Perspective Special Issues

A survey on temporal network dynamics with incomplete data


  • Received: 29 May 2022 Revised: 21 July 2022 Accepted: 01 August 2022 Published: 23 August 2022
  • With the development of complex network theory, many phenomena on complex networks, such as infectious disease transmission, information spreading and transportation management, can be explained by temporal network dynamics, to reveal the evolution of the real world. Due to the failure of equipment for collecting data, human subjectivity, and false decisions made by machines when the high accuracy is required, data from temporal networks is usually incomplete, which makes the samples unrepresentative and the model analysis more challenging. This survey concentrates on the pre-processing strategies of incomplete data and overviews two categories of methods on data imputation and prediction, respectively. According to whether each layer in temporal networks has the coupling process, this survey overviews the dynamic modeling approaches in terms of both a single process and coupling processes on complex temporal networks. Moreover, for complex temporal networks with incomplete data, this survey summarizes various characteristic analysis methods, which concentrate on critical nodes identification, network reconstruction, network recoverity, and criticality. Finally, some future directions are discussed for temporal networks dynamics with incomplete data.

    Citation: Xing Wu, Shuai Mao, Luolin Xiong, Yang Tang. A survey on temporal network dynamics with incomplete data[J]. Electronic Research Archive, 2022, 30(10): 3786-3810. doi: 10.3934/era.2022193

    Related Papers:

  • With the development of complex network theory, many phenomena on complex networks, such as infectious disease transmission, information spreading and transportation management, can be explained by temporal network dynamics, to reveal the evolution of the real world. Due to the failure of equipment for collecting data, human subjectivity, and false decisions made by machines when the high accuracy is required, data from temporal networks is usually incomplete, which makes the samples unrepresentative and the model analysis more challenging. This survey concentrates on the pre-processing strategies of incomplete data and overviews two categories of methods on data imputation and prediction, respectively. According to whether each layer in temporal networks has the coupling process, this survey overviews the dynamic modeling approaches in terms of both a single process and coupling processes on complex temporal networks. Moreover, for complex temporal networks with incomplete data, this survey summarizes various characteristic analysis methods, which concentrate on critical nodes identification, network reconstruction, network recoverity, and criticality. Finally, some future directions are discussed for temporal networks dynamics with incomplete data.



    加载中


    [1] Z. Liu, Y. Yang, W. Huang, Z. Tang, N. Li, F. Wu, How do your neighbors disclose your information: social-aware time series imputation, in The World Wide Web Conference, (2019), 1164–1174. https://doi.org/10.1145/3308558.3313714
    [2] D. Xu, C. Wei, P. Peng, Q. Xuan, H. Guo, Ge-gan: a novel deep learning framework for road traffic state estimation, Transp. Res. Part C: Emerging Technol., 117 (2020), 102635. https://doi.org/10.1016/j.trc.2020.102635 doi: 10.1016/j.trc.2020.102635
    [3] S. Tikka, A. Hyttinen, J. Karvanen, Causal effect identification from multiple incomplete data sources: a general search-based approach, J. Stat. Software, 99 (2021), 1–40. https://doi.org/10.18637/jss.v099.i05 doi: 10.18637/jss.v099.i05
    [4] C. Hu, H. He, H. Jiang, Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: a direct error method, Automatica, 112 (2020), 108675. https://doi.org/10.1016/j.automatica.2019.108675 doi: 10.1016/j.automatica.2019.108675
    [5] Y. Jia, H. Wu, Global synchronization in finite time for fractional-order coupling complex dynamical networks with discontinuous dynamic nodes, Neurocomputing, 358 (2019), 20–32. https://doi.org/10.1016/j.neucom.2019.05.036 doi: 10.1016/j.neucom.2019.05.036
    [6] S. Hasan, S. V. Ukkusuri, Reconstructing activity location sequences from incomplete check-in data: a semi-markov continuous-time bayesian network model, IEEE Trans. Intell. Transp. Syst., 19 (2017), 687–698. https://doi.org/10.1109/TITS.2017.2700481 doi: 10.1109/TITS.2017.2700481
    [7] D. J. Korchinski, J. G. Orlandi, S. W. Son, J. Davidsen, Criticality in spreading processes without timescale separation and the critical brain hypothesis, Phys. Rev. X, 11 (2021), 021059. https://doi.org/10.1103/PhysRevX.11.021059 doi: 10.1103/PhysRevX.11.021059
    [8] P. Holme, J. Saramäki, Temporal networks, Phys. Rep., 519 (2012), 97–125. https://doi.org/10.1016/j.physrep.2012.03.001
    [9] Y. Sun, S. Leng, Y. Lai, C. Grebogi, W. Lin, Closed-loop control of complex networks: a trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301. https://doi.org/10.1103/PhysRevLett.119.198301 doi: 10.1103/PhysRevLett.119.198301
    [10] Y. Zhang, X. Li, A. V. Vasilakos, Spectral analysis of epidemic thresholds of temporal networks, IEEE Trans. Cybern., 50 (2020), 1965–1977. https://doi.org/10.1109/TCYB.2017.2743003 doi: 10.1109/TCYB.2017.2743003
    [11] J. Hou, H. Ma, D. He, J. Sun, Q. Nie, W. Lin, Harvesting random embedding for high-frequency change-point detection in temporal complex systems, Natl. Sci. Rev., 9 (2022), 228. https://doi.org/10.1093/nsr/nwab228 doi: 10.1093/nsr/nwab228
    [12] X. Gao, F. Shi, D. Shen, M. Liu, Task-induced pyramid and attention gan for multimodal brain image imputation and classification in alzheimers disease, IEEE J. Biomed. Health. Inf., 26 (2022), 36–43. https://doi.org/10.1109/JBHI.2021.3097721 doi: 10.1109/JBHI.2021.3097721
    [13] V. Indu, S. M. Thampi, A nature-inspired approach based on forest fire model for modeling rumor propagation in social networks, J. Network Comput. Appl., 125 (2019), 28–41. https://doi.org/10.1016/j.jnca.2018.10.003 doi: 10.1016/j.jnca.2018.10.003
    [14] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, et al., Multiple kernel k-means with incomplete kernels, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 1191–1204. https://doi.org/10.1109/TPAMI.2019.2892416 doi: 10.1109/TPAMI.2019.2892416
    [15] C. Garcia, D. Leite, I. Škrjanc, Incremental missing-data imputation for evolving fuzzy granular prediction, IEEE Trans. Fuzzy Syst., 28 (2020), 2348–2362. https://doi.org/10.1109/TFUZZ.2019.2935688 doi: 10.1109/TFUZZ.2019.2935688
    [16] J. Venugopalan, N. Chanani, K. Maher, M. D. Wang, Novel data imputation for multiple types of missing data in intensive care units, IEEE J. Biomed. Health. Inf., 23 (2019), 1243–1250. https://doi.org/10.1109/JBHI.2018.2883606 doi: 10.1109/JBHI.2018.2883606
    [17] Y. Tian, K. Zhang, J. Li, X. Lin, B. Yang, Lstm-based traffic flow prediction with missing data, Neurocomputing, 318 (2018), 297–305. https://doi.org/10.1016/j.neucom.2018.08.067 doi: 10.1016/j.neucom.2018.08.067
    [18] Z. Cui, R. Ke, Z. Pu, Y. Wang, Stacked bidirectional and unidirectional lstm recurrent neural network for forecasting network-wide traffic state with missing values, Transp. Res. Part C: Emerging Technol., 118 (2020), 102674. https://doi.org/10.1016/j.trc.2020.102674 doi: 10.1016/j.trc.2020.102674
    [19] Z. Peng, H. Liu, Y. Jia, J. Hou, Adaptive attribute and structure subspace clustering network, IEEE Trans. Image Process., 31 (2022), 3430–3439. https://doi.org/10.1109/TIP.2022.3171421 doi: 10.1109/TIP.2022.3171421
    [20] K. Michalak, Low-dimensional euclidean embedding for visualization of search spaces in combinatorial optimization, IEEE Trans. Evol. Comput., 23 (2019), 232–246. https://doi.org/10.1109/TEVC.2018.2846636 doi: 10.1109/TEVC.2018.2846636
    [21] R. Tripathi, K. Rajawat, Adaptive network latency prediction from noisy measurements, IEEE Trans. Netw. Serv. Manage., 18 (2021), 807–821. https://doi.org/10.1109/TNSM.2021.3051736 doi: 10.1109/TNSM.2021.3051736
    [22] X. Zou, K. Li, C. Chen, Multilevel attention based u-shape graph neural network for point clouds learning, IEEE Trans. Ind. Inf., 18 (2020), 448–456. https://doi.org/10.1109/TII.2020.3046627 doi: 10.1109/TII.2020.3046627
    [23] S. Wang, G. Mao, Missing data estimation for traffic volume by searching an optimum closed cut in urban networks, IEEE Trans. Intell. Transp. Syst., 20 (2019), 75–86. https://doi.org/10.1109/TITS.2018.2801808 doi: 10.1109/TITS.2018.2801808
    [24] L. Zhou, J. Zheng, Z. Ge, Z. Song, S. Shan, Multimode process monitoring based on switching autoregressive dynamic latent variable model, IEEE Trans. Ind. Electron., 65 (2018), 8184–8194. https://doi.org/10.1109/TIE.2018.2803727 doi: 10.1109/TIE.2018.2803727
    [25] X. Hu, H. Zhang, D. Ma, R. Wang, A tngan-based leak detection method for pipeline network considering incomplete sensor data, IEEE Trans. Instrum. Meas., 70 (2021), 1–10. https://doi.org/10.1109/TIM.2020.3045843 doi: 10.1109/TIM.2020.3045843
    [26] L. Xu, X. Zeng, W. Li, L. Bai, Idhashgan: deep hashing with generative adversarial nets for incomplete data retrieval, IEEE Trans. Multimedia, 24 (2022), 534–545. https://doi.org/10.1109/TMM.2021.3054503 doi: 10.1109/TMM.2021.3054503
    [27] T. Gao, G. Yan, Autonomous inference of complex network dynamics from incomplete and noisy data, Nat. Comput. Sci., 2 (2022), 160–168. https://doi.org/10.1038/s43588-022-00217-0 doi: 10.1038/s43588-022-00217-0
    [28] Z. Dzunic, J. G. Chen, H. Mobahi, O. Büyüköztürk, J. W. Fisher III, A bayesian state-space approach for damage detection and classification, Dyn. Civ. Struct., 2 (2015), 171–183. https://doi.org/10.1007/978-3-319-15248-6_18 doi: 10.1007/978-3-319-15248-6_18
    [29] D. Westreich, J. K. Edwards, S. R. Cole, R. W. Platt, S. L. Mumford, E. F. Schisterman, Imputation approaches for potential outcomes in causal inference, Int. J. Epidemiol., 44 (2015), 1731–1737. https://doi.org/10.1093/ije/dyv135 doi: 10.1093/ije/dyv135
    [30] Q. Zhu, K. Hou, Z. Chen, Z. Gao, Y. Xu, Y. He, Novel virtual sample generation using conditional gan for developing soft sensor with small data, Eng. Appl. Artif. Intell., 106 (2021), 104497. https://doi.org/10.1016/j.engappai.2021.104497 doi: 10.1016/j.engappai.2021.104497
    [31] F. Zhou, L. Li, K. Zhang, G. Trajcevski, Urban flow prediction with spatial–temporal neural odes, Transp. Res. Part C: Emerging Technol., 124 (2021), 102912. https://doi.org/10.1016/j.trc.2020.102912 doi: 10.1016/j.trc.2020.102912
    [32] A. Rahman, V. Srikumar, A. D. Smith, Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks, Appl. Energy, 212 (2018), 372–385. https://doi.org/10.1016/j.apenergy.2017.12.051 doi: 10.1016/j.apenergy.2017.12.051
    [33] J. Yang, Z. Peng, L. Lin, Real-time spatiotemporal prediction and imputation of traffic status based on lstm and graph laplacian regularized matrix factorization, Transp. Res. Part C: Emerging Technol., 129 (2021), 103228. https://doi.org/10.1016/j.trc.2021.103228 doi: 10.1016/j.trc.2021.103228
    [34] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [35] P. B. Weerakody, K. W. Wong, G. Wang, W. Ela, A review of irregular time series data handling with gated recurrent neural networks, Neurocomputing, 441 (2021), 161–178. https://doi.org/10.1016/j.neucom.2021.02.046 doi: 10.1016/j.neucom.2021.02.046
    [36] H. F. Yu, N. Rao, I. S. Dhillon, Temporal regularized matrix factorization for high-dimensional time series prediction, in 30th Conference on Neural Information Processing System, 2016. Available from: https://proceedings.neurips.cc/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf.
    [37] X. Liu, M. Li, C. Tang, J. Xia, J. Xiong, L. Liu, et al., Efficient and effective regularized incomplete multi-view clustering, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2020), 2634–2646. https://doi.org/10.1109/TPAMI.2020.2974828 doi: 10.1109/TPAMI.2020.2974828
    [38] C. A. Mancuso, J. L. Canfield, D. Singla, A. Krishnan, A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes, Nucleic Acids Res., 48 (2020), e125. https://doi.org/10.1093/nar/gkaa881 doi: 10.1093/nar/gkaa881
    [39] H. J. Gunn, P. Hayati Rezvan, M. I. Fernández, W. S. Comulada, How to apply variable selection machine learning algorithms with multiply imputed data: a missing discussion, Psychol. Methods, 2022. https://doi.org/10.1037/met0000478
    [40] J. Zhao, L. Chen, W. Pedrycz, W. Wang, A novel semi-supervised sparse bayesian regression based on variational inference for industrial datasets with incomplete outputs, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 4773–4786. https://doi.org/10.1109/TSMC.2018.2864752 doi: 10.1109/TSMC.2018.2864752
    [41] M. Benjumeda, S. Luengo-Sanchez, P. Larrañaga, C. Bielza, Tractable learning of bayesian networks from partially observed data, Pattern Recognit., 91 (2019), 190–199. https://doi.org/10.1016/j.patcog.2019.02.025 doi: 10.1016/j.patcog.2019.02.025
    [42] C. Ye, H. Wang, W. Lu, J. Li, Effective bayesian-network-based missing value imputation enhanced by crowdsourcing, Knowledge-Based Syst., 190 (2020), 105199. https://doi.org/10.1016/j.knosys.2019.105199 doi: 10.1016/j.knosys.2019.105199
    [43] K. Ray, A. van der Vaart, Semiparametric bayesian causal inference, Ann.Stat., 48 (2020), 2999–3020. https://doi.org/10.1214/19-AOS1919 doi: 10.1214/19-AOS1919
    [44] H. Nguyen, E. Gouno, Bayesian inference for common cause failure rate based on causal inference with missing data, Reliab. Eng. Syst. Saf., 197 (2020), 106789. https://doi.org/10.1016/j.ress.2019.106789 doi: 10.1016/j.ress.2019.106789
    [45] S. Athey, M. Bayati, N. Doudchenko, G. Imbens, K. Khosravi, Matrix completion methods for causal panel data models, J. Am. Stat. Assoc., 116 (2021), 1716–1730. https://doi.org/10.1080/01621459.2021.1891924 doi: 10.1080/01621459.2021.1891924
    [46] J. G. Richens, C. M. Lee, S. Johri, Improving the accuracy of medical diagnosis with causal machine learning, Nat. Commun., 11 (2020), 3923. https://doi.org/10.1038/s41467-020-17419-7 doi: 10.1038/s41467-020-17419-7
    [47] S. Leng, H. Ma, J. Kurths, Y. Lai, W. Lin, K. Aihara, et al., Partial cross mapping eliminates indirect causal influences, Nat. Commun., 11 (2020), 2632. https://doi.org/10.1038/s41467-020-16238-0 doi: 10.1038/s41467-020-16238-0
    [48] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, et al., Toward causal representation learning, Proc. IEEE, 109 (2021), 612–634. https://doi.org/10.1109/JPROC.2021.3058954 doi: 10.1109/JPROC.2021.3058954
    [49] C. Zhang, J. Wang, G. G. Yen, C. Zhao, Q. Sun, Y. Tang, et al., When autonomous systems meet accuracy and transferability through ai: a survey, Patterns, 1 (2020), 100050. https://doi.org/10.1016/j.patter.2020.100050 doi: 10.1016/j.patter.2020.100050
    [50] R. T. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural ordinary differential equations, in 32nd Conference on Neural Information Processing Systems, 2018. Available from: https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.
    [51] C. Wang, Y. C. Eldar, Y. Lu, Subspace estimation from incomplete observations: a high-dimensional analysis, IEEE J. Sel. Top. Signal Process., 12 (2018), 1240–1252. https://doi.org/10.1109/JSTSP.2018.2877405 doi: 10.1109/JSTSP.2018.2877405
    [52] C. Yildiz, M. Heinonen, H. Lahdesmaki, Ode(2)vae: deep generative second order odes with bayesian neural networks, in 33rd Conference on Neural Information Processing System, 2019. Available from: https://proceedings.neurips.cc/paper/2019/file/99a401435dcb65c4008d3ad22c8cdad0-Paper.pdf.
    [53] H. Turabieh, A. A. Salem, N. Abu-El-Rub, Dynamic l-rnn recovery of missing data in iomt applications, Future Gener. Comput. Syst., 89 (2018), 575–583. https://doi.org/10.1016/j.future.2018.07.006 doi: 10.1016/j.future.2018.07.006
    [54] I. Izonin, R. Tkachenko, V. Verhun, K. Zub, An approach towards missing data management using improved grnn-sgtm ensemble method, Eng. Sci. Technol. Int. J., 24 (2021), 749–759. https://doi.org/10.1016/j.jestch.2020.10.005 doi: 10.1016/j.jestch.2020.10.005
    [55] J. Zhang, P. Yin, Multivariate time series missing data imputation using recurrent denoising autoencoder, in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2019), 760–764. https://doi.org/10.1109/BIBM47256.2019.8982996
    [56] M. De Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems, Phys. Rev. X, 5 (2015), 011027. https://doi.org/10.1103/PhysRevX.5.011027 doi: 10.1103/PhysRevX.5.011027
    [57] S. Gupta, A. K. Sahoo, U. K. Sahoo, Wireless sensor network-based distributed approach to identify spatio-temporal volterra model for industrial distributed parameter systems, IEEE Trans. Ind. Inf., 16 (2020), 7671–7681. https://doi.org/10.1109/TII.2020.3004159 doi: 10.1109/TII.2020.3004159
    [58] T. Hiraoka, N. Masuda, A. Li, H. H. Jo, Modeling temporal networks with bursty activity patterns of nodes and links, Phys. Rev. Res., 2 (2020), 023073. https://doi.org/10.1103/PhysRevResearch.2.023073 doi: 10.1103/PhysRevResearch.2.023073
    [59] J. Zhao, H. He, X. Zhao, J. Lin, Modeling and simulation of microblog-based public health emergency-associated public opinion communication, Inf. Process. Manage., 59 (2022), 102846. https://doi.org/10.1016/j.ipm.2021.102846 doi: 10.1016/j.ipm.2021.102846
    [60] F. Alesiani, L. Moreira-Matias, M. Faizrahnemoon, On learning from inaccurate and incomplete traffic flow data, IEEE Trans. Intell. Transp. Syst., 19 (2018), 3698–3708. https://doi.org/10.1109/TITS.2018.2857622 doi: 10.1109/TITS.2018.2857622
    [61] Y. Jiang, A. K. Srivastava, Data-driven event diagnosis in transmission systems with incomplete and conflicting alarms given sensor malfunctions, IEEE Trans. Power Delivery, 35 (2020), 214–225. https://doi.org/10.1109/TPWRD.2019.2947671 doi: 10.1109/TPWRD.2019.2947671
    [62] G. Mei, X. Wu, Y. Wang, M. Hu, J. A. Lu, G. Chen, Compressive-sensing-based structure identification for multilayer networks, IEEE Trans. Cybern., 48 (2018), 754–764. https://doi.org/10.1109/TCYB.2017.2655511 doi: 10.1109/TCYB.2017.2655511
    [63] S. Manfredi, E. Di Tucci, V. Latora, Mobility and congestion in dynamical multilayer networks with finite storage capacity, Phys. Rev. Lett., 120 (2018), 068301. https://doi.org/10.1103/PhysRevLett.120.068301 doi: 10.1103/PhysRevLett.120.068301
    [64] L. Qiu, S. Liu, C-siw rumor propagation model with variable propagation rate and perception mechanism in social networks, Discrete Dyn. Nat. Soc., 2020 (2020), 5712968. https://doi.org/10.1155/2020/5712968 doi: 10.1155/2020/5712968
    [65] M. Liang, J. Du, C. Yang, Z. Xue, H. Li, F. Kou, et al., Cross-media semantic correlation learning based on deep hash network and semantic expansion for social network cross-media search, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3634–3648. https://doi.org/10.1109/TNNLS.2019.2945567 doi: 10.1109/TNNLS.2019.2945567
    [66] H. Sun, D. Saad, A. Y. Lokhov, Competition, collaboration, and optimization in multiple interacting spreading processes, Phys. Rev. X, 11 (2021), 011048. https://doi.org/10.1103/PhysRevX.11.011048 doi: 10.1103/PhysRevX.11.011048
    [67] X. Zhan, C. Liu, G. Zhou, Z. Zhang, G. Sun, J. J. Zhu, et al., Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl. Math. Comput., 332 (2018), 437–448. https://doi.org/10.1016/j.amc.2018.03.050 doi: 10.1016/j.amc.2018.03.050
    [68] E. J. Müller, B. R. Munn, J. M. Shine, Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states, Nat. Commun., 2020. https://doi.org/10.1101/2020.06.09.141416
    [69] Y. Wang, Q. Lu, X. Cao, X. Zhou, V. Latora, L. C. Tong, et al., Travel time analysis in the chinese coupled aviation and high-speed rail network, Chaos, Solitons Fractals, 139 (2020), 109973. https://doi.org/10.1016/j.chaos.2020.109973 doi: 10.1016/j.chaos.2020.109973
    [70] W. Lin, H. Ma, Synchronization between adaptively coupled systems with discrete and distributed time-delays, IEEE Trans. Autom. Control, 55 (2010), 819–830. https://doi.org/10.1109/TAC.2010.2041993 doi: 10.1109/TAC.2010.2041993
    [71] M. De Domenico, C. Granell, M. A. Porter, A. Arenas, The physics of spreading processes in multilayer networks, Nat. Phys., 12 (2016), 901–906. https://doi.org/10.1038/nphys3865 doi: 10.1038/nphys3865
    [72] Z. Wang, M. A. Andrews, Z. X. Wu, L. Wang, C. T. Bauch, Coupled disease–behavior dynamics on complex networks: a review, Phys. Life Rev., 15 (2015), 1–29. https://doi.org/10.1016/j.plrev.2015.07.006 doi: 10.1016/j.plrev.2015.07.006
    [73] K. Chen, W. He, Q. Han, M. Xue, Y. Tang, Leader selection in networks under switching topologies with antagonistic interactions, Automatica, 142 (2022), 110334. https://doi.org/10.1016/j.automatica.2022.110334 doi: 10.1016/j.automatica.2022.110334
    [74] R. Sardinha, A. Paes, G. Zaverucha, Revising the structure of bayesian network classifiers in the presence of missing data, Inf. Sci., 439 (2018), 108–124. https://doi.org/10.1016/j.ins.2018.02.011 doi: 10.1016/j.ins.2018.02.011
    [75] Z. Z. Alp, Ş. G. Öğüdücü, Influence factorization for identifying authorities in twitter, Knowledge-Based Syst., 163 (2019), 944–954. https://doi.org/10.1016/j.knosys.2018.10.020 doi: 10.1016/j.knosys.2018.10.020
    [76] A. Namtirtha, A. Dutta, B. Dutta, Weighted kshell degree neighborhood: a new method for identifying the influential spreaders from a variety of complex network connectivity structures, Expert Syst. Appl., 139 (2020), 112859. https://doi.org/10.1016/j.eswa.2019.112859 doi: 10.1016/j.eswa.2019.112859
    [77] A. Namtirtha, A. Dutta, B. Dutta, A. Sundararajan, Y. Simmhan, Best influential spreaders identification using network global structural properties, Sci. Rep., 11 (2021), 2254. https://doi.org/10.1038/s41598-021-81614-9 doi: 10.1038/s41598-021-81614-9
    [78] M. Xu, R. Li, F. Li, Phase identification with incomplete data, IEEE Trans. Smart Grid, 9 (2018), 2777–2785. https://doi.org/10.1109/TSG.2016.2619264 doi: 10.1109/TSG.2016.2619264
    [79] X. Li, X. Li, Reconstruction of stochastic temporal networks through diffusive arrival times, Nat. Commun., 8 (2017), 15729. https://doi.org/10.1038/ncomms15729 doi: 10.1038/ncomms15729
    [80] W. Cheng, Y. Wang, H. Li, Y. Duan, Learned full-sampling reconstruction from incomplete data, IEEE Trans. Comput. Imaging, 6 (2020), 945–957. https://doi.org/10.1109/TCI.2020.2996751 doi: 10.1109/TCI.2020.2996751
    [81] J. Fu, J. Dong, F. Zhao, A deep learning reconstruction framework for differential phase-contrast computed tomography with incomplete data, IEEE Trans. Image Process., 29 (2020), 2190–2202. https://doi.org/10.1109/TIP.2019.2947790 doi: 10.1109/TIP.2019.2947790
    [82] Y. Tang, C. Zhao, J. Wang, C. Zhang, Q. Sun, W. Zheng, et al., An overview of perception and decision-making in autonomous systems in the era of learning: a survey, preprint, arXiv: 2001.02319.
    [83] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [84] Y. Tang, D. Zhang, P. Shi, W. Zhang, F. Qian, Event-based formation control for nonlinear multiagent systems under dos attacks, IEEE Trans. Autom. Control, 66 (2021), 452–459. https://doi.org/10.1109/TAC.2020.2979936 doi: 10.1109/TAC.2020.2979936
    [85] T. Yabe, P. S. C. Rao, S. V. Ukkusuri, S. L. Cutter, Toward data-driven, dynamical complex systems approaches to disaster resilience, PNAS, 119 (2022), e2111997119. https://doi.org/10.1073/pnas.2111997119 doi: 10.1073/pnas.2111997119
    [86] M. M. Danziger, A. L. Barabási, Recovery coupling in multilayer networks, Nat. Commun., 13 (2022), 955. https://doi.org/10.1038/s41467-022-28379-5 doi: 10.1038/s41467-022-28379-5
    [87] H. Sanhedrai, J. Gao, A. Bashan, M. Schwartz, S. Havlin, B. Barzel, Reviving a failed network through microscopic interventions, Nat. Phys., 18 (2022), 338–349. https://doi.org/10.1038/s41567-021-01474-y doi: 10.1038/s41567-021-01474-y
    [88] I. Izonin, R. Tkachenko, N. Kryvinska, K. Zub, O. Mishchuk, T. Lisovych, Recovery of incomplete iot sensed data using high-performance extended-input neural-like structure, Procedia Comput. Sci., 160 (2019), 521–526. https://doi.org/10.1016/j.procs.2019.11.054 doi: 10.1016/j.procs.2019.11.054
    [89] X. Feng, H. Zhang, C. Wang, H. Zheng, Traffic data recovery from corrupted and incomplete observations via spatial-temporal trpca, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–14. https://doi.org/10.1109/TITS.2022.3151925 doi: 10.1109/TITS.2022.3151925
    [90] R. Wu, L. Jiang, Recovering dynamic networks in big static datasets, Phys. Rep., 912 (2021), 1–57. https://doi.org/10.1016/j.physrep.2021.01.003 doi: 10.1016/j.physrep.2021.01.003
    [91] J. T. Davis, N. Perra, Q. Zhang, Y. Moreno, A. Vespignani, Phase transitions in information spreading on structured populations, Nat. Phys., 16 (2020), 590–596. https://doi.org/10.1038/s41567-020-0810-3 doi: 10.1038/s41567-020-0810-3
    [92] X. Wang, Y. Lan, J. Xiao, Anomalous structure and dynamics in news diffusion among heterogeneous individuals, Nat. Hum. Behav., 3 (2019), 709–718. https://doi.org/10.1038/s41562-019-0605-7 doi: 10.1038/s41562-019-0605-7
    [93] D. Guilbeault, D. Centola, Topological measures for identifying and predicting the spread of complex contagions, Nat. Commun., 12 (2021), 4430. https://doi.org/10.1038/s41467-021-24704-6 doi: 10.1038/s41467-021-24704-6
    [94] S. Contreras, J. Dehning, M. Loidolt, J. Zierenberg, F. P. Spitzner, J. H. Urrea-Quintero, et al., The challenges of containing sars-cov-2 via test-trace-and-isolate, Nat. Commun., 12 (2021), 378. https://doi.org/10.1038/s41467-020-20699-8 doi: 10.1038/s41467-020-20699-8
    [95] L. Z. Wang, Z. D. Zhao, J. Jiang, B. H. Guo, X. Wang, Z. G. Huang, et al., A model for meme popularity growth in social networking systems based on biological principle and human interest dynamics, Chaos, 29 (2019), 023136. https://doi.org/10.1063/1.5085009 doi: 10.1063/1.5085009
    [96] C. Murphy, E. Laurence, A. Allard, Deep learning of contagion dynamics on complex networks, Nat. Commun., 12 (2021), 4720. https://doi.org/10.1038/s41467-021-24732-2 doi: 10.1038/s41467-021-24732-2
    [97] T. M. Bury, R. Sujith, I. Pavithran, M. Scheffer, T. M. Lenton, M. Anand, et al., Deep learning for early warning signals of tipping points, PNAS, 118 (2021), e2106140118. https://doi.org/10.1073/pnas.2106140118 doi: 10.1073/pnas.2106140118
    [98] Q. Ni, J. Kang, M. Tang, Y. Liu, Y. Zou, Learning epidemic threshold in complex networks by convolutional neural network, Chaos, 29 (2019), 113106. https://doi.org/10.1063/1.5121401 doi: 10.1063/1.5121401
    [99] J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach, Phys. Rev. Lett., 120 (2018), 024102. https://doi.org/10.1103/PhysRevLett.120.024102 doi: 10.1103/PhysRevLett.120.024102
    [100] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, et al., Networks beyond pairwise interactions: structure and dynamics, Phys. Rep., 874 (2020), 1–92. https://doi.org/10.1016/j.physrep.2020.05.004 doi: 10.1016/j.physrep.2020.05.004
    [101] J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q. Han, et al., Cooperative and competitive multi-agent systems: from optimization to games, IEEE/CAA J. Autom. Sin., 9 (2022), 763–783. https://doi.org/10.1109/JAS.2022.105506 doi: 10.1109/JAS.2022.105506
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2155) PDF downloads(189) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog