We investigate the solvability of the matrix equation AX2=B in which the multiplication is the semi-tensor product. Then compatible conditions on the matrices A and B are established in each case and necessary and sufficient condition for the solvability is discussed. In addition, concrete methods of solving the equation are provided.
Citation: Jin Wang, Jun-E Feng, Hua-Lin Huang. Solvability of the matrix equation AX2=B with semi-tensor product[J]. Electronic Research Archive, 2021, 29(3): 2249-2267. doi: 10.3934/era.2020114
[1] |
Jin Wang, Jun-E Feng, Hua-Lin Huang .
Solvability of the matrix equation |
[2] | Jin Wang . Least squares solutions of matrix equation $ AXB = C $ under semi-tensor product. Electronic Research Archive, 2024, 32(5): 2976-2993. doi: 10.3934/era.2024136 |
[3] | Jorge Rebaza . On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29(2): 2129-2140. doi: 10.3934/era.2020108 |
[4] | Jianguo Huang, Sen Lin . A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes. Electronic Research Archive, 2020, 28(2): 911-933. doi: 10.3934/era.2020048 |
[5] |
Guifen Liu, Wenqiang Zhao .
Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on |
[6] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
[7] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[8] | José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar . Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091 |
[9] | Xiu Ye, Shangyou Zhang . A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053 |
[10] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
We investigate the solvability of the matrix equation AX2=B in which the multiplication is the semi-tensor product. Then compatible conditions on the matrices A and B are established in each case and necessary and sufficient condition for the solvability is discussed. In addition, concrete methods of solving the equation are provided.
Matrix theory plays an important role in many fields such as system and control theory [10,3,1,2], automation and information sciences [15], economic theory [23], physics [16,14] and computing sciences [19,11]. On the other hand, matrix theory is the basis of numerical calculation and is effective to deal with the one-dimensional array (linear function) and two dimensional array (double linear function or secondary). However, matrix multiplication of
To achieve the goal, we will study the matrix equation
There are five sections in this paper. We introduce notations and definitions in Section 2 and study in Section 3 the solvability of the matrix equation
Throughout this paper,
A⊗B=[a11Ba21B…a1nBa21Ba22B…a2nB⋮⋮⋱⋮am1Bam2B…amnB]∈Cmp×nq. |
The semi-tensor product
A⋉B=(A⊗It/n)(B⊗It/p)∈C(mt/n)×(qt/p), |
where
Remark 1.
Noting that when
vec(A)=(a11, …, a1n, a21, …a2n, … am1, …, amn)T. | (1) |
The vectorization is often used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. For
vec(ABC)=(CT⊗A)vec(B)vec(ABC), | (2) |
vec(ABC)=(In⊗AB)vec(C)=(CTBT⊗Ik)vec(A), | (3) |
vec(AB)=(Im⊗A)vec(B)=(BT⊗Ik)vec(A). | (4) |
With respect to the semi-tensor product, if
We now study the solvability of the matrix-vector equation with semi-tensor product
AX2=B, | (5) |
where
In this subsection, we discuss the solvability of the equation with semi-tensor product
X2=X⋉X=Y, | (6) |
where
By the definition of semi-tensor product, we have
X2=X⋉X=(X⊗Ia)X=[x1Ia⋮xaIa]X=[x1X⋮xaX]. |
Thus, we establish the following lemma.
Lemma 3.1. The following is a necessary and sufficient condition on
Y=[x1X⋮xaX]=[Block1(Y)Block2(Y)⋮Blocka(Y)]∈Ca2×1, |
where
Blocki(Y)=[y(i−1)a+1⋮yia]∈Ca×1,i=1,…,a, |
and
Theorem 3.2. If equation (
In this subsection, we discuss the solvability of the matrix-vector equation with semi-tensor product
AY=A⋉Y=B, | (7) |
where
Lemma 3.3. If
1.
2.
Proof.
Rows(A)⋉Y=(Rows(A)⊗Ihm)⋉Y=[as,1as,2…as,nas,1as,2…as,n⋱⋱⋱⋱as,1as,2…as,n]Y=y1[as,1…as,l1as,l1+1⋱⋱⋱⋱as,1…as,l1as,l1+1⋱⋱⋱as,1…as,l1]+y2[as,l1+2…as,[2kh/m]+1⋱⋱⋱⋱⋱as,[2kh/m]+1as,l1+1as,l1+2⋱⋱⋱⋱as,l1+1as,l1+2]+…+yhm[…as,k⋱⋱as,k−l1…⋱⋱⋱⋱as,k−l1…as,k]+yhm+1[as,k+1…as,k+l1as,k+l1+1⋱⋱⋱⋱as,k+1…as,k+l1as,k+l1+1⋱⋱⋱as,k+1…as,k+l1] |
+…+yp[…as,n⋱⋱as,n−l1…⋱⋱⋱⋱as,n−l1…as,n]=Blocks(B). |
Thus
For
ys[a1,[(s−1)kh/m]+1a1,[(s−1)kh/m]+2…a1,[skh/m]a1,[skh/m]+1a2,[(s−1)kh/m]+1a2,[(s−1)kh/m]+2…a2,[skh/m]a2,[skh/m]+1……………am,[(s−1)kh/m]+1am,[(s−1)kh/m]+2…am,[skh/m]am,[skh/m]+1]+yhm+s[a1,k+[(s−1)kh/m]+1a1,k+[(s−1)kh/m]+2…a1,k+[skh/m]a1,k+[skh/m]+1a2,k+[(s−1)kh/m]+1a2,k+[(s−1)kh/m]+2…a2,k+[skh/m]a2,k+[skh/m]+1……………am,k+[(s−1)kh/m]+1am,k+[(s−1)kh/m]+2…am,k+[skh/m]am,k+[skh/m]+1]+…+y(nk−1)hm+s[a1,n−k+[(s−1)kh/m]+1a1,n−k+[(s−1)kh/m]+2…a1,n−k+[skh/m]a1,n−k+[skh/m]+1a2,n−k+[(s−1)kh/m]+1a2,n−k+[(s−1)kh/m]+2…a2,n−k+[skh/m]a2,n−k+[skh/m]+1……………am,n−k+[(s−1)kh/m]+1am,n−k+[(s−1)kh/m]+2…am,n−k+[skh/m]am,n−k+[skh/m]+1] |
=[bmod(s−1)kh/m,1b1,hm−mod(s−1)kh/m+1…bhm+mod(s−1)kh/m+1,1bhm+1,hm−mod(s−1)kh/m+1…⋮⋮bh−hm+mod(s−1)kh/m+1,1bh−hm+1,hm−mod(s−1)kh/m+1……b1,(l1−1)hm−mod(s−1)kh/m+1b1,l1hm−mod(s−1)kh/m+1…bhm+1,(l1−1)hm−mod(s−1)kh/m+1bhm+1,l1hm−mod(s−1)kh/m+1⋮⋮…bh−hm+1,(l1−1)hm−mod(s−1)kh/m+1bh−hm+1,l1hm−mod(s−1)kh/m+1]. |
Let
˜B=[b11b12…b1kb21…bhm,1…bhm,kbhm+1,1bhm+1,2…bhm+1,kbhm+2,1…b2hm,1…⋮⋮⋮⋮⋮b2hm,kbh−hm+1,1bh−hm+1,2…bh−hm+1,kbh−hm+2,1…bh,1…bnhm,k]. |
Remark 2. The Lemma
Theorem 3.4. The solvability of matrix-vector equation
1)y1(A1, A2, …, Al11, Al11+1)+yhm+1(Ak+1, Ak+2, … Ak+l11, Ak+l11+1)+⋯+y(nk−1)hm+1(An−k+1, An−k+2, …, An−k+l11, An−k+l11+1)=(˜B1, ˜Bhm+1, …, ˜B(l11−1)hm+1, ˜Bl11hm+1)2)y2(Al11+1, Al11+2, …Al21, Al21+1)+yhm+2(Ak+l11+1, Ak+l11+2, …Ak+l21, Ak+l21+1)+⋯+y(nk−1)hm+2(An−k+l11+1, An−k+l11+2, …An−k+l21, An−k+l21+1)=(˜B1+l12,˜Bhm−l12+1, …, ˜B(l21−l11−1)hm−l12+1, ˜B(l21−l11)hm+1)⋮hm)yhm(Ak−l11, Ak−l11+1, …, Ak−1, Ak)+y2hm(A2k−l11, A2k−l11+1, …, A2k−1, A2k)+⋯+yp(An−l11, An−l11+1, …, An−1, An)=(˜Bk+hm−l12, ˜Bl12+1, …,˜B(l11−2)hm+l12+1, ˜Bk−hm+1). |
Let
A=(˘A1⏞A1, …, Al11, Al11+1, …, Al21, Al21+1, …, ˘Ap⏞An−l11, …, An),⏟ˇA2⏟ˇAp−1 |
{˘B1=(˜B1, ˜Bhm+1, …, ˜B(l11−1)hm+1, ˜Bl11hm+1)˘B2=(˜B1+l12, ˜Bhm−l12+1, …,˜B(l21−l11−1)hm−l12+1, ˜B(l21−l11)hm+1)⋮˘Bhm=(˜Bk+hm−l12, ˜Bl12+1, …, ˜B(l11−2)hm+l12+1, ˜Bk−hm+1). |
If the matrix-vector equations
{˘B1=(ˇA1, ˇAhm+1, …, ˇA(n/k−1)hm+1)Z1˘B2=(ˇA2, ˇAhm+2, …, ˇA(n/k−1)hm+2)Z2⋮˘Bhm=(ˇAhm, ˇA2hm, …, ˇA(n/k)hm)Zhm |
have solutions
Y=(z11, z21, …, znk1, z12, z22, …, znk2, …, z1nk, z2nk, …,zhmnk)T |
is the solution of matrix-vector equation
Hence, we obtain a necessary and sufficient condition for the solvability of matrix-vector equation
Theorem 3.5. Matrix-vector equation
In conclusion, the solvability of the matrix-vector equation with semi-tensor product
● Step 1: Check whether
B=[Block1(B)⋮Blocka(B)], |
where
● Step 2: Let
● Step 3: Derived from the solution to matrix-vector equation
We now study the solvability of the matrix equation with semi-tensor product
AX2=B, | (8) |
where
In this subsection, we discuss the solvability of the matrix equation with semi-tensor product
X2=X⋉X=Y, | (9) |
where
Lemma 3.6.
p=atb=a2γ,q=bta=b2γ,γ=gcd(a,b),t=lcm(a,b). |
Proof. The conclusions can be obtained similar to the proof of Lemma
Let
Lemma 3.7. If
Y=[Block11(Y)…Block1b(Y)⋮⋮Blocka1(Y)…Blockab(Y)], |
where
Blockij(Y)=[y(i−1)t/b+1,(j−1)t/a+1…y(i−1)t/b+1,jt/a⋮⋮yit/b+1,(j−1)t/a+1…yit/a,jt/a] |
is a Toeplitz matrix,
Proof. Let
Rowi(X)X=Rowi(X)⋉X=(Rowi(X)⊗It/b)(X⊗It/a)∈Ct/b×bt/a=[xi1xi2…xibxi1xi2…xib⋱⋱⋱⋱xi1xi2…xib][α1⊗It/aα2⊗It/a⋮αa⊗It/a]=[xi1…xi,l1xi,l1+1⋱⋱⋱⋱xi1…xi,l1xi,l1+1⋱⋱⋱xi1…xi,l1]⏟Hi1⋅(α1⊗It/a)+[xi,l1+2…xi,[2b/a]+1⋱⋱⋱⋱xi,[2b/a]+1xi,l1+1xi,l1+2⋱⋱⋱⋱xi,l1+1xi,l1+2]⏟Hi2⋅(α2⊗It/a)+…+[…xi,t/a⋱⋱xi,tl1/a…⋱⋱⋱⋱xi,tl1/a…xi,t/a]⏟Hi,t/b⋅(αt/b⊗It/a)+[xi,t/a+1…xi,t/a+l1xi,t/a+l1+1⋱⋱⋱⋱xi,t/a+1…xi,t/a+l1xi,t/a+l1+1⋱⋱⋱xi,t/a+1…xi,t/a+l1]⏟Hi,t/b+1⋅(αt/b+1⊗It/a) |
+…+[…xi,b⋱⋱xi,b−l1…⋱⋱⋱⋱xi,b−l1…xi,b]⏟Hia⋅(αa⊗It/a). |
Let
Blocki(Y)=[y(i−1)t/b+1,1…y(i−1)t/b+1,bt/a⋮⋮yit/b+1,1…yit/a,bt/a],Blockij(Y)=[y(i−1)t/b+1,(j−1)t/a+1…y(i−1)t/b+1,jt/a⋮⋮yit/b+1,(j−1)t/a+1…yit/a,jt/a]. |
We have
(x11Hi1, x12Hi1, …, x1bHi1)+(x21Hi2, x22Hi2, …, x2bHi2)+⋯+(xa1Hia, xa2Hia, …, xabHia)=(x11Hi1+x21Hi2+⋯+xa1Hia, x12Hi1+x22Hi2+⋯+xa2Hia, …, x1bHi1+x2bHi2+⋯+xabHia)=(Blocki1(Y), …, Blockib(Y))=Blocki(Y), |
where
Hence,
Y=[Block11(Y)…Block1b(Y)⋮⋮Blocka1(Y)…Blockab(Y)]. |
On the other hand, for
X⋉X=(X⊗It/b)(X⊗It/a)=[α1⊗It/bα2⊗It/b⋮αa⊗It/b](X1⊗It/a X2⊗It/a … Xb⊗It/a)=[(α1⊗It/b)(X1⊗It/a)…(α1⊗It/b)(Xb⊗It/a)⋮⋮(αa⊗It/b)(X1⊗It/a)…(αa⊗It/b)(Xb⊗It/a)]=[α1⋉X1…α1⋉Xb⋮⋮αa⋉X1…αa⋉Xb]∈Cat/b×bt/a=Cp×q. |
Denoting
Let
(xs,1[x1,[(s−1)ba]+1x1,[(s−1)ba]+2…x1,[sba]x1,[sba]+1x2,[(s−1)ba]+1x2,[(s−1)ba]+2…x2,[sba]x2,[sba]+1……………xa,[(s−1)ba]+1xa,[(s−1)ba]+2…xa,[sba]xa,[sba]+1],xs2[x1,[(s−1)ba]+1x1,[(s−1)ba]+2…x1,[sba]x1,[sba]+1x2,[(s−1)ba]+1x2,[(s−1)ba]+2…x2,[sba]x2,[sba]+1……………xa,[(s−1)ba]+1xa,[(s−1)ba]+2…xa,[sba]xa,[sba]+1],…,xs,b[x1,[(s−1)ba]+1x1,[(s−1)ba]+2…x1,[sba]x1,[sba]+1x2,[(s−1)ba]+1x2,[(s−1)ba]+2…x2,[sba]x2,[sba]+1……………xa,[(s−1)ba]+1xa,[(s−1)ba]+2…xa,[sba]xa,[sba]+1])+(xtb+s,1[x1,ta+[(s−1)ba]+1x1,ta+[(s−1)ba]+2…x1,ta+[sba]x1,ta+[sba]+1x2,ta+[(s−1)ba]+1x2,ta+[(s−1)ba]+2…x2,ta+[sba]x2,ta+[sba]+1……………xa,ta+[(s−1)ba]+1xa,ta+[(s−1)ba]+2…xa,ta+[sba]xa,ta+[sba]+1], |
xtb+s,2[x1,ta+[(s−1)ba]+1x1,ta+[(s−1)ba]+2…x1,ta+[sba]x1,ta+[sba]+1x2,ta+[(s−1)ba]+1x2,ta+[(s−1)ba]+2…x2,ta+[sba]x2,ta+[sba]+1……………xa,ta+[(s−1)ba]+1xa,ta+[(s−1)ba]+2…xa,ta+[sba]xa,ta+[sba]+1],…,xtb+s,b[x1,ta+[(s−1)ba]+1x1,ta+[(s−1)ba]+2…x1,ta+[sba]x1,ta+[sba]+1x2,ta+[(s−1)ba]+1x2,ta+[(s−1)ba]+2…x2,ta+[sba]x2,ta+[sba]+1……………xa,ta+[(s−1)ba]+1xa,ta+[(s−1)ba]+2…xa,ta+[sba]xa,ta+[sba]+1])+⋯+(xa−tb+s,1[x1,b−ta+[(s−1)ba]+1x1,b−ta+[(s−1)ba]+2…x1,b−ta+[sba]x1,b−ta+[sba]+1x2,b−ta+[(s−1)ba]+1x2,b−ta+[(s−1)ba]+2…x2,b−ta+[sba]x2,b−ta+[sba]+1……………xa,b−ta+[(s−1)ba]+1xa,b−ta+[(s−1)ba]+2…xa,b−ta+[sba]xa,b−ta+[sba]+1],xa−tb+s,2[x1,b−ta+[(s−1)ba]+1x1,b−ta+[(s−1)ba]+2…x1,b−ta+[sba]x1,b−ta+[sba]+1x2,b−ta+[(s−1)ba]+1x2,b−ta+[(s−1)ba]+2…x2,b−ta+[sba]x2,b−ta+[sba]+1……………xa,b−ta+[(s−1)ba]+1xa,b−ta+[(s−1)ba]+2…xa,b−ta+[sba]xa,b−ta+[sba]+1],…,xa−tb+s,b[x1,b−ta+[(s−1)ba]+1x1,b−ta+[(s−1)ba]+2…x1,b−ta+[sba]x1,b−ta+[sba]+1x2,b−ta+[(s−1)ba]+1x2,b−ta+[(s−1)ba]+2…x2,b−ta+[sba]x2,b−ta+[sba]+1……………xa,b−ta+[(s−1)ba]+1xa,b−ta+[(s−1)ba]+2…xa,b−ta+[sba]xa,b−ta+[sba]+1]) |
=([ymod(s−1)t/at/b+1,1ymod(s−1)t/at/b+1,tb−mod(s−1)t/at/b+1…ytb+mod(s−1)t/at/b+1,1ytb+mod(s−1)t/at/b+1,tb−mod(s−1)t/at/b+1…⋮⋮y(a−1)tb+mod(s−1)t/at/b+1,1y(a−1)tb+mod(s−1)t/at/b+1,tb−mod(s−1)t/at/b+1…ymod(s−1)t/at/b+1,l1tb−mod(s−1)t/at/b+1ytb+mod(s−1)t/at/b+1,l1tb−mod(s−1)t/at/b+1⋮y(a−1)tb+mod(s−1)t/at/b+1,l1tb−mod(s−1)t/at/b+1] |
[ymod(s−1)t/at/b+1,ta+1ymod(s−1)t/at/b+1,ta+tb−mod(s−1)t/at/b+1…ytb+mod(s−1)t/at/b+1,ta+1ytb+mod(s−1)t/at/b+1,ta+tb−mod(s−1)t/at/b+1…⋮⋮y(a−1)tb+mod(s−1)t/at/b+1,ta+1y(a−1)tb+mod(s−1)t/at/b+1,ta+tb−mod(s−1)t/at/b+1…ymod(s−1)t/at/b+1,ta+l1tb−mod(s−1)t/at/b+1ytb+mod(s−1)t/at/b+1,ta+l1tb−mod(s−1)t/at/b+1⋮y(a−1)tb+mod(s−1)t/at/b+1,ta+l1tb−mod(s−1)t/at/b+1] |
[ymod(s−1)t/at/b+1,(k−1)ta+1…ymod(s−1)t/at/b+1,(k−1)ta+l1tb−mod(s−1)t/at/b+1ytb+mod(s−1)t/at/b+1,(k−1)ta+1…ytb+mod(s−1)t/at/b+1,(k−1)ta+l1tb−mod(s−1)t/at/b+1⋮⋮y(a−1)tb+mod(s−1)t/at/b+1,(k−1)ta+1…y(a−1)tb+mod(s−1)t/at/b+1,(k−1)ta+l1tb−mod(s−1)t/at/b+1]…[ymod(s−1)t/at/b+1,(b−1)ta+1…ymod(s−1)t/at/b+1,(b−1)ta+l1tb−mod(s−1)t/at/b+1ytb+mod(s−1)t/at/b+1,(b−1)ta+1…ytb+mod(s−1)t/at/b+1,(b−1)ta+l1tb−mod(s−1)t/at/b+1⋮⋮y(a−1)tb+mod(s−1)t/at/b+1,(b−1)ta+1…y(a−1)tb+mod(s−1)t/at/b+1,(b−1)ta+l1tb−mod(s−1)t/at/b+1]). |
Let
˜Y=([y11y12…y1,t/ay1,t/a+1…y1,2t/ayt/b+1,1yt/b+1,2…yt/b+1,t/ayt/b+1,t/a+1…yt/b+1,2t/a⋮⋮⋮⋮⋮y(a−1)t/b+1,1y(a−1)t/b+1,2…y(a−1)t/b+1,t/ay(a−1)t/b+1,t/a+1…y(a−1)t/b+1,2t/a],…,[y1,(b−1)t/a+1…y1,bt/ayt/b+1,(b−1)t/a+1…yt/b+1,bt/a⋮⋮y(a−1)t/b+1,(b−1)t/a+1…y(a−1)t/b+1,bt/a],[y21y22…y2,t/ayt/b+2,1yt/b+2,2…yt/b+2,t/a⋮⋮⋮y(a−1)t/b+2,1y(a−1)t/b+2,2…y(a−1)t/b+2,t/a],[y2,t/a+1…y2,2t/ayt/b+2,t/a+1…yt/b+2,2t/a⋮⋮y(a−1)t/b+2,t/a+1…y(a−1)t/b+2,2t/a],…,[y2,(b−1)t/a+1…y2,bt/ayt/b+2,(b−1)t/a+1…yt/b+2,bt/a⋮⋮y(a−1)t/b+2,(b−1)t/a+1…y(a−1)t/b+2,bt/a],[y31y32…y3,t/ayt/b+3,1yt/b+3,2…yt/b+3,t/a⋮⋮⋮y(a−1)t/b+3,1y(a−1)t/b+3,2…y(a−1)t/b+3,t/a],[y3,t/a+1…y3,2t/ayt/b+3,t/a+1…yt/b+3,2t/a⋮⋮y(a−1)t/b+3,t/a+1…y(a−1)t/b+3,2t/a],…,[y3,(b−1)t/a+1…y3,bt/ayt/b+3,(b−1)t/a+1…yt/b+3,bt/a⋮⋮y(a−1)t/b+3,(b−1)t/a+1…y(a−1)t/b+3,bt/a],…,[yt/b,1yt/b,2…yt/b,t/ay2t/b,1y2t/b,2…y2t/b,t/a⋮⋮⋮y(at/b,1yat/b,2…yat/b,t/a],[yt/b,t/a+1…yt/b,2t/ay2t/b,t/a+1…y2t/b,2t/a⋮⋮yat/b,t/a+1…yat/b,2t/a],…,[yt/b,(b−1)t/a+1…yt/b,bt/ay2t/b,(b−1)t/a+1…y2t/b,bt/a⋮⋮yat/b,(b−1)t/a+1…yat/b,bt/a]). |
We have the following equations:
(x11[X1 X2…Xl1 Xl1+1],x12[X1 X2…Xl1 Xl1+1],…,x1b[X1 X2…Xl1 Xl1+1])+(xtb+1,1[Xta+1 Xta+2… Xta+l1 Xta+l1+1],xtb+1,2[Xta+1 Xta+2… Xta+l1 Xta+l1+1],…,xtb+1,b[Xta+1 Xta+2 … Xta+l1 Xta+l1+1])+⋯+(xa−tb+1,1[Xb−ta+1 Xb−ta+2…Xb−ta+l1 Xb−ta+l1+1],xa−tb+1,2[Xb−ta+1 Xb−ta+2…Xb−ta+l1 Xb−ta+l1+1],…,xa−tb+1,b[Xb−ta+1 Xb−ta+2… Xb−ta+l1 Xb−ta+l1+1])=([˜Y1 ˜Ytb+1 … ˜Yl1−1,tb+1 ˜Yl1tb+1] [˜Yta+1 ˜Yta+tb+1 … ˜Yta+(l1−1)tb+1 ˜Yta+l1tb+1],…,[˜Yb−1,ta+1 ˜Yb−1,ta+tb+1 …˜Yb−1,ta+(l11−1)tb+1 ˜Yb−1,ta+l11tb+1]). |
(x21[Xl1+1 Xl1+2 … Xl21 Xl21+1],x22[Xl1+1 Xl1+2 … Xl21 Xl21+1],…,x2b[Xl1+1 Xl1+2 … Xl21 Xl21+1])+(xtb+2,1[Xta+l1+1 Xta+l1+2 … Xta+l21 Xta+l21+1],xtb+2,2[Xta+l1+1 Xta+l1+2 … Xta+l21 Xta+l21+1),…xtb+2,b[Xta+l1+1 Xta+l1+2 … Xta+l21 Xta+l21+1])+⋯+(xa−tb+2,1[Xb−ta+l1+1 Xb−ta+l1+2 … Xb−ta+l21 Xb−ta+l21+1),xa−tb+2,2[Xb−ta+l1+1 Xb−ta+l1+2 … Xb−ta+l21 Xb−ta+l21+1],…,xa−tb+2,b[Xb−ta+l1+1 Xb−ta+l1+2 … Xb−ta+l21 Xb−ta+l21+1])=([˜Yta+l12 Ytb−l12+1,…,˜Y(l21−l11−1)tb−l12+1 Y(l21−l11)tb−l12+1],[˜Y2ta+l12 Yta+tb−l12+1,…,˜Yta+(l21−l1−1)tb+1 Yta+(l21−l11)tb−l12+1],…,[˜Ybta+l12 Y(b−1)ta+tb−l12+1…˜Y(b−1)ta+(l21−l1−1)tb+1 Y(b−1)ta+(l21−l11)tb−l12+1]).⋮ |
(xtb,1[Xtb−l11 Xtb−l11+1 … Xta−1 Xta],xtb,2[Xtb−l11 Xtb−l11+1 … Xta−1 Xta],…,xtb,b[Xtb−l11 Xtb−l11+1 …Xta−1 Xta])+(x2tb,1[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta],x2tb,2[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta],…,x2tb,b[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta])+⋯+(xa1[Xb−l11 Xb−l11+1 … Xb−1 Xb],xa2[Xb−l11 Xb−l11+1 … Xb−1 Xb],…,xab[Xb−l11 Xb−l11+1 … Xb−1 Xb])=([˜Yta+tb−l12 Yl12+1,…,˜Y(l11−2)tb+l12+1 Yta−tb+1],[˜Y2ta+tb−l12 Yta+l12+1,…,˜Yta+(l11−2)tb+l12+1 Y2ta−tb+1],…,[˜Ybta+tb−l12 Y(b−1)ta+l12+1…˜Y(b−1)ta+(l11−2)tb+l12+1 Ybta−tb+1]). |
Let
(xtb,1[Xtb−l11 Xtb−l11+1 … Xta−1 Xta],xtb,2[Xtb−l11 Xtb−l11+1 … Xta−1 Xta],…,xtb,b[Xtb−l11 Xtb−l11+1 …Xta−1 Xta])+(x2tb,1[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta],x2tb,2[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta],…,x2tb,b[X2ta−l11 X2ta−l11+1 … X2ta−1 X2ta])+⋯+(xa1[Xb−l11 Xb−l11+1 … Xb−1 Xb],xa2[Xb−l11 Xb−l11+1 … Xb−1 Xb],…,xab[Xb−l11 Xb−l11+1 … Xb−1 Xb])=([˜Yta+tb−l12 Yl12+1,…,˜Y(l11−2)tb+l12+1 Yta−tb+1],[˜Y2ta+tb−l12 Yta+l12+1,…,˜Yta+(l11−2)tb+l12+1 Y2ta−tb+1],…,[˜Ybta+tb−l12 Y(b−1)ta+l12+1…˜Y(b−1)ta+(l11−2)tb+l12+1 Ybta−tb+1]). |
and label
1)
ˇY(1)1=(˜Y1 ˜Ytb+1 … ˜Y(l1−1)tb+1 ˜Yl1tb+1)⋮ˇY(k)1=(˜Y(k−1)ta+1 ˜Y(k−1)ta+tb+1 … ˜Y(k−1)ta+(l11−1)tb+1 ˜Y(k−1)ta+l11tb+1)⋮ˇY(b)1=(˜Y(b−1)ta+1 ˜Y(b−1)ta+tb+1 … ˜Y(b−1)ta+(l11−1)tb+1 ˜Y(b−1)ta+l11tb+1). |
2)
ˇY(1)2=(˜Yta+l12 ˜Ytb−l12+1… ˜Y(l21−l11−1)tb−l12+1 ˜Y(l21−l11)tb−l12+1)⋮ˇY(k)2=(˜Ykta+l12 ˜Y(k−1)ta+tb−l12+1 … ˜Y(k−1)ta+(l21−l1−1)tb+1˜Y(k−1)ta+(l21−l11)tb−l12+1)⋮ˇY(b)2=(˜Ybta+l12 ˜Y(b−1)ta+tb−l12+1…˜Y(b−1)ta+(l21−l1−1)tb+1 ˜Y(b−1)ta+(l21−l11)tb−l12+1).⋮ |
ˇY(1)tb=(˜Yta+tb−l12˜Yl12+1…˜Y(l11−2)tb+l12+1˜Yta−tb+1)⋮ˇY(k)tb=(˜Ykta+tb−l12 ˜Y(k−1)ta+l12+1 … ˜Y(k−1)ta+(l11−2)tb+l12+1 ˜Ykta−tb+1)⋮ˇY(b)tb=(˜Ybta+tb−l12 ˜Y(b−1)ta+l12+1 … ˜Y(b−1)ta+(l11−2)tb+l12+1 ˜Ybta−tb+1). |
Theorem 3.8. The solvability of matrix equation
ˇY(1)tb=(˜Yta+tb−l12˜Yl12+1…˜Y(l11−2)tb+l12+1˜Yta−tb+1)⋮ˇY(k)tb=(˜Ykta+tb−l12 ˜Y(k−1)ta+l12+1 … ˜Y(k−1)ta+(l11−2)tb+l12+1 ˜Ykta−tb+1)⋮ˇY(b)tb=(˜Ybta+tb−l12 ˜Y(b−1)ta+l12+1 … ˜Y(b−1)ta+(l11−2)tb+l12+1 ˜Ybta−tb+1). |
Denote the matrixes
W(k)s=(W(k)s1, W(k)s2,…, W(k)s,abt)T, |
X1=(W(1)11, W(1)21, …, W(1)tb,1, W(1)12, W(1)22, …, W(1)tb,2, …, W(1)1,abt, W(1)2,abt, …,W(1)tb,abt)T |
⋮
Xk=(W(k)11, W(k)21, …, W(k)tb,1, W(k)12, W(k)22,…, W(k)tb,2, …, W(k)1,abt, W(k)2,abt, …,W(k)tb,abt)T |
⋮
Xb=(W(b)11, W(b)21, …, W(b)tb,1, W(b)12, W(b)22, …, W(b)tb,2, …, W(b)1,abt, W(b)2,abt, …,W(b)tb,abt)T |
is a solution of matrix equation
In this subsection, we discuss the solvability of the matrix equation with semi-tensor product
AY=A⋉Y=B, | (11) |
where
Lemma 3.9.
1.
2.
Proof. Similar to the proof at Lemma
Remark 3. 1. The condition
2. The sizes, which satisfy the condition in Lemma
Accordingly, matrix equation (
3. Supposing that
AY=A⋉Y=B,Y∈Cp1×q1, | (12) |
AY=A⋉Y=B,Y∈Cp2×q2. | (13) |
If
Accordingly, consider the following two equations:
AX2=A(X⋉X)=B,X∈Ca1×b1, | (14) |
AX2=A(X⋉X)=B,X∈Ca2×b2. | (15) |
As
4. Denote
5. Assuming
Lemma 3.10. If equation (
B=[Block11(B)…Block1q(B)⋮⋮Blockm1(B)…Blockmq(B)], |
where
Proof. The proof is similar to the proof of Lemma
Remark 4. The Lemma
How to solve the matrix equation (
In conclusion, the solvability of the matrix equation (
● Step 1: Check whether
B=[Block11(B)…Block1q(B)⋮⋮Blockm1(B)…Blockmq(B)], |
where
● Step 2: Let
● Step 3: Derived from the solution to matrix equation
In this section, two numerical examples are given. One is about matrix-vector equation, and the other is about ordinary matrix equation.
Example 1. For matrix-vector equation
(1)
A=[10010111],B=[102010103]. |
Noting that
(2)
A=[100101011101],B=[102010113110]. |
Despite
(3)
A=[100100010020],B=[600060008400]. |
Because of the given matrices are compatible, set
Y=[4k21]T, |
where
X2=[4221]T, |
we have
X=[±2±1]T. |
Example 2. For matrix equation
(1)
A=[20032101],B=[102100210012103]. |
As
(2)
A=[100201021011],B=[10011111]. |
Although
(3)
A=[100100010002],B=[2010600010642]. |
By Lemma
Y=[103041002200002021101020004042004221],X=[±10±10±2000±1±10000±20±2±1]. |
In this paper, the solvability of the matrix equation
The authors wish to thank the Editor and anonymous referees for providing very useful suggestions to improve this paper. The corresponding author would also like to thank Professor Tin-Yau Tam, who helped revise the paper during her visit to Auburn University.
[1] |
Solving periodic Lyapunov matrix equations via finite steps iteration. IET Control Theory Appl. (2012) 6: 2111-2119. ![]() |
[2] | (2002) Matrix and Polynomial Approach to Dynamics Control Systems. Beijing: Science Press. |
[3] |
D. Cheng, H. Qi and Y. Zhao, An Introduction to Semi-tensor Product of Matrices and its Application, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/8323
![]() |
[4] | Evolutionarily stable strategy of networked evloutionary games. IEEE Transactions on Neural Networks and Learning (2014) 25: 1335-1345. |
[5] | Semi-tensor product of matrices: A new convenient tool. Chinese Science Bulletin (2011) 56: 2664-2674. |
[6] |
General decomposition of fuzzy relations: Semi-tensor product approach. Fuzzy Sets and Systems (2020) 384: 75-90. ![]() |
[7] |
J.-E. Feng, J. Yao and P. Cui, Singular Boolean network: Semi-tensor product approach, Sci. China Inf. Sci., 56 (2013), 112203, 14 pp. doi: 10.1007/s11432-012-4666-8
![]() |
[8] | (2014) Study on Several Kinds of Cryptographic Algorithm Based on the Semi-Tensor Product.Beijing Jiaotong University Press. |
[9] |
(1991) Topics in Matrix Analysis. Cambridge: Cambridge University Press. ![]() |
[10] | (2004) The Linear Algebra System and Control Science. Beijing: Science Press. |
[11] | An overview on the solutions of the algebraic matrix Riccati equation and related problems. Large Scale Systems (1980) 1: 167-192. |
[12] | G. G. Jesus, Block Toeplitz Matrices: Asymptotic Results and Applications, Now Publishers, Hanover, 2012. |
[13] | P. Jiang, Y. Z. Wang and R. M. Xu, Mobile Robot Odor Source Localization Via Semi-Tensor Product, The Thirty-Fourth China Conference on Control, Hangzhou, 2015. |
[14] | Electromagnetic modeling of composite metallic and dielectric structures. Microwave Theory Tech (1999) 47: 1021-1032. |
[15] |
On solution of the linear matrix equations. Journal of Automation and Information Sciences (2015) 47: 1-9. ![]() |
[16] | (2010) A Tensor Product in Power System Transient Analysis Method. Beijing: Tsinghua University Press. |
[17] | Two iterative methods of decomposition of a fuzzy relation for image compression/decompres-sion processing. Soft Comput (2004) 8: 698-704. |
[18] | Fast solving method of fuzzy relational equation and its application to lossy image compression/reconstruction. IEEE Trans. Fuzzy Syst. (2000) 18: 325-334. |
[19] | G. W. Stagg and A. H. El-Abiad, Computer Methods in Power System Analysis, McGraw-Hill, New York, 1968. |
[20] |
Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling. Control Theory Technol. (2014) 12: 187-197. ![]() |
[21] |
On solutions of the matrix equation AX=B with respect to semi-tensor product. J. Franklin Inst. (2016) 353: 1109-1131. ![]() |
[22] |
Block decoupling of Boolean control networks. IEEE Trans. Automat. Control (2019) 64: 3129-3140. ![]() |
[23] |
Solving the mixed Sylvester matrix equations by matrix decompositions. C. R. Math. Acad. Sci. Paris (2015) 353: 1053-1059. ![]() |
1. | Janthip Jaiprasert, Pattrawut Chansangiam, Solving the Sylvester-Transpose Matrix Equation under the Semi-Tensor Product, 2022, 14, 2073-8994, 1094, 10.3390/sym14061094 | |
2. | Pattrawut Chansangiam, Arnon Ploymukda, Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products, 2023, 8, 2473-6988, 23519, 10.3934/math.20231195 | |
3. | Arnon Ploymukda, Pattrawut Chansangiam, Metric geometric means with arbitrary weights of positive definite matrices involving semi-tensor products, 2023, 8, 2473-6988, 26153, 10.3934/math.20231333 | |
4. | Jin Wang, Least squares solutions of matrix equation $ AXB = C $ under semi-tensor product, 2024, 32, 2688-1594, 2976, 10.3934/era.2024136 |