spectrum from PU to 
Su takes place in the absence of the Pu. If Pu becomes active, then the spectrum should be reallocated 
to the Pu user, and Su should also get the spectrum from any idle Pu to continue its applications. 
Spectrum sensing is the process of identifying the existence or absence of Pu in a certain frequency 
group. In GSM (Global System for Mobile Communications), spectrum sensing is a crucial aspect of 
cognitive radio technology, which enables SU to use the frequency when it is not being used by PU. 
Random sampling is one approach used for spectrum sensing in GSM. In this approach, a secondary 
user randomly samples the conventional signal and equates it with the threshold to detect the presence 
or absence of primary users. Random sampling is a simple and effective technique, but it can be 
affected by noise and fading, which can lead to false alarms or missed detections [13]. Intelligent agent 
(IA) approaches have been proposed to address the limitations of random sampling. IA-based spectrum 
sensing uses autonomous agents that can learn from the environment and adapt to changing conditions. 
The agents can gather information about the spectrum usage patterns and make decisions based on that 
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information. IA-based approaches can improve spectrum sensing performance by reducing false 
alarms and missed detections [14]. Modeling cognitive radio in GSM scenarios using Petri nets could 
involve developing a Petri net model that captures the dynamic behavior of the cognitive radio system 
as it interacts with the GSM network. This could involve exhibiting cognitive radio’s sensing and 
decision-making processes, as well as its interactions with the GSM network’s control channels and 
radio resources. Overall, cognitive radio has the ability to enhance the proficiency and reliability of 
wireless communication structures. Using Petri nets to model these systems can help researchers better 
understand the complex dynamics involved and identify opportunities for optimization and 
improvement [15]. The authors in [16] proposed a hybrid spectrum sensing technique that combines 
random sampling with a Q-learning algorithm to improve the performance of spectrum sensing in 
noisy environments. The Q-learning algorithm is used to learn the optimal sampling rate and threshold 
level for spectrum sensing. The signal was sampled using both homogeneous and random sampling, 
then it was rebuilt. The article in [17] used a synthetically generated signal to evaluate its condition in the 
GSM channel. At various SNRs, the outcomes in regards to detection curves are demonstrated. In [18], a 
Petri net-based model for cognitive radio networks is designed, which includes both the Cr and the PU. 
The model is then used to evaluate the efficiency of the Cr network in terms of throughput and delay. 
The authors in [19] designed a colored Petri net-based model for Cr with several Su. The model is used 
to evaluate the efficiency of the Cr in terms of throughput and collision probability. In [20], Petri net-
Cr is implemented to study the spectral performance of the framework. The proposed framework 
contains both the Cr and the Pu. The simulation outcomes of the work reveal that the proposed 
algorithm obtained enhanced spectral efficiency with no interference between the users. Due to the 
high adaptability of the conceptual scheme, additional frameworks are explored for various PU and 
SU functions under different circumstances. The authors in [21] projected a Petri-Net-centered 
framework to improve the efficiency of the Su functioning in GSM-900. Further, the framework also 
decreases the interference between PU and SU. In [22], the dynamic threshold detection-based ED is 
implemented to enhance the spectral efficiency of the system. In two stages, the ED algorithm, also 
known as the “double stage ED algorithm”, identifies the spectrum. The threshold is set in the first 
stage by estimating the amount of noise in the signal, and in the second stage, Ed is used to detect the 
idle spectrum. The numerical outcomes confirmed that the presented Ed performed better than the 
conventional Ed. The authors designed a novel Ed algorithm to detect idle Pu [23]. The performance 
of the detector is enhanced by evaluating the effect of noise present in the signal in different scenarios. 
It is concluded that the presented Ed performed optimally in terms of detection. The authors in [24] 
designed and investigated the efficiency of ED on fading and non-fading channels. It is noted that the 
efficiency of Ed depends on the criterion of threshold selection. The simulation outcomes reveal that 
the choice of an optimal threshold gave the system a high detection performance. The performance of 
Ed is severely affected due to the unwanted presence of noise variance in the signal. In [25], the authors 
introduced an ED algorithm where the presence of noise is nullified. The outcome of the work reveals 
that the presented Ed outperforms the conventional Ed. In [26], the authors implemented a MF based 
on dynamic threshold selection. As the characteristics of noise are random in nature, it is clear that 
dynamic threshold selection is one of the most important tasks. The outcome of the work demonstrates 
that the proposed MF algorithm outperforms the prevailing MF algorithm. The authors in [27] 
introduced a hybrid algorithm based on the combination of Ed and MF. The experimental outcomes 
reveal that the presented algorithm successfully reduces the false alarm rate, thus enhancing the 
accurate detection performance of the MF algorithm. In [28], the article presented a complete 
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description, analysis and use of the CR in cellular framework. The article also discussed the limitations 
of MF implementation in advanced radio. It is concluded that MF can play a significant role in the 
utilization of the spectrum in an advanced radio framework. In [29], the authors introduced a novel 
MF-SS algorithm for the OFDM waveform. The analysis of MF is computed by applying it to OFDM 
with and without the cyclic prefix (CP). The results show an improvement in Pd and Pfa parameters. 
The parallel technique-based CS algorithm is implemented to enhance the utilization of the white holes. 
It should be noted that the presented method outperformed existing standards by 92% [30]. In [31], the 
availability of Pu is identified by implementing a CS-SS for the FBMC and OFDM frameworks. The 
authors have considered an AWGN channel for the analysis of the projected CS-SS. When compared 
to conventional standards, the proposed algorithm obtained a gain of 2 to 3 dB. It is also noted that the 
use of pilot signals increases the complexity of the framework. In [32], it is seen that the combination 
of MIMO and OFDM frameworks enhances the throughput and spectrum access of the system. The 
simulation outcomes demonstrate enhanced detection and performance. In [33], the authors applied an 
Ed to the OFDM structure, and the different parameters such as Pd, Pfa and BER were estimated. 
When compared to conventional electric, the proposed work achieved a gain of 2 dB. In [34], the 
article presented a novel algorithm to enhance the detection performance of the Pu. The proposed 
algorithm, which is based on the genetic algorithm, improves the framework’s throughput. The article 
in [35] presented a novel ED algorithm based on mean energy estimation. The experimental work 
demonstrates a gain of 30% as compared with the conventional ED-SS method. In [36], the authors 
designed a CS-SS algorithm for the generalized frequency division multiplexing (GFDM) waveform. 
GFDM is considered an ideal candidate for 5G radio. The proposed work detects an idle Pu at a low 
SNR as compared with the existing approaches. The presented article is based on the principle of PU 
and SU initial decoding strategies [37]. It is seen that the interference is reduced and detection is 
achieved at low SNR. In [38], it is noted that an optimal selection of threshold plays a major role in 
the detection process. The article presented a dynamic threshold-based ED-SS algorithm to identify 
idle users at low SNR. Finally, the introduction of dynamic threshold in ED-SS yielded a gain of 1 dB 
to 2 dB when compared to static threshold schemes. In Table 1, we discussed the advantages and 
disadvantages of the spectrum sensing algorithms. 

The contributions of the article are given below: 
• To the best of our knowledge and available literature, the advanced SS algorithms for FBMC 

and NOMA are presented for the first time. 
• The different parameters such as BER, PD, PFA and PSD are estimated and compared with 

the multi-carrier-waveforms. It is noted that CS outperforms MF and ED. 
• We proposed novel ED and CS algorithms based on dynamic threshold detection for the 

advanced waveforms. It is seen that the spectral efficiency of NOMA is better than that of OFDM 
and FBMC. 
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Table 1. Merits and demerits of the spectrum sensing algorithms. 

S. No Techniques Remarks 
1 Conventional ED  Easy and straightforward to apply. 

Results in interference 
When PU is not present, the spectrum is allocated to SUs. 
High required SNR. 
The detection duration is small. 
Low-power, durable detectors. 
Spectrum loss 
No advance channel information is necessary. 

2 Convention CS The algorithm intricacy is high 
Results in interference 
When PU is not present, the spectrum is allocated to SUs  
Low required SNR. 
The detection duration is high. 
Intermediate robust detectors 
It results in spectrum loss 
No advance channel information is necessary. 

3 Conventional MF The algorithm intricacy is high 
Results in interference 
When PU is not present, the spectrum is allocated to SUs  
Low required SNR. 
The detection of the signal is superior than the CS but not better tha the 
ED 
Average detectors are required 
It results in spectrum loss 
No advance channel information is necessary. 

4 Proposed method The proposed algorithm outperforms the conventional algorithm with low 
intricacy. 
The interference between users is reduce by using a SIC method. 
The detected spectrum is allocated to the SU in both availability and non-
availability of PU. 
The proposed algorithms obtained a gain of 2 dB SNR as compared with 
the conventional methods. 
The signal is accurately determined based on dynamic threshold. 
The accessing of the spectrum is high. 
No advance channel state information is required. 

2. Proposed system model 

2.1. Energy Detection (ED) 

The conventional ED-SS is based on the principle of static threshold selection. The primary aim 
of the ED is to identify the spectrum of Pu, which can be allocated to the Su [39]. The Pu spectrum is 



3405 

Electronic Research Archive  Volume 31, Issue 6, 3400-3416. 

identified by estimating the predefined threshold and comparing it with the received energy signal of 
the framework [40]. The hypothesis for the estimation of the spectrum is given by: 

ℎ�: �(�) = ��(�)                                 (1) 

ℎ�: �(�) = �(�) + ��(�)                             (2) 

The Eqs (1) and (2) indicates the absence and presence of Pu. Where �(�) is the received signal, 

�(�) is the transmitted signal and ��(�) indicate the presence of noise in the signal. 
The estimation of the threshold (���) is given by: 

��� = ∑ (�[�])��
���                                (3) 

Further, the threshold for ℎ� ��� ℎ�  is evaluated with mean (µ), noise variance (��� ) and 
transmitted power signal ��, given by: 

��� = �(� ���
� , 2 ���

� ) ∶  ℎ�                          (4) 

��� = �(� (��
� + ���

� , 2 �(��
� + ���

� )�): ℎ�                 (5) 

According to Eqs (4) and (5), a signal is sometimes misrepresented as a detected signal, which is 
known as a false alarm (PFA). The Pd and Pfa are important characteristics to define the performance 
of ED, given by: 

��� = ���� (��� > ���): ℎ�                        (6) 

�� = ���� (��� > ���): ℎ�                         (7) 

Further, the Eqs (6) and (7) can be express as: 

��� = �(��������
�

�����
�

)                               (8) 

�� = �( �(��
�����

� )

���(��
�����

� )�
)                             (9) 

Where Q represent a gaussian function. Considering Eq (8), the threshold is given by: 

��� = ���
� (�

�
�����√2� + �)                          (10) 

The structure of ED is given in Figure 1. 
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Figure 1. Structure of ED. 

2.2. Cyclostationary (CS) 

It is one of the most significant spectrum sensing algorithms that can be considered for advanced 
radio. The identification of spectrum at low SNR with independence from noise makes it a promising 
and effective algorithm. It exploits the periodicity properties of the signal by estimating the mean and 
autocorrelation of the signal. Another substantial characteristic of CS is the identification of Pu without 
a significant interference between Pu and Su. In recent years, the CS algorithm has been applied to 
detect the spectrum in various conditions [41]. The CS signals are estimated by utilizing the cyclic 
autocorrelation and spectrum correlation density functions. The first step in CS is to transform the 
signal into second-order CS by utilizing several operations such as sampling, filtering and encoding, 
defined as [42]: 

�{�(+)} = �{�(� + ��)}                             (11) 

��(�, �) = ��(� + ��, �)                              (12) 

From Eq (11), it is noted the signal is periodic in nature with fundamental period ��. The Eq (12) 
can be expressed with the cyclic frequency (β): 

��(�, �) = ∑ ��
�(� �) exp(�2���)                         (13) 

The Fourier coefficient of Eq (13) can be written as: 

��
�(�) ≜ lim

�→�

�
� ∫ ��(�, �)

�
�

��
�

�) exp(−�2���)  ��                   (14) 

The ��
�(�) is represented as cyclic auto-corelation function at: 

� =  {�/��}                               (15) 

The spectral correlation density function of Eq (15) is estimated as: 

��
�(�) ≜ lim

�→�
∫ ��

�(� − �)�
�� exp(−�2���)       (16) 
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3. Simulation results 

We evaluated the performance of the CS and ED spectrum sensing algorithms for 5G and beyond 
waveforms in the proposed article. The computer simulation is used to estimate the performance of the 
CR algorithms. The parameters used in the simulation are listed in Table 2. 

Table 2. Parameter used in computer simulation. 

S. No Parameters 
1 Waveforms: OFDM, FBMC and NOMA 
2 Spectrum Sensing Algorithms: ED, CS and MF 
3 Channel: Rician 
4 256-QAM 
5 Samples: 500 

The accurate detection capabilities of the cognitive radio are analyzed for the NOMA waveform 
shown in Figure 2. It is seen that the CS-SS method achieved a detection at -4.8 dB as compared with 
the 5 and 6.7 dB detection obtained by the MF and ED algorithms, respectively. So, we can say that 
the CS method is better than the MF and ED methods. This makes the NOMA a good 5G spectral 
access waveform. 

 

Figure 2. NOMA detection. 

In Figure 3, the detection of signal characteristics is analyzed for the OFDM waveform. The CS 
achieved a detection at an SNR of 5.1 dB, compared to the MF’s 6.3 dB and the ED’s 10.1 dB. Hence, 
it is concluded that the CS obtained a gain of 1.2 and 5 dB as compared with the MF and ED. 
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Figure 3. OFDM detection. 

The detection performance of the SS algorithm for FBMC is given in Figure 4. The CS algorithm 
obtained a detection at an SNR of 4.1 dB as compared with 5.2 dB (MF) and 10.1 dB (ED). Hence, 
CS outperforms the MF and ED by the gains of 1.1 and 6 dB, respectively, as compared with the MF 
and ED. 

 

Figure 4. FBMC detection. 

In Figures 2–4, it is seen that the CS obtained the best performance for OFDM, FBMC and NOMA 
waveforms. The CS also offers effective performance in noisy environments as compared with the 
existing SS algorithms. The primary objective of the CR is to detect the presence of an idle spectrum 
in an efficient manner. However, the noise is sometimes detected as a signal, which is referred to as 
PFA. In this work, we have evaluated the performance of SS algorithms under false alarm conditions. 
The performance of false alarms for the OFDM waveform is given in Figure 5. The pd and Pfa are 
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estimated by determining the presence or absence of the signal for different threshold values. It is seen 
that ED misrepresents noise as the signal at an early stage (pfa = 0.4 and Pd = 1). In the same scenario, 
however, MF and CS detected at pfa = 0.2 and 0.1, respectively. Hence, it is concluded that CS gave a 
robust performance as compared with the prevailing standard. 

 

Figure 5. OFDM-PFA. 

In Figure 6, it is seen that the CS is detecting the idle spectrum at a higher Pfa as compared with 
the MF and ED for the FBMC waveform. For the MF, ED and CS, the Pd is 1 for different values of 
Pfa. However, the MF and CS show a similar characteristic, which is better than the ED method. Hence, 
it is concluded that the detection of signal performance is gracefully degraded for the ED scheme. 

 

Figure 6. FBMC PFA. 

The characteristics of the false alarm for the NOMA are given in Figure 7. It is seen that the noise 
is easily misrepresented as a signal for the ED method. The CS and MF performances, on the other 
hand, are stable and efficient. It is concluded that the probability of a signal being missed in CS and 
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MF is low when compared to current standards. It is noted that when the Pd is 1, the signal is detected, 
and when the Pfa is 1, the noise is misrepresented as a signal. Hence, it is noted that the CS and MF 
for NOMA and FBMC gave an approximately similar detection performance for different PFAs, 
outperforming the OFDM system. 

 

Figure 7. NOMA PFA. 

It is important to analyze the throughput of the system for spectrum sensing techniques. The BER 
curves for the NOMA are given in Figure 8. The BER of 10-3 is obtained at SNRs of 2.8 dB for CS, 3.3 
dB for MF and 6 dB for ED. It is seen that the CS algorithm enhances the throughput of the system and 
obtains a gain of 0.5 and 3.2 dB for a BER of 10-3 as compared with the MF and ED. 

 

Figure 8. BER of NOMA. 

The BER curves for the FBMC are evaluated in Figure 9. The BER of 10-3 is obtained at an SNR 
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of 3.8 dB for CS, 4.2 dB for MF and 7 dB for ED. CS performed admirably, achieving gains of 0.4 
and 3.2 decibels. Hence, it is concluded that CS outperforms the MF and ED methods. 

 

Figure 9. BER of FBMC. 

The BER of OFDM is given in Figure 10. It is noted that CS, MF and ED obtained a BER of 10-3, 
respectively. At SNRs of 5, 6.1 and 9 dB. Hence, it is noted that the CS outperforms the prevailing 
standard by obtaining a gain of 1.1 and 4 dB. 

 

Figure 10. BER of OFDM. 

The BER characteristics of OFDM, FBMC and NOMA indicate that the performance of the CS 
is better than the MF and ED algorithms. It is also noted that the performance of MF is very close to 
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that of CS, obtaining a gain approximately equivalent to CS in most of the cases. It is also concluded 
that the NOMA is most compatible with the SS algorithms as compared with the FBMC and OFDM. 

In Figure 11, we have analyzed the performance of PSD for the OFDM, FBMC and NOMA. It is 
seen that the bandwidth leakage of OFDM is -100, FBMC is -79 and NOMA is -150. As a result, when 
compared to the FMBC and OFDM waveforms, NOMA obtained an efficient spectral access. 

 

Figure 11. PSD performance. 

In this part, the computational complexity of the sensing techniques is given in Figure 12. The 
complexity is the quantity of operations—like addition and multiplication—necessary to get the best 
possible detection. The proposed algorithm, ED, MF and CS complexity in the work provided is given 
by ��, 2��, 2��(� + 1 + �) and 2��(2� + �� − 1) respectively. 

 

Figure 12. Complexity. 

4. Conclusions 

In this work, we presented a CS algorithm for waveforms used in 5G and beyond, including 
NOMA, FBMC and OFDM. By applying CS, MF and ED algorithms to the 5G waveforms, metrics 
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including Pd, Pfa, BER and PSD are assessed and comprehensively analyzed. The static results from 
the Matlab-2016 simulation on the Rayleigh channel are shown to assess how well the Cr algorithms 
perform for various multi-carrier waveforms. The proposed CS, MF and ED obtained a detection at an 
SNR of 5.1, 6.3 and 10.1 dB respectively. It is noted that the CS achieved a gain of 1.2 and 5 dB as 
compared with the MF and ED. Further, it is seen that the intricacy of the proposed algorithm is lower 
than that of the ED and MF. The proposed CS had good detection and throughput performance even 
at low SNR. It is noted that the proposed CS outperforms the conventional spectrum sensing algorithms. 
Further, in the future, the proposed algorithm can be used for spectrum sensing in channels with non-
flat characteristics. 
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