Research article

Permutations involving squares in finite fields

  • Received: 12 August 2021 Revised: 28 December 2021 Accepted: 30 December 2021 Published: 14 April 2022
  • Let $ p $ be an odd prime and let $ \mathbb{F}_p $ be the finite field of $ p $ elements. In 2019, Sun studied some permutations involving squares in $ \mathbb{F}_p $. In this paper, by the theory of local fields we generalize this topic to $ \mathbb{F}_{p^2} $, which gives a partial answer to the question posed by Sun.

    Citation: Hai-Liang Wu, Li-Yuan Wang. Permutations involving squares in finite fields[J]. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106

    Related Papers:

  • Let $ p $ be an odd prime and let $ \mathbb{F}_p $ be the finite field of $ p $ elements. In 2019, Sun studied some permutations involving squares in $ \mathbb{F}_p $. In this paper, by the theory of local fields we generalize this topic to $ \mathbb{F}_{p^2} $, which gives a partial answer to the question posed by Sun.



    加载中


    [1] X.-D. Hou, Permutation polynomials over finite fields-A survey of recent advances, Finite Field Appl., 32 (2015), 82–119. https://doi.org/10.1016/j.ffa.2014.10.001 doi: 10.1016/j.ffa.2014.10.001
    [2] G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelles Ann. Math., 11 (1872), 354–362.
    [3] M. Riesz, Sur le lemme de Zolotareff et sur la loi de réciprocité des restes quadratiques, Math. Scand., 1 (1953), 159–169. https://doi.org/10.7146/math.scand.a-10376 doi: 10.7146/math.scand.a-10376
    [4] M. Szyjewski, Zolotarev's proof of Gauss reciprocity and Jacobi symbols, Serdica Math. J., 37 (2011), 251–260.
    [5] G. Frobenius, Über das quadratische Reziprozit$\ddot d$atsgesetz I, Königliche Akademie der Wissenschaften, 1914,335–349.
    [6] A. Brunyate, P. L. Clark, Extending the Zolotarev-Frobenius approach to quadratic reciprocity, Ramanujan J., 37 (2015), 25–50. https://doi.org/10.1007/s11139-014-9635-y doi: 10.1007/s11139-014-9635-y
    [7] R. E. Dressler, E. E. Shult, A simple proof of the Zolotarev-Frobenius theorem, Proc. Amer. Math. Soc., 54 (1976), 53–54. https://doi.org/10.1090/S0002-9939-1976-0389732-8 doi: 10.1090/S0002-9939-1976-0389732-8
    [8] L.-Y. Wang, H.-L. Wu, Applications of Lerch's theorem to permutations of quadratic residues, Bull. Aust. Math. Soc., 100 (2019), 362–371. https://doi.org/10.1017/S000497271900073X doi: 10.1017/S000497271900073X
    [9] W. Duke, K. Hopkins, Quadratic reciprocity in a finite group, Amer. Math. Monthly, 112 (2005), 251–256. https://doi.org/10.1080/00029890.2005.11920190 doi: 10.1080/00029890.2005.11920190
    [10] Z.-W. Sun, Quadratic residues and related permutations and identities, Finite Fields Appl., 59 (2019), 246–283. https://doi.org/10.1016/j.ffa.2019.06.004 doi: 10.1016/j.ffa.2019.06.004
    [11] Z.-W. Sun, On quadratic residues and quartic residues modulo primes, Int. J. Number Theory, 16 (2020), no. 8, 1833–1858. https://doi.org/10.1142/S1793042120500955 doi: 10.1142/S1793042120500955
    [12] F. Petrov, Z.-W. Sun, Proof of some conjecture involving quadratic residues, Electron. Res. Arch., 28 (2020), 589–597. https://doi.org/10.3934/era.2020031 doi: 10.3934/era.2020031
    [13] H.-L. Wu, Quadratic residues and related permuations, Finite Fields Appl., 60 (2019), Article 101576. https://doi.org/10.1016/j.ffa.2019.101576 doi: 10.1016/j.ffa.2019.101576
    [14] J. Neukirch, Algebraic Number Theory, Springer-Verlag Berlin Heidelberg, 1999. https://doi.org/10.1007/978-3-662-03983-0
    [15] Z. I. Borevich, I. R. Shafarevich, Number Theory, Academic Press, 1966.
    [16] L. J. Mordell, The congruence $((p-1)/2)! \equiv\pm1\pmod p$, Amer. Math. Monthly, 68 (1961), 145–146. https://doi.org/10.2307/2312481 doi: 10.2307/2312481
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(915) PDF downloads(60) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog