In this work, we report on a perfusion-based co-culture system that could be used for bone tissue engineering applications. The model system is created using a combination of Primary Human Umbilical Vein Endothelial Cells (HUVECs) and osteoblast-like Saos-2 cells encapsulated within a Gelatin Methacrylate (GelMA)-collagen hydrogel blend contained within 3D printed, perfusable constructs. The constructs contain dual channels, within a custom-built bioreactor, that were perfused with osteogenic media for up to two weeks in order to induce mineral deposition. Mineral deposition in constructs containing only HUVECs, only Saos-2 cells, or a combination thereof was quantified by microCT to determine if the combination of endothelial cells and bone-like cells increased mineral deposition. Histological and fluorescent staining was used to verify mineral deposition and cellular function both along and between the perfused channels. While there was not a quantifiable difference in the amount of mineral deposited in Saos-2 only versus Saos-2 plus HUVEC samples, the location of the deposited mineral differed dramatically between the groups and indicated that the addition of HUVECs within the GelMA matrix allowed Saos-2 cells, in diffusion limited regions of the construct, to deposit bone mineral. This work serves as a model on how to create perfusable bone tissue engineering constructs using a combination of 3D printing and cellular co-cultures.
Citation: Stephen W. Sawyer, Kairui Zhang, Jason A. Horton, Pranav Soman. Perfusion-based co-culture model system for bone tissue engineering[J]. AIMS Bioengineering, 2020, 7(2): 91-105. doi: 10.3934/bioeng.2020009
[1] | Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885 |
[2] | Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068 |
[5] | Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268 |
[6] | Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299 |
[7] | Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107 |
[8] | Müzeyyen Sangurlu Sezen . Interpolative best proximity point results via γ-contraction with applications. AIMS Mathematics, 2025, 10(1): 1350-1366. doi: 10.3934/math.2025062 |
[9] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[10] | Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad . Nb-fuzzy metric spaces with topological properties and applications. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296 |
In this work, we report on a perfusion-based co-culture system that could be used for bone tissue engineering applications. The model system is created using a combination of Primary Human Umbilical Vein Endothelial Cells (HUVECs) and osteoblast-like Saos-2 cells encapsulated within a Gelatin Methacrylate (GelMA)-collagen hydrogel blend contained within 3D printed, perfusable constructs. The constructs contain dual channels, within a custom-built bioreactor, that were perfused with osteogenic media for up to two weeks in order to induce mineral deposition. Mineral deposition in constructs containing only HUVECs, only Saos-2 cells, or a combination thereof was quantified by microCT to determine if the combination of endothelial cells and bone-like cells increased mineral deposition. Histological and fluorescent staining was used to verify mineral deposition and cellular function both along and between the perfused channels. While there was not a quantifiable difference in the amount of mineral deposited in Saos-2 only versus Saos-2 plus HUVEC samples, the location of the deposited mineral differed dramatically between the groups and indicated that the addition of HUVECs within the GelMA matrix allowed Saos-2 cells, in diffusion limited regions of the construct, to deposit bone mineral. This work serves as a model on how to create perfusable bone tissue engineering constructs using a combination of 3D printing and cellular co-cultures.
Fixed point theory plays a fundamental role in mathematics and applied science, such as optimization, mathematical models and economic theories. Also, this theory has been applied to show the existence and uniqueness of the solutions of differential equations, integral equations and many other branches of mathematics, see [1,2]. A prominent result in fixed point theory is the Banach contraction principle [3]. Since the appearance of this principle, there has been a lot of activity in this area. Bakhtin [4] in 1989 introduced the notion of a b-metric space (Bms). Shoaib et. al [5] proved certain fixed point results in rectangular metric spaces. Multivalued mappings in various types of metric spaces have been extensively studied by many researchers to establish fixed point results and their applications, see for instance [6,7,8,9,10,11,12].
In 1965, Zadeh [13] introduced the concept of a fuzzy set theory to deal with the unclear or inexplicit situations in daily life. Using this theory, Kramosil and Michálek [14] defined the concept of a fuzzy metric space (Fms). Grabiec [15] gave contractive mappings on a Fms and extended fixed point theorems of Banach and Edelstein in such a space. Successively, George and Veeramani [16] slightly modified the notion of a Fms introduced by Kramosil and Michálek [14] and then obtained a Hausdorff topology and a first countable topology on it. Many fixed point results have been established in a Fms. For instance, see [17,18,19,20,21,22,23,24,25] and the references therein. Recently, some coupled fuzzy fixed-point results on closed ball are established in fuzzy metric spaces [26]. The notion of generalized fuzzy metric spaces is studied in [27].
The notion of a fuzzy b-metric space (Fbms) was defined in [28]. The notion of a Hausdorff Fms is introduced in [29]. Fixed point theory for multivalued mapping in fuzzy metric spaces has been extended in many directions. For a multivalued mapping (Mvp) in a complete Fms, some fixed point results are establish in [30]. Some fixed point results for a Mvp in a Hausdorff fuzzy b-metric space (Hfbms) are proved in [31]. In this article, we prove some fixed point results for a Mvp using Geraghty type contractions in a Hfbms. Results in [31,32] and [30] turn out to be special cases of our results.
Throughout the article, ℧ refers to a non-empty set, N represents the set of natural numbers, R corresponds to the collection of real numbers, CB(℧) and ˆC0(℧) represent the collection of closed and bounded subsets and compact subsets of ℧, respectively.
Let us have a look at some core concepts that will be helpful for the proof of our main results.
Definition 1.1. [33] For a real number b≥1, the triplet (℧,Θfb,∗) is called a Fbms on ℧ if for all ψ1,ψ2,ψ3∈℧ and γ>0, the following axioms hold, where ∗ is a continuous t-norm and Θfb is a fuzzy set on ℧×℧×(0,∞):
[Fb1:] Θfb(ψ1,ψ2,γ)>0;
[Fb2:] Θfb(ψ1,ψ2,γ)=1 if and only if ψ1=ψ2;
[Fb3:] Θfb(ψ1,ψ2,γ)=Θfb(ψ2,ψ1,γ);
[Fb4:] Θfb(ψ1,ψ3,b(γ+β))≥Θfb(ψ1,ψ2,γ)∗Θfb(ψ2,ψ3,β) ∀γ,β≥0;
[Fb5:] Θfb(ψ1,ψ2,.):(0,∞)→[0,1] is left continuous.
The notion of a Fms in the sense of George and Veeramani [16] can be obtained by taking b=1 in the above definition.
Example 1.1. For a Bms (℧,Θb,∧), define a mapping Θfb:℧×℧×(0,∞)→[0,1] by
Θfb(ψ1,ψ2,γ)=γγ+db(ψ1,ψ1). |
Then (℧,Θfb,∧) is a Fbms.
Following Grabiec [15], the notions of G-Cauchyness and completeness are defined as follows:
Definition 1.2. [15]
(i) If for a sequence {ψn} in a Fbms (℧,Θfb,∗), there is ψ∈℧ such that
limn→∞Θfb(ψn,ψ,γ)=1,∀γ>0, |
then {ψn} is said to be convergent.
(ii) If for a sequence {ψn} in a Fbms (℧,Θfb,∗), limn→∞Θfb(ψn,ψn+q,γ)=1 then {ψn} is a G-Cauchy sequence for all γ>0 and positive integer q.
(iii) A Fbms is G-complete if every G-Cauchy sequence is convergent.
Definition 1.3. [30] Let B be any nonempty subset of a Fms (℧,Θfb,∗) and γ>0, then we define FΘfb(ϱ1,B,γ), the fuzzy distance between an element ϱ1∈℧ and the subset B, as follows:
FΘfb(ϱ1,B,γ)=sup{Θf(ϱ1,ϱ2,γ):ϱ2∈B}. |
Note that FΘfb(ϱ1,B,γ)=FΘfb(B,ϱ1,α).
Lemma 1.1. [31] Consider a Fbms (℧,Θfb,∗) and let CB(℧) be the collection of closed bounded subsets of ℧. If A∈CB(℧) then ψ∈A if and only if FΘfb(A,ψ,γ)=1∀γ>0.
Definition 1.4. [31] Let (℧,Θfb,∗) be a Fbms. Define HFΘfb on ˆC0(℧)׈C0(℧)×(0,∞) by
HFΘfb(A,B,γ)=min{ infψ∈AFΘfb(ψ,B,γ),infϱ∈BFΘfb(A,ϱ,γ)}, |
for all A,B∈^C0(℧) and γ>0.
For Geraghty type contractions, follow [33] to define a class FΘb of all functions β:[0,∞)→[0,1b) for b≥1, as
FΘb={β:[0,∞)→[0,1b)|limn→∞β(γn)=1b⇒limn→∞γn=0}. | (1.1) |
Lemma 1.2. [31] Let (℧,Θfb,∗) be a G-complete Fbms. If ψ,ϱ∈℧ and for a function β∈FΘfb
Θfb(ψ,ϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ), |
then ψ=ϱ.
Lemma 1.3. [31] Let (^C0(℧),HFΘfb,∗) be a Hfbms where (Θfb,∗) is a Fbm on ℧. If for all A,B∈^C0(℧), for each ψ∈A and for γ>0 there exists ϱψ∈B, satisfying FΘfb(ψ,B,γ)=Θfb(ψ,ϱψ,γ), then
HFΘfb(A,B,γ)≤Θfb(ψ,ϱψ,γ). |
In this section, we develop some fixed point results by using the idea of a Hfbms. Furthermore, an example is also presented for a deeper understanding of our results.
Recall that, given a multivalued mapping Ξ:℧→ˆC0(℧), a point ψ is said to be a fixed point of Ξ if ψ∈Ξψ.
Theorem 2.1. Let (℧,Θfb,∗) be a G-complete Fbms and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→^C0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ), | (2.1) |
for all ψ,ϱ∈℧, where β∈FΘfb as defined in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0 by the application of Lemma 1.3, we can choose ψ2∈Ξψ1 such that for all γ>0,
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ). |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ)∀r∈N. |
By the application of (2.1) and Lemma 1.3, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))≥HFΘfb(Ξψr−2,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))≥Θfb(ψr−2,ψr−1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ)))⋮≥HFΘfb(Ξψ0,Ξψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ1,ψ2,γ)))≥Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). | (2.2) |
For any q∈N, writing q(γq)=γq+γq+…+γq and using [Fb4] repeatedly,
Θfb(ψr,ψr+q,γ)≥Θfb(ψr,ψr+1,γqb)∗Θfb(ψr+1,ψr+2,γqb2)∗Θfb(ψr+2,ψr+3,γqb3)∗…∗Θfb(ψr+q−1,ψr+q,γqbq). |
Using (2.2) and [Fb5], we get
Θfb(ψr,ψr+q,γ)≥Θfb(ψ0,ψ1,γqbβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ)))∗Θfb(ψ0,ψ1,γqb2β(Θfb(ψr,ψr+1,γ))β(Θfb(ψr−1,ψr,γ))…β(Θfb(ψ0,ψ1,γ)))∗Θfb(ψ0,ψ1,γqb3β(Θfb(ψr+1,ψr+2,γ))β(Θfb(ψr,ψr+1,γ))…β(Θfb(ψ0,ψ1,γ)))∗…∗Θfb(ψ0,ψ1,γqbqβ(Θfb(ψr+q−2,ψr+q−1,γ))β(Θfb(ψr+q−3,ψr+q−2,γ))…β(Θfb(ψ0,ψ1,γ))). |
That is,
Θfb(ψr,ψr+q,γ)≥Θfb(ψ0,ψ1,br−1γq)∗Θfb(ψ0,ψ1,br−1γq)∗Θfb(ψ0,ψ1,br−1γq)∗…∗Θfb(ψ0,ψ1,br−1γq). |
Taking limit as r→∞, we get
limn→∞Θfb(ψr,ψr+q,γ)=1∗1∗…∗1=1. |
Hence, {ψr} is G-Cauchy sequence. By the G-completeness of ℧, there exists ϕ∈℧ such that
Θfb(ϕ,Ξϕ,γ)≥Θfb(ϕ,ψr+1,γ2b)∗Θfb(ψr+1,Ξϕ,γ2b)≥Θfb(ϕ,ψr+1,γ2b)∗HFΘfb(Ξψr,Ξϕ,γ2b)≥Θfb(ϕ,ψr+1,γ2b)∗Θfb(ψr,ϕ,γ2bβ(Θfb(ψr,ϕ,γ)))⟶1asr→∞. |
By Lemma 1.1, it follows that ϕ∈Ξϕ. That is, ϕ is a fixed point for Ξ.
Remark 2.1.
(1) If we take β(Θfb(ψ,ϱ,γ))=k with bk<1, we get Theorem 3.1 of [31].
(2) By setting ^C0(℧)=℧ the mapping Ξ:℧→^C0(℧) becomes a single valued and we get Theorem 3.1 of [32]. Notice that when Ξ is a singlevalued map, Ξψ becomes a singleton set and the fact that HFΘfb(Ξψ,Ξϱ,γ)=Θfb(Ξψ,Ξϱ,γ) indicates that the fixed point will be unique as proved in [32].
(3) Set b=1 and ^C0(℧)=℧ and let k∈(0,1) be such that β(Θfb(ψ,ϱ,γ))=k then we get the main result of [15].
The next example illustrates Theorem 2.1.
Example 2.1. Let ℧=[0,1] and define a G-complete Fbms by
Θfb(ψ,ϱ,γ)=γγ+(ψ−ϱ)2, |
with b≥1. For β∈Fb, define a mapping Ξ:℧→^C0(℧) by
Ξψ={{0}if ψ=0,{0,√β(Θfb(ψ,ϱ,γ))ψ2}otherwise. |
For ψ=ϱ,
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=1=Θfb(ψ,ϱ,γ). |
If ψ≠ϱ, then following cases arise.
For ψ=0 and ϱ∈(0,1], we have
HFΘfb(Ξ0,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=min{ infa∈Ξ0FΘfb(a,Ξϱ,β(Θfb(ψ,ϱ,γ))γ),infb∈ΞϱFΘfb(Ξ0,b,β(Θfb(ψ,ϱ,γ))γ))}=min{infa∈Ξ0FΘfb(a,{0,√β(Θfb(ψ,ϱ,γ))ϱ2},β(Θfb(ψ,ϱ,γ))γ),infb∈ΞϱFΘfb({0},b,β(Θfb(ψ,ϱ,γ))γ)}=min{inf{FΘfb(0,{0,√β(Θfb(ψ,ϱ,γ))ϱ2},β(Θfb(ψ,ϱ,γ))γ)},inf{FΘfb({0},0,β(Θfb(ψ,ϱ,γ))γ),FΘfb({0},√β(Θfb(ψ,ϱ,γ))ϱ2,β(Θfb(ψ,ϱ,γ))γ)}}=min{inf{sup{FΘfb(0,0,β(Θfb(ψ,ϱ,γ))γ),FΘfb(0,√β(Θfb(ψ,ϱ,γ))ϱ2,β(Θfb(ψ,ϱ,γ))γ)}},inf{FΘfb(0,0,β(Θfb(ψ,ϱ,γ))γ),FΘfb(0,√β(Θfb(ψ,ϱ,γ))y2,β(Θfb(ψ,ϱ,γ))γ)}}=min{inf{sup{1,γγ+ϱ24}},inf{1,γγ+ϱ24}}=min{inf{1},γγ+ϱ24}=min{1,γγ+ϱ24}=γγ+ϱ24. |
It follows that
HFΘfb(Ξ0,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)>Θfb(0,ϱ,γ)=γγ+ϱ2. |
For ψ and ϱ∈(0,1], after simplification we have
HFΘfb(S(ψ),Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=min{sup{γγ+ψ24,γγ+(ψ−ϱ)24},sup{γγ+ϱ24,γγ+(ψ−ϱ)24}}≥γγ+(ψ−ϱ)24>γγ+(ψ−ϱ)2=Θfb(ψ,ϱ,γ). |
Thus, for all cases, we have
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ). |
Since all conditions of Theorem 2.1 are satisfied and 0 is a fixed point of Ξ.
Theorem 2.2. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→^C0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{FΘfb(ϱ,Ξϱ,γ)[1+FΘfb(ψ,Ξψ,γ)]1+Θfb(ψ,ϱ,γ),Θfb(ψ,ϱ,γ)}, | (2.3) |
for all ψ,ϱ∈℧, where β∈FΘfb as given in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0. By the application of Lemma 1.3 we can choose ψ2∈Ξψ1 such that
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀r∈N. |
By the application of (2.3) and Lemma 1.3 we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{FΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))},Θfb(ψr,ψr+1,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.4) |
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.4) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))). |
The result is obvious by Lemma 1.2.
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.4) we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))≥Θfb(ψr−2,ψr−1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ)))⋮⩾Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ)). |
The rest of the proof can be done by proceeding same as in Theorem 2.1.
Remark 2.2.
(1) If we take β(Θfb(ψ,ϱ,γ))=k with bk<1, we get Theorem 3.2 of [31].
(2) By taking b=1 and for some 0<k<1 setting β(Θfb(ψ,ϱ,γ))=k in Theorem 2.2, we get the main result of [30].
Theorem 2.3. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{FΘfb(ϱ,Ξϱ,γ)[1+FΘfb(ψ,Ξψ,γ)+FΘfb(ϱ,Ξψ,γ)]2+Θfb(ψ,ϱ,γ),Θfb(ψ,ϱ,γ)} | (2.5) |
for all ψ,ϱ∈℧, where β∈FΘfb, the class of functions defined in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0. by the application of Lemma 1.3 we can choose ψ2∈Ξψ1 such that
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀r∈N. |
By the application of (2.5) and Lemma 1.3, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{FΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))+FΘfb(ψr,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))+Θfb(ψr,ψr,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))+1]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.6) |
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.6) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
and the proof follows by Lemma 1.2.
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))). |
Then from (2.6) we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))⩾…⩾Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). |
The rest of the proof is same as in Theorem 2.1.
Remark 2.3. Theorem 3.3 of [31] becomes a special csae of the above theorem by setting β(Θfb(ψ,ϱ,γ))=k where k is chosen such that bk<1.
Theorem 2.4. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a multivalued mapping satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{FΘfb(ψ,Ξψ,γ)[1+FΘfb(ϱ,Ξϱ,γ)]1+FΘfb(Ξψ,Ξϱ,γ),FΘfb(ψ,Ξϱ,γ)[1+FΘfb(ψ,Ξψ,γ)]1+Θfb(ψ,ϱ,γ),FΘfb(ψ,Ξψ,γ)[2+FΘfb(ψ,Ξϱ,γ)]1+Θfb(ψ,Ξϱ,γ)+FΘfb(ϱ,Ξψ,γ),Θfb(ψ,ϱ,γ)}, | (2.7) |
for all ψ,ϱ∈℧, where β∈Ffb, the class of functions defined in (1.1). Then Ξ has a fixed point.
Proof. In the same way as Theorem 2.1, we have
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction, we obtain ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀n∈N. |
Now, by (2.7) together with Lemma 1.3, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr,Sψr,γβ(Θfb(ψr−1,ψr,γ)))]1+FΘfb(Ξψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ))),FΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))[2+FΘfb(ψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))]1+FΘfb(ψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))+FΘfb(ψr,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))[2+Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))+Θfb(ψr,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))},Θfb(ψr,ψr+1,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.8) |
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.8) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))). |
Then the proof follows by Lemma 1.2.
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.6) we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))⋮⩾Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). |
The rest of the proof is similar as in Theorem 2.1.
Remark 2.4. Again by taking β(Θfb(ψ,ϱ,γ))=k with kb<1, we get Theorem 3.4 of [31].
Theorem 2.5. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{HFΘfb(Ξψ,Ξϱ,γ).Θfb(ψ,ϱ,γ),HFΘfb(ψ,Ξψ,γ).HFΘfb(ϱ,Ξϱ,γ)})max{HFΘfb(ψ,Ξψ,γ),HFΘfb(ϱ,Ξϱ,γ)}, | (2.9) |
for all ψ,ϱ∈℧, where β∈Ffb. Then Ξ has a fixed point.
Proof. In the same way as Theorem 2.1, we have
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀n∈N. |
Now by (2.7) together with Lemma 1.3 and some obvious simplification step, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))}max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))}≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))} | (2.10) |
If
max{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.10) implies
Θfb(ψr,ψr+1,t)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))) |
Then the proof follows by Lemma 1.2.
If
max{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.10) we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))⋮⩾Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). |
The remaining proof follows in the same way as in Theorem 2.1.
Theorem 2.6. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Γ1(ψ,ϱ,γ)∗Γ2(ψ,ϱ,γ), | (2.11) |
where,
{Γ1(ψ,ϱ,γ)=min{HFΘfb(Ξψ,Ξϱ,γ),HFΘfb(ψ,Ξψ,γ),HFΘfb(ϱ,Ξϱ,γ),Θfb(ψ,ϱ,γ)}Γ2(ψ,ϱ,γ)=max{HFΘfb(ψ,Ξϱ,γ),HFΘfb(Ξψ,ϱ,γ)}}, | (2.12) |
for all ψ,ϱ∈℧, and β∈Ffb. Then Ξ has a fixed point.
Proof. In the same way as Theorem 2.1, we have
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction we have ψr+1∈Ξψr satisfying
HFΘfb(ψr,ψr+1,γ)=Fθ(Ξψr−1,Ξψr,γ)≥Γ1(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))∗Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))) | (2.13) |
Now,
Γ1(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=min{HFΘfb(Ξψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}.Γ1(ψr−1,ψr−1,γβ(Θfb(ψr−1,ψr,γ)))=min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.14) |
Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=max{HFΘfb(ψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(Ξψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=max{Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=max{Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),1}. Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=1. | (2.15) |
Using (2.14) and (2.15) in (2.13) we have
Θfb(ψr,ψr+1,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}∗1,Θfb(ψr,ψr+1,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.16) |
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.16) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))) |
Then the proof follows by Lemma 1.2
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.16), we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))⋮⩾Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). |
The remaining proof is similar as in Theorem 2.1.
Remark 2.5. If we set ^C0(℧)=℧ the map Ξ becomes a singlevalued and we get Theorem 3.11 of [32]. Again as stated in Remark 2.1, the corresponding fixed point will be unique.
Theorem 2.7. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Γ1(ψ,ϱ,γ)∗Γ2(ψ,ϱ,γ)Γ3(ψ,ϱ,γ), | (2.17) |
where
{Γ1(ψ,ϱ,γ)=min{HFΘfb(Ξψ,Ξϱ,γ).Θfb(ψ,ϱ,γ),HFΘfb(ψ,Ξψ,γ).HFΘfb(ϱ,Ξϱ,γ)}Γ2(ψ,ϱ,γ)=max{HFΘfb(ψ,Ξψ,γ).HFΘfb(ψ,Ξϱ,γ),HFΘfb(ϱ,Ξψ,γ))2}Γ3(ψ,ϱ,γ)=max{HFΘfb(ψ,Ξψ,γ),HFΘfb(ϱ,Ξϱ,γ)}}, | (2.18) |
for all ψ,ϱ∈℧, and β∈Ffb. Then Ξ has a fixed point.
Proof. In the same way as Theorem 2.1, we have
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)=HFΘfb(Ξψr−1,Ξψr,γ)≥Γ1(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))∗Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))Γ3(ψ,ϱ,γβ(Θfb(ψr−1,ψr,γ))). | (2.19) |
Γ1(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=min{HFΘfb(Ξψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ))).Fθ(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))).HFΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))}=min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))). | (2.20) |
Similarly,
Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=max{HFΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(ψr−1,Ξψr,γβ(Θfb(ψr−1,ψr,γ))),(HFΘfb(ψr,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))))2}=max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),(Θfb(ψr,ψr,γβ(Θfb(ψr−1,ψr,γ))))2}=max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),1}. |
It follows that
Γ2(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=1. | (2.21) |
Γ3(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))=max{HFΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ))),HFΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))}=max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.22) |
Using (2.20), (2.21) and (2.22) in (2.19), we have
Θfb(ψr,ψr+1,t)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))).Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))max{Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.23) |
If
max{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.23) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))). |
It is obvious by Lemma 1.2.
If
max{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.23), we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))). |
Continuing in this way, we will get
Θfb(ψr,ψr+1,t)≥Θfb(ψr−1,ψr,γβ(Fθ(ψr−1,ψr,γ)))⋮≥Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ)).β(Θfb(ψn−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). |
The rest of the proof follows in the same way as in Theorem 2.1.
Remark 2.6. By setting ^C0(℧)=℧, the mapping Ξ:℧→^C0(℧) becomes a self (singlevalued) mapping and we get Theorem 3.13 of [32].
An application of Theorem 2.1 is presented here. Recall that the space of all continuous realvalued functions on [0,1] is denoted by C([0,1],R). Now set ℧=C([0,1],R) and define the G-complete Fbm on ℧ by
Θfb(ψ,ϱ,γ)=e−supu∈[0,1]|ψ(u)−ϱ(u)|2γ,∀γ>0andψ,ϱ∈℧. |
Consider
ψ(u)∈∫u0G(u,v,ψ(v))dv+h(u)for allu,v∈[0,1],whereash,ψ∈C([0,1],R). | (3.1) |
Here G:[0,1]×[0,1]×R→Pcv(R) is multivalued function and Pcv(R) represents the collections of convex and compact subsets of R. Moreover, for each ψ in C([0,1],R) the operator G(⋅,⋅,ψ) is lower semi-continuous.
For the integral inclusion given in (3.1), define a multivalued operator S:℧→^C0(℧) by
Sψ(u)={w∈℧:w∈∫u0G(u,v,ψ(v))dv+h(u),u∈[0,1]}. |
Now for arbitrary ψ∈(C([0,1],R), denote Gψ(u,v)=G(u,v,ψ(v)) where u,v∈[0,1]. For the multivalued map Gψ:[0,1]×[0,1]→Pcv(R), by Michael selection theorem [34], there exists a continuous selection gψ:[0,1]×[0,1]→R such that gψ(u,v)∈Gψ(u,v) for each u,v∈[0,1]. It follows that
∫u0gψ(u,v)dv+h(u)∈Sψ(u). |
Since gψ is continuous on [0,1]×[0,1] and h is continuous on [0,1], therefore both gψ and h are bounded realvalued functions. It follows that, the operator Sψ is nonempty and Sψ∈^C0(℧).
With the above setting, the upcoming outcome shows the existence of a solution of the integral inclusion (3.1).
Theorem 3.1. Let ℧=C([0,1],R) and define the multivalued operator S:℧→^C0(℧) by
Sψ(u)={w∈℧:w∈∫u0G(u,v,ψ(v))dv+h(u),u∈[0,1]}, |
where h:[0,1]→R is continuous and the map G:[0,1]×[0,1]×R→Pcv(R) is defined in such a way that for every ψ∈C([0,1],R), the operator G(⋅,⋅,ψ) is lower semi-continuous. Assume further that the given terms are satisfied:
(i) There exists a continuous mapping f:[0,1]×[0,1]→[0,∞) such that
HFΘfb(G(u,v,ψ(v))−G(u,v,ϱ(v))≤f2(u,v)|ψ(v)−ϱ(v)|2, |
for each ψ,ϱ∈℧ and u,v∈[0,1].
(ii) There exists β∈FΘ2, such that
supu∈[0,1]∫u0f2(u,v)dv≤β(Θfb(ψ,ϱ,γ)). |
Then (3.1) has a solution in ℧.
Proof. We will show that the operator S satisfies the conditions of Theorem 2.1. In particular we prove (2.1) as follows:
Let ψ,ϱ∈℧ be such that q∈Sψ. As stated earlier, by selection theorem there is gψ(u,v)∈Gψ(u,v)=G(u,v,ψ(v)) for u,v∈[0,1] such that
q(u)=∫u0gψ(u,v)dv+h(u),u∈[0,1]. |
Further, the condition (ⅰ) ensures that there is some g(u,v)∈Gϱ(u,v) such that
|gψ(u,v)−g(u,v)≤f2(u,v)|ψ(v)−ϱ(v)|2,∀u,v∈[0,1]. |
Now consider the multivalued operator T defined as follows:
T(u,v)=Gϱ(u,v)∩{w∈R:|gψ(u,v)−w|≤f2(u,v)|ψ(v)−ϱ(v)|2}. |
Since, by construction, T is lower semi-continuous, it follows again by the selection theorem that there is continuous function gϱ(u,v):[0,1]×[0,1]→R such that for each u,v∈[0,1], gϱ(u,v)∈T(u,v).
Thus, we have
r(u)=∫u0gϱ(u,v)dv+h(u)∈∫u0G(u,v,ϱ(v))dv+h(u),u∈[0,1]. |
Therefore, for each u∈[0,1] we get
e−supt∈[0,1]|q(u)−r(u))|2β(Θfb(ψ,ϱ,γ))γ≥e−supu∈[0,1]∫u0|gψ(u,v)−gϱ(u,v)|2dvβ(Θfb(ψ,ϱ,γ))γ≥e−supu∈[0,1]∫u0f2(u,v)|ψ(v)−ϱ(v)|2dvβ(Θfb(ψ,ϱ,γ))γ≥e−|ψ(v)−ϱ(v)|2supu∈[0,1]∫u0f2(u,v)dvβ(Θfb(ψ,ϱ,γ))γ≥e−β(Θfb(ψ,ϱ,γ))|ψ(v)−ϱ(v)|2β(Θfb(ψ,ϱ,γ))γ=e−|ψ(v)−ϱ(v)|2γ≥e−supv∈[0,1]|ψ(v)−ϱ(v)|2γ=Θfb(ψ,ϱ,γ). |
This implies that,
Θfb(q,r,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ). |
Interchanging the roles of ψ and ϱ, we get
HFΘfb(Sψ,Sϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ). |
Hence, by Theorem 2.1, the operator S has a fixed point which in turn proves the existence of a solution of integral inclusion (3.1).
In the present work, in the setting of a Hausdorff Fbms, some fixed fixed point results for multivalued mappings are established. The main result, that is, Theorem 2.1 shows that a multivalued mapping satisfying Geraghty type contractions on G-complete Hfbms has a fixed point. Example 2.1 illustrates the main result. Some other interesting fixed point theorems are also proved for the multivalued mappings satisfying certain contraction condition on G-complete Hfbms. The results proved in [30,31,32] turn out to be special cases of the results established in this work. For the significance of our results, an application is presented to prove the existence of solution of an integral inclusion.
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work grant code: 22UQU4331214DSR02
The authors declare that they have no conflict of interest.
[1] |
Buckwalter JA, Glimcher MJ, Cooper RR (1995) Bone biology. Part I: Structure, blood supply, cells, matrix, and mineralization. J Bone Joint Surg 77: 1256-1275. doi: 10.2106/00004623-199508000-00019
![]() |
[2] | McCarthy I (2006) The physiology of bone blood flow: a review. JB & JS 88: 4-9. |
[3] |
Laroche M (2002) Intraosseous circulation from physiology to disease. Joint Bone Spine 69: 262-269. doi: 10.1016/S1297-319X(02)00391-3
![]() |
[4] |
Mercado-Pagán ÁE, Stahl AM, Shanjani Y, et al. (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43: 718-729. doi: 10.1007/s10439-015-1253-3
![]() |
[5] |
Rouwkema J, Westerweel PE, De Boer J, et al. (2009) The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng Part A 15: 2015-2027. doi: 10.1089/ten.tea.2008.0318
![]() |
[6] |
Krishnan L, Willett NJ, Guldberg RE (2014) Vascularization strategies for bone regeneration. Ann Biomed Eng 42: 432-444. doi: 10.1007/s10439-014-0969-9
![]() |
[7] |
Shanjani Y, Kang Y, Zarnescu L, et al. (2017) Endothelial pattern formation in hybrid constructs of additive manufactured porous rigid scaffolds and cell-laden hydrogels for orthopedic applications. J Mech Behav Biomed Mater 65: 356-372. doi: 10.1016/j.jmbbm.2016.08.037
![]() |
[8] |
Murphy WL, Peters MC, Kohn DH, et al. (2000) Sustained release of vascular endothelial growth factor from mineralized poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21: 2521-2527. doi: 10.1016/S0142-9612(00)00120-4
![]() |
[9] |
Lee KY, Peters MC, Anderson KW, et al. (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408: 998-1000. doi: 10.1038/35050141
![]() |
[10] |
Sheridan MH, Shea LD, Peters MC, et al. (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Controll Release 64: 91-102. doi: 10.1016/S0168-3659(99)00138-8
![]() |
[11] |
Peters MC, Polverini PJ, Mooney DJ (2002) Engineering vascular networks in porous polymer matrices. J Biomed Mater Res A 60: 668-678. doi: 10.1002/jbm.10134
![]() |
[12] |
Wang L, Fan H, Zhang ZY, et al. (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31: 9452-9461. doi: 10.1016/j.biomaterials.2010.08.036
![]() |
[13] |
Yu H, VandeVord PJ, Gong W, et al. (2008) Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J Orthop Res 26: 1147-1152. doi: 10.1002/jor.20609
![]() |
[14] |
Villars F, Bordenave L, Bareille R, et al. (2000) Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 79: 672-685. doi: 10.1002/1097-4644(20001215)79:4<672::AID-JCB150>3.0.CO;2-2
![]() |
[15] |
Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10: 12-27. doi: 10.1002/mabi.200900107
![]() |
[16] |
Villars F, Guillotin B, Amedee T, et al. (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol-Cell Ph 282: C775-C85. doi: 10.1152/ajpcell.00310.2001
![]() |
[17] |
Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70: 19-27. doi: 10.1016/j.bone.2014.09.017
![]() |
[18] |
Ghanaati S, Fuchs S, Webber MJ, et al. (2011) Rapid vascularization of starch–poly (caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. J Tissue Eng Regen M 5: e136-e143. doi: 10.1002/term.373
![]() |
[19] |
Guillotin B, Bareille R, Bourget C, et al. (2008) Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 42: 1080-1091. doi: 10.1016/j.bone.2008.01.025
![]() |
[20] |
Unger RE, Sartoris A, Peters K, et al. (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28: 3965-3976. doi: 10.1016/j.biomaterials.2007.05.032
![]() |
[21] | Ma JL, van den Beucken JJJP, Yang F, et al. (2011) Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio. Tissue Eng Part C 17: 349-357. |
[22] |
Black AF, Berthod F, L'Heureux N, et al. (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12: 1331-1340. doi: 10.1096/fasebj.12.13.1331
![]() |
[23] |
Chiu LLY, Montgomery M, Liang Y, et al. (2012) Perfusable branching microvessel bed for vascularization of engineered tissues. Proc Natl Acad Sci USA 109: E3414-E3423. doi: 10.1073/pnas.1210580109
![]() |
[24] |
Zheng Y, Chen J, Craven M, et al. (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 109: 9342-9347. doi: 10.1073/pnas.1201240109
![]() |
[25] |
Chen YC, Lin RZ, Qi H, et al. (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22: 2027-2039. doi: 10.1002/adfm.201101662
![]() |
[26] |
Cuchiara MP, Gould DJ, McHale MK, et al. (2012) Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater 22: 4511-4518. doi: 10.1002/adfm.201200976
![]() |
[27] |
Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71: 185-196. doi: 10.1016/j.mvr.2006.02.005
![]() |
[28] |
Price GM, Wong KHK, Truslow JG, et al. (2010) Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31: 6182-6189. doi: 10.1016/j.biomaterials.2010.04.041
![]() |
[29] |
Nichol JW, Koshy ST, Bae H, et al. (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31: 5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
![]() |
[30] | Park JH, Chung BG, Lee WG, et al. (2010) Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol Bioeng 106: 138-148. |
[31] |
Sadr N, Zhu M, Osaki T, et al. (2011) SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32: 7479-7490. doi: 10.1016/j.biomaterials.2011.06.034
![]() |
[32] |
Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2: 265-271. doi: 10.1038/nmat863
![]() |
[33] |
Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7: 720-725. doi: 10.1039/b618409j
![]() |
[34] |
Miller JS, Stevens KR, Yang MT, et al. (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11: 768-774. doi: 10.1038/nmat3357
![]() |
[35] |
Annabi N, Tamayol A, Uquillas JA, et al. (2014) 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv Mater 26: 85-124. doi: 10.1002/adma.201303233
![]() |
[36] |
Bertassoni LE, Cardoso JC, Manoharan V, et al. (2014) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6: 024105. doi: 10.1088/1758-5082/6/2/024105
![]() |
[37] |
Tan Y, Richards DJ, Trusk TC, et al. (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6: 024111. doi: 10.1088/1758-5082/6/2/024111
![]() |
[38] |
Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23: H178-H183. doi: 10.1002/adma.201004625
![]() |
[39] |
Lee VK, Kim DY, Ngo H, et al. (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35: 8092-8102. doi: 10.1016/j.biomaterials.2014.05.083
![]() |
[40] |
Miller JS, Stevens KR, Yang MT, et al. (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11: 768-774. doi: 10.1038/nmat3357
![]() |
[41] |
Kolesky DB, Truby RL, Gladman AS, et al. (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26: 3124-3130. doi: 10.1002/adma.201305506
![]() |
[42] |
Skardal A, Zhang J, McCoard L, et al. (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16: 2675-2685. doi: 10.1089/ten.tea.2009.0798
![]() |
[43] |
Gao Q, He Y, Fu J-z, et al. (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61: 203-215. doi: 10.1016/j.biomaterials.2015.05.031
![]() |
[44] |
Yang L, Shridhar SV, Gerwitz M, et al. (2016) An in vitro vascular chip using 3D printing-enabled hydrogel casting. Biofabrication 8: 035015. doi: 10.1088/1758-5090/8/3/035015
![]() |
[45] |
Tocchio A, Tamplenizza M, Martello F, et al. (2015) Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 45: 124-131. doi: 10.1016/j.biomaterials.2014.12.031
![]() |
[46] |
Sawyer SW, Shridhar SV, Zhang K, et al. (2018) Perfusion directed 3D mineral formation within cell-laden hydrogels. Biofabrication 10: 035013. doi: 10.1088/1758-5090/aacb42
![]() |
[47] |
Sladkova M, De Peppo GM (2014) Bioreactor systems for human bone tissue engineering. Processes 2: 494-525. doi: 10.3390/pr2020494
![]() |
[48] |
Rice JJ, Martino MM, De Laporte L, et al. (2013) Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2: 57-71. doi: 10.1002/adhm.201200197
![]() |
[49] |
Cartmell SH, Porter BD, García AJ, et al. (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9: 1197-1203. doi: 10.1089/10763270360728107
![]() |
[50] |
Albrecht LD, Sawyer SW, Soman P (2016) Developing 3D scaffolds in the field of tissue engineering to treat complex bone defects. 3D Print Addit Manuf 3: 106-112. doi: 10.1089/3dp.2016.0006
![]() |
[51] |
Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Poly Ed 12: 107-124. doi: 10.1163/156856201744489
![]() |
[52] |
Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21: 2347-2359. doi: 10.1016/S0142-9612(00)00102-2
![]() |
[53] |
Reichert JC, Hutmacher DW (2011) Bone tissue engineering. Tissue Engineering Heidelberg: Springer, 431-456. doi: 10.1007/978-3-642-02824-3_21
![]() |
[54] |
Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16: 496-504. doi: 10.1016/j.mattod.2013.11.017
![]() |
[55] |
Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11: 18-25. doi: 10.1016/S1369-7021(08)70086-5
![]() |
[56] |
Baranski JD, Chaturvedi RR, Stevens KR, et al. (2013) Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci USA 110: 7586-7591. doi: 10.1073/pnas.1217796110
![]() |
[57] |
Lee VK, Lanzi AM, Ngo H, et al. (2014) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7: 460-472. doi: 10.1007/s12195-014-0340-0
![]() |
[58] |
Sawyer S, Oest M, Margulies B, et al. (2016) Behavior of encapsulated saos-2 cells within gelatin methacrylate hydrogels. J Tissue Sci Eng 7: 1000173. doi: 10.4172/2157-7552.1000173
![]() |
[59] |
Sawyer SW, Dong P, Venn S, et al. (2017) Conductive gelatin methacrylate-poly (aniline) hydrogel for cell encapsulation. Biomed Phys Eng Express 4: 015005. doi: 10.1088/2057-1976/aa91f9
![]() |
[60] |
Mikos AG, Sarakinos G, Lyman MD, et al. (1993) Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 42: 716-723. doi: 10.1002/bit.260420606
![]() |
![]() |
![]() |