Research article Special Issues

Determination of transmission reliability margin for brownout

  • Received: 23 May 2021 Accepted: 25 August 2021 Published: 02 September 2021
  • Power shortage is a severe problem in developing countries that are rolling to blackout, but today smart grids have the scope to avoid entire blackouts by transforming them into brownouts. A brownout is an under-voltage condition where the AC supply drops below the nominal value (120 V or 220 V) by about 10%. In a power system network, power shortages or disturbances can occur at any time, and the reliability margin analysis is essential to maintain the stability of the system. Transmission reliability margin (TRM) is a margin that keeps the network secure during any occurrence of disturbance. This paper presents a new approach to compute TRM in the case of brownout. The detailed assessment of TRM largely depends on the estimation of the available transfer power (ATC). In this method, the ATC of the system is calculated considering the effect of alternating current (AC) and direct current (DC) reactive power (Q) flow (DCQF). The entire procedure is carried out for the multi-transaction IEEE-6 bus system, and the results are compared to the current efficiency justification method. Numerical results demonstrate that the proposed technique is an effective alternative for calculating the TRM and is valid compared to the existing technique.

    Citation: Awatif Nadia, Md. Sanwar Hossain, Md. Mehedi Hasan, Sinthia Afrin, Md Shafiullah, Md. Biplob Hossain, Khondoker Ziaul Islam. Determination of transmission reliability margin for brownout[J]. AIMS Energy, 2021, 9(5): 1009-1026. doi: 10.3934/energy.2021046

    Related Papers:

    [1] Wenxue Huang, Yuanyi Pan . On Balancing between Optimal and Proportional categorical predictions. Big Data and Information Analytics, 2016, 1(1): 129-137. doi: 10.3934/bdia.2016.1.129
    [2] Dongyang Yang, Wei Xu . Statistical modeling on human microbiome sequencing data. Big Data and Information Analytics, 2019, 4(1): 1-12. doi: 10.3934/bdia.2019001
    [3] Wenxue Huang, Xiaofeng Li, Yuanyi Pan . Increase statistical reliability without losing predictive power by merging classes and adding variables. Big Data and Information Analytics, 2016, 1(4): 341-348. doi: 10.3934/bdia.2016014
    [4] Jianguo Dai, Wenxue Huang, Yuanyi Pan . A category-based probabilistic approach to feature selection. Big Data and Information Analytics, 2018, 3(1): 14-21. doi: 10.3934/bdia.2017020
    [5] Amanda Working, Mohammed Alqawba, Norou Diawara, Ling Li . TIME DEPENDENT ATTRIBUTE-LEVEL BEST WORST DISCRETE CHOICE MODELLING. Big Data and Information Analytics, 2018, 3(1): 55-72. doi: 10.3934/bdia.2018010
    [6] Xiaoxiao Yuan, Jing Liu, Xingxing Hao . A moving block sequence-based evolutionary algorithm for resource investment project scheduling problems. Big Data and Information Analytics, 2017, 2(1): 39-58. doi: 10.3934/bdia.2017007
    [7] Yaguang Huangfu, Guanqing Liang, Jiannong Cao . MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics. Big Data and Information Analytics, 2016, 1(4): 349-376. doi: 10.3934/bdia.2016015
    [8] Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong . An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data and Information Analytics, 2017, 2(1): 23-37. doi: 10.3934/bdia.2017006
    [9] Wenxue Huang, Qitian Qiu . Forward Supervised Discretization for Multivariate with Categorical Responses. Big Data and Information Analytics, 2016, 1(2): 217-225. doi: 10.3934/bdia.2016005
    [10] Yiwen Tao, Zhenqiang Zhang, Bengbeng Wang, Jingli Ren . Motality prediction of ICU rheumatic heart disease with imbalanced data based on machine learning. Big Data and Information Analytics, 2024, 8(0): 43-64. doi: 10.3934/bdia.2024003
  • Power shortage is a severe problem in developing countries that are rolling to blackout, but today smart grids have the scope to avoid entire blackouts by transforming them into brownouts. A brownout is an under-voltage condition where the AC supply drops below the nominal value (120 V or 220 V) by about 10%. In a power system network, power shortages or disturbances can occur at any time, and the reliability margin analysis is essential to maintain the stability of the system. Transmission reliability margin (TRM) is a margin that keeps the network secure during any occurrence of disturbance. This paper presents a new approach to compute TRM in the case of brownout. The detailed assessment of TRM largely depends on the estimation of the available transfer power (ATC). In this method, the ATC of the system is calculated considering the effect of alternating current (AC) and direct current (DC) reactive power (Q) flow (DCQF). The entire procedure is carried out for the multi-transaction IEEE-6 bus system, and the results are compared to the current efficiency justification method. Numerical results demonstrate that the proposed technique is an effective alternative for calculating the TRM and is valid compared to the existing technique.



    1. Introduction

    Multi-nominal data are common in scientific and engineering research such as biomedical research, customer behavior analysis, network analysis, search engine marketing optimization, web mining etc. When the response variable has more than two levels, the principle of mode-based or distribution-based proportional prediction can be used to construct nonparametric nominal association measure. For example, Goodman and Kruskal [3,4] and others proposed some local-to-global association measures towards optimal predictions. Both Monte Carlo and discrete Markov chain methods are conceptually based on the proportional associations. The association matrix, association vector and association measure were proposed by the thought of proportional associations in [9]. If there is no ordering to the response variable's categories, or the ordering is not of interest, they will be regarded as nominal in the proportional prediction model and the other association statistics.

    But in reality, different categories in the same response variable often are of different values, sometimes much different. When selecting a model or selecting explanatory variables, we want to choose the ones that can enhance the total revenue, not just the accuracy rate. Similarly, when the explanatory variables with cost weight vector, they should be considered in the model too. The association measure in [9], ωY|X, doesn't consider the revenue weight vector in the response variable, nor the cost weight in the explanatory variables, which may lead to less profit in total. Thus certain adjustments must be made for a better decisionning.

    To implement the previous adjustments, we need the following assumptions:

    X and Y are both multi-categorical variables where X is the explanatory variable with domain {1,2,...,α} and Y is the response variable with domain {1,2,...,β} respectively;

    the amount of data collected in this article is large enough to represent the real distribution;

    the model in the article mainly is based on the proportional prediction;

    the relationship between X and Y is asymmetric;

    It needs to be addressed that the second assumption is probably not always the case. The law of large number suggests that the larger the sample size is, the closer the expected value of a distribution is to the real value. The study of this subject has been conducted for hundreds of years including how large the sample size is enough to simulate the real distribution. Yet it is not the major subject of this article. The purpose of this assumption is nothing but a simplification to a more complicated discussion.

    The article is organized as follows. Section 2 discusses the adjustment to the association measure when the response variable has a revenue weight; section 3 considers the case where both the explanatory and the response variable have weights; how the adjusted measure changes the existing feature selection framework is presented in section 4. Conclusion and future works will be briefly discussed in the last section.


    2. Response variable with revenue weight vector

    Let's first recall the association matrix {γs,t(Y|X)} and the association measure ωY|X and τY|X.

    γs,t(Y|X)=E(p(Y=s|X)p(Y=t|X))p(Y=s)=αi=1p(X=i|Y=s)p(Y=t|X=i);s,t=1,2,..,βτY|X=ωY|XEp(Y)1Ep(Y)ωY|X=EX(EY(p(Y|X)))=βs=1αi=1p(Y=s|X=i)2p(X=i)=βs=1γssp(Y=s) (1)

    γst(Y|X) is the (s,t)-entry of the association matrix γ(Y|X) representing the probability of assigning or predicting Y=t while the true value is in fact Y=s. Given a representative train set, the diagonal entries, γss, are the expected accuracy rates while the off-diagonal entries of each row are the expected first type error rates. ωY|X is the association measure from the explanatory variable X to the response variable Y without a standardization. Further discussions to these metrics can be found in [9].

    Our discussion begins with only one response variable with revenue weight and one explanatory variable without cost weight. Let R=(r1,r2,...,rβ) to be the revenue weight vector where rs is the possible revenue for Y=s. A model with highest revenue in total is then the ideal solution in reality, not just a model with highest accuracy. Therefore comes the extended form of ωY|X with weight in Y as in 2:

    Definition 2.1.

    ˆωY|X=βs=1αi=1p(Y=s|X=i)2rsp(X=i)=βs=1γssp(Y=s)rsrs>0,s=1,2,3...,β (2)

    Please note that ωY|X is equivalent to τY|X for given X and Y in a given data set. Thus the statistics of τY|X will not be discussed in this article.

    It is easy to see that ˆωY|X is the expected total revenue for correctly predicting Y. Therefore one explanatory variable X1 with ˆωY|X1 is preferred than another X2 if ˆωY|X1ˆωY|X2. It is worth mentioning that ˆωY|X is asymmetric, i.e., ˆωY|XˆωX|Y and that ωY|X=ˆωY|X if r1=r2=...=rβ=1.

    Example.Consider a simulated data motivated by a real situation. Suppose that variable Y is the response variable indicating the different computer brands that the customers bought; X1, as one explanatory variable, shows the customers' career and X2, as another explanatory variable, tells the customers' age group. We want to find a better explanatory variable to generate higher revenue by correctly predicting the purchased computer's brand. We further assume that X1 and X2 both contain 5 categories, Y has 4 brands and the total number of rows is 9150. The contingency table is presented in 1.

    Table 1. Contingency tables:X1 vs Y and X2 vs Y.
    X1|Y y1 y2 y3 y4 X2|Y y1 y2 y3 y4
    x11 1000 100 500 400 x21 500 300 200 1500
    x12 200 1500 500 300 x22 500 400 400 50
    x13 400 50 500 500 x23 500 500 300 700
    x14 300 700 500 400 x24 500 400 1000 100
    x15 200 500 400 200 x25 200 400 500 200
     | Show Table
    DownLoad: CSV

    Let us first consider the association matrix {γY|X}. Predicting Y with the information of X1, or X2 is given by the association matrix γ(Y|X1), or γ(Y|X2) as in Table 2.

    Table 2. Association matrices:X1 vs Y and X2 vs Y.
    Y|ˆY ^y1|X1 ^y2|X1 ^y3|X1 ^y4|X1 Y|ˆY ^y1|X2 ^y2|X2 ^y3|X2 ^y4X2
    y1 0.34 0.18 0.27 0.22 y1 0.26 0.22 0.27 0.25
    y2 0.13 0.48 0.24 0.15 y2 0.25 0.24 0.29 0.23
    y3 0.24 0.28 0.27 0.21 y3 0.25 0.24 0.36 0.15
    y4 0.25 0.25 0.28 0.22 y4 0.22 0.18 0.14 0.46
     | Show Table
    DownLoad: CSV

    Please note that Y contains the true values while ˆY is the guessed one. One can see from this table that the accuracy rate of predicting y1 and y2 by X1 on the left are larger than that on the right. The cases of y3 and y4, on the other hand, are opposite.

    The correct prediction contingency tables of X1 and Y, denoted as W1, plus that of X2 and Y, denoted as W2, can be simulated through Monte Carlo simulation as in Table 3.

    Table 3. Contingency table for correct predictions: W1 and W2.
    X1|Y y1 y2 y3 y4 X2|Y y1 y2 y3 y4
    x11 471 6 121 83 x21 98 34 19 926
    x12 101 746 159 107 x22 177 114 113 1
    x13 130 1 167 157 x23 114 124 42 256
    x14 44 243 145 85 x24 109 81 489 6
    x15 21 210 114 32 x25 36 119 206 28
     | Show Table
    DownLoad: CSV

    The total number of the correct predictions by X1 is 3142 while it is 3092 by X2, meaning the model with X1 is better than X2 in terms of accurate prediction. But it maybe not the case if each target class has different revenues. Assuming the revenue weight vector of Y is R=(1,1,2,2), we have the association measure of ωY|X, and ˆωY|X as in Table 4:

    Table 4. Association measures: ωY|X, and ˆωY|X.
    X ωY|X ˆωY|X total revenue average revenue
    X1 0.3406 0.456 4313 0.4714
    X2 0.3391 0.564 5178 0.5659
     | Show Table
    DownLoad: CSV

    Given that revenue=i,sWi,skrs,i=1,2,...,α,s=1,2,...,β,k=1,2, we have the revenue for W1 as 4313, and that for W2 as 5178. Divide the revenue by the total sample size, 9150, we can obtain 0.4714 and 0.5659 respectively. Contrasting these to ˆωY|X1 and ˆωY|X2 above, we believe that they are similar, which means then ˆωY|X is truly the expected revenue.

    In summary, it is possible for an explanatory variable X with bigger ˆωY|X, i.e, the larger revenue, but with smaller ωY|X, i.e., the smaller association. When the total revenue is of the interest, it should be the better variable to be selected, not the one with larger association.


    3. Explanatory variable with cost weight and response variable with revenue weight

    Let us further discuss the case with cost weight vector in predictors in addition to the revenue weight vector in the dependent variable. The goal is to find a predictor with bigger profit in total. We hence define the new association measure as in 3.

    Definition 3.1.

    ˉωY|X=αi=1βs=1p(Y=s|X=i)2rscip(X=i) (3)

    ci>0,i=1,2,3,...,α, and rs>0,s=1,2,...,β.

    ci indicates the cost weight of the ith category in the predictor and rs means the same as in the previous section. ˉωY|X is then the expected ratio of revenue and cost, namely RoI. Thus a larger ˉωY|X means a bigger profit in total. A better variable to be selected then is the one with bigger ˉωY|X. We can see that ˉωY|X is an asymmetric measure, meaning ˉωY|XˉωY|X. When c1=c2=...=cα=1, Equation 3 is exactly Equation 2; when c1=c2=...=cα=1 and r1=r2=...=rβ=1, equation 3 becomes the original equation 1.

    Example. We first continue the example in the previous section with new cost weight vectors for X1 and X2 respectively. Assuming C1=(0.5,0.4,0.3,0.2,0.1), C2=(0.1,0.2,0.3,0.4,0.5) and R=(1,1,1,1), we have the associations in Table 5.

    Table 5. Association with/without cost vectors: X1 and X2.
    X ωY|X ˆωY|X ˉωY|X total profit average profit
    X1 0.3406 0.3406 1.3057 12016.17 1.3132
    X2 0.3391 0.3391 1.8546 17072.17 1.8658
     | Show Table
    DownLoad: CSV

    By profit=i,sWi,skrsCki,i=1,2,..,α;s=1,2,..,β and k=1,2 where Wk is the corresponding prediction contingency table, we have the profit for X1 as 12016.17 and that of X2 as 17072.17. When both divided by the total sample size 9150, they change to 1.3132 and 1.8658, similar to ˉω(Y|X1) and ˉω(Y|X2). It indicates that ˉωY|X is the expected RoI. In this example, X2 is the better variable given the cost and the revenue vectors are of interest.

    We then investigate how the change of cost weight affect the result. Suppose the new weight vectors are: R=(1,1,1,1), C1=(0.1,0.2,0.3,0.4,0.5) and C2=(0.5,0.4,0.3,0.2,0.1), we have the new associations in Table 6.

    Table 6. Association with/without new cost vectors: X1 and X2.
    X ωY|X ˆωY|X ˉωY|X total profit average profit
    X1 0.3406 0.3406 1.7420 15938.17 1.7419
    X2 0.3391 0.3391 1.3424 12268.17 1.3408
     | Show Table
    DownLoad: CSV

    Hence ˉωY|X1>ˉωY|X2, on the contrary to the example with the old weight vectors. Thus the right amount of weight is critical to define the better variable regarding the profit in total.


    4. The impact on feature selection

    By the updated association defined in the previous section, we present the feature selection result in this section to a given data set S with explanatory categorical variables V1,V2,..,Vn and a response variable Y. The feature selection steps can be found in [9].

    At first, consider a synthetic data set simulating the contribution factors to the sales of certain commodity. In general, lots of factors could contribute differently to the commodity sales: age, career, time, income, personal preference, credit, etc. Each factor could have different cost vectors, each class in a variable could have different cost as well. For example, collecting income information might be more difficult than to know the customer's career; determining a dinner waitress' purchase preference is easier than that of a high income lawyer. Therefore we just assume that there are four potential predictors, V1,V2,V3,V4 within the data set with a sample size of 10000 and get a feature selection result by monte carlo simulation in Table 7.

    Table 7. Simulated feature selection: one variable.
    X |Dmn(X)| ωY|X ˉωY|X total profit average profit
    V1 7 0.3906 3.5381 35390 3.5390
    V2 4 0.3882 3.8433 38771 3.8771
    V3 4 0.3250 4.8986 48678 4.8678
    V4 8 0.3274 3.7050 36889 3.6889
     | Show Table
    DownLoad: CSV

    The first variable to be selected is V1 using ωY|X as the criteria according to [9]. But it is V3 that needs to be selected as previously discussed if the total profit is of interest. Further we assume that the two variable combinations satisfy the numbers in Table 8 by, again, monte carlo simulation.

    Table 8. Simulated feature selection: two variables.
    X1,X2 |Dmn(X1,X2)| ωY|(X1,X2) ˉωY|(X1,X2) total profit average profit
    V1,V2 28 0.4367 1.8682 18971 1.8971
    V1,V3 28 0.4025 2.1106 20746 2.0746
    V1,V4 56 0.4055 1.8055 17915 1.7915
    V3,V2 16 0.4055 2.3585 24404 2.4404
    V3,V4 32 0.3385 2.0145 19903 1.9903
     | Show Table
    DownLoad: CSV

    As we can see, all ωY|(X1,X2)ωY|X1, but it is not case for ˉωY|(X1,X2) since the cost gets larger with two variables thus the profit drops down. As in one variable scenario, the better two variable combination with respect to ωY|(X1,X2) is (V1,V2) while ˉωY|(X1,X2) suggests (V3, V2) is the better choice.

    In summary, the updated association with cost and revenue vector not only changes the feature selection result by different profit expectations, it also reflects a practical reality that collecting information for more variables costs more thus reduces the overall profit, meaning more variables is not necessarily better on a Return-Over-Invest basis.


    5. Conclusions and remarks

    We propose a new metrics, ¯ωY|X in this article to improve the proportional prediction based association measure, ωY|X, to analyze the cost and revenue factors in the categorical data. It provides a description to the global-to-global association with practical RoI concerns, especially in a case where response variables are multi-categorical.

    The presented framework can also be applied to high dimensional cases as in national survey, misclassification costs, association matrix and association vector [9]. It should be more helpful to identify the predictors' quality with various response variables.

    Given the distinct character of this new statistics, we believe it brings us more opportunities to further studies of finding the better decision for categorical data. We are currently investigating the asymptotic properties of the proposed measures and it also can be extended to symmetrical situation. Of course, the synthetical nature of the experiments in this article brings also the question of how it affects a real data set/application. It is also arguable that the improvements introduced by the new measures probably come from the randomness. Thus we can use k-fold cross-validation method to better support our argument in the future.




    [1] Billinton R (1994) Evaluation of reliability worth in an electric power system. Reliab Eng Syst Saf 46: 15-23. doi: 10.1016/0951-8320(94)90044-2
    [2] Bazovsky I (2004) Reliability Theory and Practice. Dover Publications Inc., New York, USA.
    [3] Sun X, Chen J, Zhu Q, et al. (2016) Assessment of transmission reliability margin using stochastic response surface method. IEEE Power and Energy Society General Meeting (PESGM).
    [4] Zhang J, Dobson I, Alvarado FL (2004) Quantifying transmission reliability margin. Int J Electr Power Energy Syst 26: 697-702. doi: 10.1016/S0142-0615(04)00071-7
    [5] Rodrigues AB, Silva MG Da (2011) Chronological simulation for transmission reliability margin evaluation with time-varying loads. Int J Electr Power Energy Syst 33: 1054-1061. doi: 10.1016/j.ijepes.2011.01.024
    [6] Othman MM bin, Mohamed A, Hussain A (2008) Determination of transmission reliability margin using parametric bootstrap technique. IEEE Trans Power Syst 23: 1689-1700. doi: 10.1109/TPWRS.2008.2004734
    [7] Zaini RH, Othman MM bin, Musirin I, et al. (2010) Determination of transmission reliability margin considering uncertainties of system operating condition and transmission line outage. Eur Trans Electr Power 21: 380-397. doi: 10.1002/etep.448
    [8] Li D, Chen Y, Lu W, et al. (2011) Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Comput Geotech 38: 58-68. doi: 10.1016/j.compgeo.2010.10.006
    [9] Nadia A, Chowdhury AH (2019) Transmission reliability margin calculation by modified DC load flow method. International Conference on Advances in Electrical Engineering (ICAEE).
    [10] Othman MM bin, Mohamed A, Hussain A (2006) Determination of available transfer capability incorporating transmission reliability margin. IEEE International Power and Energy Conference.
    [11] Khatavkar V, Swathi D, Mayadeo H, et al. (2018) Short-term estimation of transmission reliability margin using artificial neural networks. In International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications, Springer, Singapore.
    [12] Nadia A, Chowdhury AH, Mahfuj E, et al. (2020) Determination of transmission reliability margin using AC load flow. AIMS Energy 8: 701-720. doi: 10.3934/energy.2020.4.701
    [13] Ou Y, Singh C (2002) Assessment of available transfer capability and margins. IEEE Trans Power Syst 17: 463-468. doi: 10.1109/TPWRS.2002.1007919
    [14] Ian D, Greene S, Rajaraman R, et al. (2001) Electric power transfer capability: concepts, applications, sensitivity, and uncertainty. PSERC: 01-34.
    [15] Sharma AK, Kumar J (2011) ACPTDF for Multi-transactions and ATC determination in deregulated markets. Inter J Electr Comput Eng (IJECE) 1: 71-84.
    [16] Manjusha S, Rao JS (2015) Determination of ATC for single and multiple transactions in restructured power systems. Int J Electr Electr Eng, 2.
    [17] Kumar A, Kumar M (2013) Available transfer capability determination using power transfer distribution factors. Int J Emerging Electr Power Syst 3: 1171-1176.
    [18] Duong TL, Nguyen TT, Nguyen NA, et al. (2020) Available transfer capability determination for the electricity market using cuckoo search algorithm. Eng Technol Appl Sci Res10: 5340-5345. doi: 10.48084/etasr.3338
    [19] Chen H, Fang X, Zhang R, et al. (2017) Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Gener, Trans Distrib 12: 53-61. doi: 10.1049/iet-gtd.2016.1883
    [20] Ahmad AS, Adamu SS, Buhari M (2019) Available transfer capability enhancement with FACTS using hybrid PI-PSO. Turk J Electr Eng Comput Sci 27: 2881-2897. doi: 10.3906/elk-1812-54
    [21] Mohammed OO, Mustafa MW, Mohammed DSS, et al. (2019) Available transfer capability calculation methods: A comprehensive review. Int Trans Electr Energy Syst 29: 1-24. doi: 10.1002/2050-7038.2846
    [22] Grijalva S, Sauer PW (1999) Reactive power considerations in linear ATC computation. Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. HICSS-32.
    [23] Gao Y, Li G, Zhou M (2009) Available transfer capability evaluation based on sensitivity analysis. IFAC Proceedings Vol 42: 62-67. doi: 10.3182/20090705-4-SF-2005.00013
    [24] Christie RD, Wollenberg BF, Wangensteen I (2000) Transmission management in the deregulated environment. Proceedings IEEE 88: 170-195. doi: 10.1109/5.823997
    [25] Beagam KSH, Jayashree R, Khan MA (2017) A new DC power flow model for Q flow analysis for use in reactive power market. Eng Sci Technol, Int J 20: 721-729.
    [26] Greene S, Dobson I, Alvarado FL (2002) Sensitivity of transfer capability margins with a fast formula. IEEE Trans Power Syst 17: 34-40. doi: 10.1109/59.982190
    [27] Nadia A, Chowdhury AH (2019) Correlation between transmission reliability margin and standard deviation of uncertainty. 5th International Conference on Advances in Electrical Engineering (ICAEE).
    [28] Lane JE, Zulim D (2011) Equipment and methods for emergency lighting that provides brownout detection and protection. ABL IP Holding LLC, U.S. Patent 7,863,832.
    [29] Basina DR, Kumar S, Padhi S, et al. (2020) Brownout based blackout avoidance strategies in smart grids. IEEE Trans Sustainable Comput.
    [30] Zhang Y, Wang L, Xiang Y, et al. (2015) Power system reliability evaluation with SCADA cybersecurity considerations. IEEE Trans Smart Grid 6: 1707-1721. doi: 10.1109/TSG.2015.2396994
    [31] Nadia A, Hossain MS, Hasan MM, et al. (2021) Quantifying TRM by modified DCQ load flow method. Eur J Electr Eng 23: 157-163. doi: 10.18280/ejee.230210
    [32] Hossain MS, Rahman MF (2020) Hybrid solar PV/Biomass powered energy efficient remote cellular base stations. Int J Renewable Energy Res 10: 329-342.
    [33] Jahid A, Hossain MS, Monju MKH, et al. (2020) Techno-Economic and energy efficiency analysis of optimal power supply solutions for green cellular base stations. IEEE Access 8: 43776-43795. doi: 10.1109/ACCESS.2020.2973130
    [34] Hossain MS, Jahid A, Islam KZ, et al. (2020) Solar PV and biomass resources-based sustainable energy supply for Off-Grid cellular base stations. IEEE Access 8: 53817-53840. doi: 10.1109/ACCESS.2020.2978121
    [35] Hossain MS, Jahid A, Islam KZ, et al. (2020) Multi-Objective optimum design of hybrid renewable energy system for sustainable energy supply to a green cellular networks. Sustainability 12: 3536. doi: 10.3390/su12093536
    [36] Abunima H, Teh J, Lai CM, et al. (2018) A systematic review of reliability studies on composite power systems: a coherent taxonomy motivation, open challenges, recommendations, and new research directions. Energies 11: 2417. doi: 10.3390/en11092417
    [37] Paveethra SR, Kalavalli C, Vijayalakshmi S, et al. (2020) Evaluation of voltage stability of transmission line with contingency analysis. Int J Sci Technol Res 9: 1-4.
    [38] Li X, Jiang T, Liu G, et al. (2020) Bootstrap-based confidence interval estimation for thermal security region of bulk power grid. Int J Electr Power Energy Syst 115: 105498. doi: 10.1016/j.ijepes.2019.105498
    [39] Adusumilli BS, Kumar BK (2018) Modified affine arithmetic based continuation power flow analysis for voltage stability assessment under uncertainty. IET Gener, Trans Distrib 12: 4225-4232. doi: 10.1049/iet-gtd.2018.5479
    [40] Lee Y, Song H (2019) A reactive power compensation strategy for voltage stability challenges in the Korean power system with dynamic loads. Sustainability 11: 326. doi: 10.3390/su11020326
    [41] Teh J, Lai CM, Cheng YH (2017) Impact of the real-time thermal loading on the bulk electric system reliability. IEEE Trans Reliab 66: 1110-1119. doi: 10.1109/TR.2017.2740158
    [42] Teh J (2018) Uncertainty analysis of transmission line end-of-life failure model for bulk electric system reliability studies. IEEE Trans Reliab 67: 1261-1268. doi: 10.1109/TR.2018.2837114
    [43] Teh J, Lai CM (2019) Reliability impacts of the dynamic thermal rating system on smart grids considering wireless communications. IEEE Access 7: 41625-41635. doi: 10.1109/ACCESS.2019.2907980
    [44] Teh J, Lai CM (2019) Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks. Sustainable Energy, Grids Networks 20: 100268. doi: 10.1016/j.segan.2019.100268
    [45] Metwaly MK, Teh J (2020) Probabilistic peak demand matching by battery energy storage alongside dynamic thermal ratings and demand response for enhanced network reliability. IEEE Access 8: 181547-181559. doi: 10.1109/ACCESS.2020.3024846
    [46] Teh J, Lai CM, Cheng YH (2018) Improving the penetration of wind power with dynamic thermal rating system, static VAR compensator and multi-objective genetic algorithm. Energies 11: 815. doi: 10.3390/en11040815
    [47] Metwaly MK, Teh J (2020) Optimum network ageing and battery sizing for improved wind penetration and reliability. IEEE Access 8: 118603-118611. doi: 10.1109/ACCESS.2020.3005676
    [48] Hossain MS, Rahman M, Sarker MT, et al. (2019) A smart IoT based system for monitoring and controlling the sub-station equipment. Internet of Things 7: 100085. doi: 10.1016/j.iot.2019.100085
    [49] Jahid A, Islam KZ, Hossain S, et al. (2019) Performance evaluation of cloud radio access network with hybrid power supplies. In Proceedings of the International Conference on Sustainable Technologies for Industry 4.0 (STI).
    [50] Haque ME, Asikuzzaman M, Khan IU, et al. (2020) Comparative study of IoT-based topology maintenance protocol in a wireless sensor network for structural health monitoring. Remote Sensing 12: 2358. doi: 10.3390/rs12152358
    [51] Sauer PW (1997) Technical challenges of computing available transfer capability (ATC) in electric power systems. In Proceedings of the Thirtieth Hawaii International Conference on System Sciences 5: 589-593. doi: 10.1109/HICSS.1997.663220
    [52] Sauer PW (1998) Alternatives for calculating transmission reliability margin (TRM) in available transfer capability (ATC). In Proceedings of the Thirty-First Hawaii International Conference on System Sciences 3: 89. doi: 10.1109/HICSS.1998.656069
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2737) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog