Research article

Longevity risk analysis: applications to the Italian regional data

  • Longevity risk is the risk that members of a given population will live longer than expected. When it occurs, pension providers may have to pay pensions for longer than expected, significantly increasing their costs. While this risk is being adequately studied using the national mortality data provided by the Human Mortality Database, relatively few studies exist that analyse sub-national data. This manuscript proposes a comparative study of some stochastic mortality models to measure the longevity risk on Italian mortality data at the regional level. In particular, the use of the Lee-Carter and Li-Lee models is explored. The models are compared in fitting quality, forecasting accuracy and complexity. Numerical experiments and applications to immediate life annuity evaluation are presented.

    Citation: Salvatore Scognamiglio. Longevity risk analysis: applications to the Italian regional data[J]. Quantitative Finance and Economics, 2022, 6(1): 138-157. doi: 10.3934/QFE.2022006

    Related Papers:

    [1] Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230
    [2] Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh . Maximal first Zagreb index of trees with given Roman domination number. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658
    [3] Zeeshan Saleem Mufti, Ali Tabraiz, Qin Xin, Bander Almutairi, Rukhshanda Anjum . Fuzzy topological analysis of pizza graph. AIMS Mathematics, 2023, 8(6): 12841-12856. doi: 10.3934/math.2023647
    [4] Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641
    [5] Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032
    [6] Muhammad Umar Mirza, Rukhshanda Anjum, Maged Z. Youssef, Turki Alsuraiheed . A comprehensive study on fuzzy and crisp graph indices: generalized formulae, proximity and accuracy analysis. AIMS Mathematics, 2023, 8(12): 30922-30939. doi: 10.3934/math.20231582
    [7] Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094
    [8] Zhen Lin . The biharmonic index of connected graphs. AIMS Mathematics, 2022, 7(4): 6050-6065. doi: 10.3934/math.2022337
    [9] Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050
    [10] Milica Anđelić, Tamara Koledin, Zoran Stanić . Notes on Hamiltonian threshold and chain graphs. AIMS Mathematics, 2021, 6(5): 5078-5087. doi: 10.3934/math.2021300
  • Longevity risk is the risk that members of a given population will live longer than expected. When it occurs, pension providers may have to pay pensions for longer than expected, significantly increasing their costs. While this risk is being adequately studied using the national mortality data provided by the Human Mortality Database, relatively few studies exist that analyse sub-national data. This manuscript proposes a comparative study of some stochastic mortality models to measure the longevity risk on Italian mortality data at the regional level. In particular, the use of the Lee-Carter and Li-Lee models is explored. The models are compared in fitting quality, forecasting accuracy and complexity. Numerical experiments and applications to immediate life annuity evaluation are presented.



    A molecular graph in chemical graph theory is the graphical representation of the structural formula of a chemical compound in which the vertices represent atoms and edges represent chemical bond between those atoms. A topological index of a molecular graph G is a real number which characterizes the topology of G. Also it is invariant under graph automorphism. Topological indices have been widely used in Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies. It has application in many folds, to name a few areas, biochemistry, nanotechnology, pharmacology. Bond energy is a measure of bond strength of a chemical compound. The distance between two atoms is considered as the bond length between them. The higher the bond energy, the smaller is the bond length between those atoms. The recently introduced 2-degree based topological invariants, analogous to novel graph invariants (Zagreb indices), namely leap Zagreb indices, may be applied in studying such bond energy between atoms in a molecular graph of a chemical compound.

    Throughout this paper, G=(V,E) represents a connected molecular graph with the vertex set V(G) and the edge set E(G). Let the number of vertices and edges of G be n and m respectively. The degree of a vertex v in G is the number of vertices adjacent to v in G and denoted by deg(v:G). The 2-degree (or the second-degree) of a vertex v in G is the number of vertices which are at distance two from v in G and denoted by d2(v:G). The Zagreb indices, namely, the first and second Zagreb indices, are the most important and oldest molecular structure descriptors. These indices have been studied extensively in the field of Mathematical Chemistry [3,4,5]. Recently, the concept of Forgotten topological index also known as F-index have attracted many researchers which results in over 100 research articles related to F-index. A.M.Naji et al. [13] have recently introduced and studied some properties of a new topological invariant called Leap Zagreb indices. They are defined as follows:

    Definition 1. (ⅰ) The first leap Zagreb index LM1(G) of a graph G is equal to the sum of squares of the second degrees of the vertices, LM1(G)=uV(G)d2(u)2.

    (ⅱ) The second leap Zagreb index LM2(G) of a graph G is equal to the sum of the products of the second degrees of pairs of adjacent vertices, LM2(G)=uvE(G)d2(u)d2(v).

    (ⅲ) The third leap Zagreb index LM3(G) of a graph G is equal to the sum of the products of the degree with the second degree of every vertex in G, LM3(G)=uV(G)deg(u)d2(u)

    Subsequently, Z. Shao et al. [18] generalized the results of Naji et al.[13] for trees and unicyclic graphs and determined upper and lower bounds on leap Zagreb indices and characterized extremal graphs. Basavanagoud et al.[2] computed exact values for first and second leap hyper Zagreb indices of some nano structures. V. R. Kulli [7,8,9] introduced and studied various leap indices. Shiladhar et al.[17] computed leap Zagreb indices of wind mill graphs. Most recently, Naji et al.[14] have studied some properties of leap graphs.

    Azari et al.[1] found formulae for first and second Zagreb indices of bridge and chain graphs. Nilanjan De [15,16] computed F-index and hyper Zagreb index of bridge and chain graphs. Jerline et al. [6] obtained exact values for harmonic index of bridge and chain graphs. E. Litta et al. [10] worked on modified Zagreb indices of bridge graphs. Mohanad Ali et al. [11] computed F-leap index of some special classes of bridge and chain graphs. Zhang et al.[12] worked on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices of generalized bridge molecular graphs. Motivated by their results, we compute exact values for the first and third leap Zagreb indices of bridges and chain graphs. Also we discuss some applications related to these indices in the last section of this paper. First, we recall the definitions of bridge and chain graphs from [1] as follows:

    Definition 2. Let {Gi}di=1 be a set of finite pairwise disjoint graphs with distinct vertices viV(Gi). The bridge graph B1=B1(G1,G2,,Gd;v1,v2,v3,,vd) of {Gi}di=1 with respect to the vertices {vi}di=1 as shown in Figure 1, is the graph obtained from the graphs G1,G2,,Gd by connecting the vertices vi and vi+1 by an edge for all i=1,2,,d1.

    Figure 1.  The bridge graph B1.

    Definition 3. The bridge graph B2=B2(G1,G2,,Gd;v1,w1,v2,w2,,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 2, is the graph obtained from the graphs G1,G2,G3,,Gd by connecting the vertices wi and vi+1 by an edge for all i=1,2,,d1.

    Figure 2.  The bridge graph B2.

    Definition 4. The chain graph C=C(G1,G2,,Gd;v1,w1,v2,w2,,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 3, is the graph obtained from the graphs G1,G2,,Gd by identifying the vertices wi and vi+1 for all i=1,2,,d1.

    Figure 3.  The chain graph C.

    The following lemma gives the 2-degree of any arbitrary vertex in the bridge graph B1.

    Lemma 5. Let G1,G2,,Gd be d5 connected graphs. Then the 2-degree of any arbitrary vertex u in the bridge graph B1 formed by these graphs is as follows:

    d2(u:B1)={ν1+μ2+1,ifu=v1νd+μd1+1,ifu=vdν2+μ1+μ3+1,ifu=v2νd1+μd+μd2+1,ifu=vd1νi+μi1+μi+1+2,,ifu=vi,3id2d2(u:G1)+1,ifuNG1(v1)d2(u:Gd)+1,ifuNGd(vd)d2(u:Gi)+2,ifuNGi(vi),2id1d2(u:Gi),ifuV(Gi)NGi[vi],1id, (2.1)

    where νi=d2(vi:Gi) and μi=deg(vi:Gi),1id.

    Next, we compute the first leap Zagreb index of the type-Ⅰ bridge graph B1.

    Let Si=uNGi(vi)d2(u:Gi), 1id.

    Theorem 6. LM1(B1)=di=1LM1(Gi)+d1i=2[(μi1+μi+1+1)2+2νi(μi1+μi+1+1)+4Si+8μi]+2d2i=3νi+2(S1+Sd)+(μ1+μd2μ32μd2)+(μ2+1)(μ2+2ν1+1)+(μd1+1)(μd1+2νd+1)+3d12.

    Proof. By virtue of Lemma 5

    LM1(B1)=uV(B1)d2(u:B1)2=(ν1+μ2+1)2+(νd+μd1+1)2+(ν2+μ1+μ3+1)2+(νd1+μd+μd2+1)2+d2i=3(νi+μi1+μi+1+2)2+uNG1(v1)(d2(u:G1)+1)2+uNGd(vd)(d2(u:Gd)+1)2+d1i=2uNGi(vi)(d2(u:Gi)+2)2+di=1uV(Gi)NGi[vi]d2(u:Gi)2
          =ν21+(μ2+1)2+2ν1(μ2+1)+ν2d+(μd1+1)2+2νd(μd1+1)+ν22+(μ1+μ3+1)2+2ν2(μ1+μ3+1)+ν2d1+(μd+μd2+1)2+2νd1(μd+μd2+1)+d2i=3[(νi+1)2+2(νi+1)(μi1+μi+1+1)+(μi1+μi+1+1)2]+uNG1(v1)[d2(u:G1)2+2d2(u:G1)]+μ1+uNGd(vd)[d2(u:Gd)2+2d2(u:Gd)]+μd+d1i=2uNGi(vi)[d2(u:Gi)2+4d2(u:Gi)]+4d1i=2μi+di=1uV(Gi)NGi[vi]d2(u:Gi)2
    =di=1LM1(Gi)+d1i=2[(μi1+μi+1+1)2+2νi(μi1+μi+1+1)+4Si+8μi]+2d2i=3νi+2(S1+Sd)+(μ1+μd2μ22μ32μd22μd1)+(μ2+1)(μ2+2ν1+1)+(μd1+1)(μd1+2νd+1)+3d12.

    Thus the result follows.

    Corollary 7. If G1=G2==Gd=G in a bridge graph B1, then LM1(B1)=dLM1(G)+(4d6)μ2+(4d8)ν+(12d26)μ+(4d4)(νμ+S)+4d12, where S=uNG(v)d2(u:G).

    Lemma 8. [1] The degree of an arbitrary vertex u of the bridge graph B1,d5 is given by:

    deg(u:B1)={μ1+1,ifu=v1μd+1,ifu=vdμi+2,ifu=vi,2id1deg(u:Gi),ifuV(Gi){vi},1id, (2.2)

    where μi=deg(vi:Gi),1id.

    Next, we compute the third leap Zagreb index of the type-Ⅰ bridge graph B1 Let us denote si=uNGi(vi)deg(u:Gi), 1id.

    Theorem 9. LM3(B1)=di=1LM3(Gi)+(s1+sd)+2d1i=2si+di=1(2νi+6μi)+2di=2(μi1μi)2(μ2+μd1)(ν1+νd)3(μ1+μd)+4d10.

    Proof. By virtue of Lemma 5 and 8

    LM3(B1)=uv(B1)d2(u)deg(u)=(ν1+μ2+1)(μ1+1)+(ν2+μ1+μ3+1)(μ2+2)+(νd+μd1+1)(μd+1)+(νd1+μd+μd2+1)(μd1+2)+d2i=3(νi+μi1+μi+1+2)(μi+2)+uNG1(v1)(d2(u:G1)+1)(deg(u:G1))+uNGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d1i=2uNGi(vi)(d2(u:Gi)+2)(deg(u:Gi))+di=1uV(Gi)NGi[vi](d2(u:Gi))(deg(u:Gi))
    =(ν1μ1+ν1+μ2μ1+μ2+μ1+1)+(ν2μ2+2ν2+μ1μ2+2μ1+μ3μ2+2μ3+μ2+2)+(νdμd+νd+μd1μd+μd1+μd+1)+(νd1μd1+2νd1+μdμd1+2μd+μd2μd1+2μd2+μd1+2)+d2i=3(νiμi+2νi+μi1μi+2μi1+μi+1μi+2μi+1+2μi+4)+uNG1(v1)(d2(u:G1)deg(u:G1)+deg(u:G1))+uNGd(vd)(d2(u:Gd)deg(u:Gd)+deg(u:Gd))+d1i=2uNGi(vi)(d2(u:Gi)deg(u:Gi)+2deg(u:Gi))+di=1uV(Gi)NGi[vi]d2(u:Gi)deg(u:Gi)

    Thus the result follows.

    Corollary 10. If G1=G2==Gd=G in a bridge graph B1, then LM3(B1)=dLM3(G)+2(d1)(s+ν+μ2)+2μ(3d5)+4d10, where s=uNG(v)deg(u:G).

    For any two nonempty sets A and B, AΔB denotes the symmetric difference of A and B and defined as AΔB=(AB)(BA)=(AB)(AB). First, we obtain the 2-degree of any arbitrary vertex in the type-Ⅱ bridge graph B2 as follows:

    Lemma 11. Let G1,G2,,Gd be d5 triangle free connected graphs. Then 2-degree of any arbitrary vertex u in the bridge graph B2 formed by these graphs is as follows:

    d2(u:B2)={d2(u:G1),ifuV(G1)NG1[w1]d2(u:G1)+1,ifuNG1(w1)d2(u:Gi),ifuV(Gi){NGi[vi]NGi[wi]},2id1d2(u:Gd),ifuV(Gd)NGd[vd]d2(u:Gd)+1,ifuNGd(vd)d2(u:Gi)+1,ifu(NGi(vi)ΔNGi(wi)),2id1d2(u:Gi)+2,ifuNGi(vi)NGi(wi),2id1δi+μi+1,ifu=wi,1id1νi+λi1,ifu=vi,2id. (2.3)

    where νi=d2(vi:Gi),μi=deg(vi:Gi);2id,δi=d2(wi:Gi),λi=deg(wi:Gi);1id1.

    Next, we compute the first leap Zagreb index of type-Ⅱ bridge graph B2.

    Let us denote S1=uNG1(w1)d2(u:G1) and Sd=uNGd(vd)d2(u:Gd)

    Theorem 12. LM1(B2)=di=1LM1(Gi)+2(S1+Sd)+(λ1+μd)+d1i=2uNGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d1i=2uNGi(vi)NGi(wi)[d2(u:Gi)+1]+d1i=1(μ2i+1+2δiμi+1)+di=2(λ2i1+2νiλi1).

    Proof.

    LM1(B2)=uV(B2)d2(u:B2)2=uV(G1)NG1[w1]d2(u:G1)2+d1i=2  uV(Gi){NGi[vi]NGi[wi]}d2(u:Gi)2+uV(Gd)NGd[vd]d2(u:Gd)2+uNG1(w1)(d2(u:G1)+1)2+d1i=2uNGi(vi)ΔNGi(wi)(d2(u:Gi)+1)2+uNGd(vd)(d2(u:Gd)+1)2+d1i=2uNGi(vi)NGi(wi)(d2(u:Gi)+2)2+d1i=1(δi+μi+1)2+di=2(νi+λi1)2
    =LM1(G1)δ21uNG1(w1)d2(u:G1)2+d1i=2[uV(Gi)d2(u:Gi)2uN(vi)N(wi)d2(u:Gi)2ν2iδ2i]+LM1(Gd)ν2duNGd(vd)d2(u:Gd)2+uNG1(w1)d2(u:G1)2+2uNG1(w1)d2(u:G1)+λ1+d1i=2[uNGi(vi)ΔNGi(wi)[d2(u:Gi)2+2d2(u:Gi)+1]]+uNGd(vd)[d2(u:Gd)2+2d2(u:Gd)+1]+d1i=2[uNGi(vi)NGi(wi)[d2(u:Gi)2+4d2(u:Gi)+4]]+d1i=1[δ2i+2δiμi+1+μ2i+1]+di=2[ν2i+2νiλi1+λ2i1]

    Thus,

    LM1(B2)=di=1LM1(Gi)+2(S1+Sd)+(λ1+μd)+d1i=2uNGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d1i=2uNGi(vi)NGi(wi)[d2(u:Gi)+1]+d1i=1(μ2i+1+2δiμi+1)+di=2(λ2i1+2νiλi1).

    Corollary 13. If G1=G2=,Gd=G, in a bridge graph B2, then LM1(B2)=dLM1(G)+λ+μ+2(S+S)+(d2)uNG(v)ΔNG(w)(2d2(u:G)+1)+4(d2)uNG(v)NG(w)(d2(u:G)+1)+(d1)[μ2+λ2]+2(d1)[δμ+νλ], where S=uNG(w)d2(u:G) and S=uNG(v)d2(u:G).

    In what follows next, we compute the third leap Zagreb index of B2.

    Lemma 14. The degree of an arbitrary vertex u of the bridge graph B2, d5 is given by:

    deg(u:B2)={deg(u:G1),ifuV(G1){w1}deg(u:Gd),ifuV(Gd){vd}deg(u:Gi),ifuV(Gi){vi,wi},2id1λi+1,ifu=wi,1id1μi+1,ifu=vi,2id. (2.4)

    where μi=deg(vi:Gi);2id,λi=deg(wi:Gi);1id1.

    Theorem 15. LM3(B2)=di=1LM3(Gi)+uNG1(w1)deg(u:G1)+uNGd(vd)deg(u:Gd)+d1i=2uNGi(wi)NGi(vi)deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)2deg(u:Gi)+d1i=12μi+1λi+d1i=1μi+1+di=2λi1+di=1(δi+νi)ν1δd.

    Proof. By virtue of Lemma 2.7 and 2.10

    LM3(B2)=uV(B2)d2(u)deg(u)=uV(G1)NG1[w1]d2(u:G1)deg(u:G1)+d1i=2uV(Gi){NGi[vi]NGi[wi]}d2(u:Gi)deg(u:Gi)+uV(Gd)NGd[vd]d2(u:Gd)deg(u:Gd)+uNG1(w1)(d2(u:G1)+1)(deg(u:G1))+d1i=2uNGi(wi)NGi(vi)(d2(u:Gi)+1)(deg(u:Gi))+d1i=2uNGi(vi)NGi(wi)(d2(u:Gi)+1)(deg(u:Gi))+uNGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d1i=2uNGi(vi)NGi(wi)(d2(u:Gi)+2)(deg(u:Gi))+d1i=1(δi+μi+1)(λi+1)+di=2(νi+λi1)(μi+1)

    Thus the result follows.

    Corollary 16. If G1=G2==Gd=G in a bridge graph B2, then LM3(B2)=dLM3(G)+uNG(w)deg(u:G)+uNG(v)deg(u:G)+(d2)(uNG(w)NG(v)deg(u:G)+uNG(v)NG(w)deg(u:G)+uNG(v)NG(w)2deg(u:G))+(d1)(2μλ+μ+λ)+d(δ+ν)(ν+δ).

    In the following lemma, we obtain the 2-degree of any vertex in the chain graph C.

    Lemma 17. Let G1,G2,,Gd, d5 be C3-free connected graphs and let C=C(G1,G2,,Gd;w1,v2,w2,v3,,wd1,vd) be the chain graph formed using these graphs. Then the 2-degree of any vertex u in C is given as follows:

    d2(u:C)={d2(u:G1),ifuV(G1)NG1[w1]d2(u:G1)+μ2,ifuNG1(w1)d2(u:Gd),ifuV(Gd)NGd[vd]d2(u:Gd)+λd1,ifuNGd(vd)d2(u:Gi),ifuV(Gi){NGi[wi]NGi[vi]},2id1d2(u:Gi)+μi+1,ifuNGi(wi)NGi(vi),2id1d2(u:Gi)+λi1,ifuNGi(vi)NGi(wi),2id1d2(u:Gi)+λi1+μi+1,ifuNGi(vi)NGi(wi),2id1δi+νi+1,ifu=wi=vi+1,1id1, (2.5)

    where νi=d2(vi:Gi),μi=deg(vi:Gi),λi=deg(wi:Gi) and δi=d2(wi:Gi) for all 1id.

    Now, we compute the first leap Zagreb index of the chain graph C by applying Lemma 17.

    Theorem 18. For the chain graph C,

    LM1(C)=di=1LM1(Gi)+uNG1(w1)[2μ2d2(u:G1)+μ22]+uNGd(vd)[2λd1d2(u:Gd)+λ2d1]+d1i=2  uNGi(wi)NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d1i=2  uNGi(vi)NGi(wi)[2λi1d2(u:Gi)+λ2i1]+2d1i=2  uNGi(vi)NGi(wi)[λi1d2(u:Gi)+μi+1d2(u:Gi)+λi1μi+1]+d1i=2  uNGi(vi)NGi(wi)(λ2i1+μ2i+1)+2d1i=1δiνi+1.

    Proof. By Lemma 17, we have

    LM1(C)=uV(C)d2(u:C)2=uV(G1)NG1[w1]d2(u:G1)2+uNG1(w1)[d2(u:G1)+μ2]2+uV(Gd)NGd[vd]d2(u:Gd)2+uNGd(vd)[d2(u:Gd)+λd1]2+d1i=2  uV(Gi){NGi[vi]NGi[wi]}d2(u:Gi)2+d1i=2  uNGi(wi)NGi(vi)[d2(u:Gi)+μi+1]2+d1i=2  uNGi(vi)NGi(wi)[d2(u:Gi)+λi1]2+d1i=2  uNGi(vi)NGi(wi)[d2(u:Gi)+λi1+μi+1]2+d1i=1[δi+νi+1]2
    =LM1(G1)uNG1(w1)[d2(u:G1)2]δ21+uNG1(w1)[d2(u:G1)2+2d2(u:G1)μ2+μ22]+LM1(Gd)uNGd(vd)d2(u:Gd)2ν2d+uNGd(vd)[d2(u:Gd)2+2λd1d2(u:Gd)+λ2d1]+d1i=2uV(Gi)d2(u:Gi)2d1i=2  uNGi[vi]NGi[wi]d2(u:Gi)2+d1i=2  uNGi(wi)NGi(vi)[d2(u:Gi)2+2μi+1d2(u:Gi)+μ2i+1]+d1i=2  uNGi(vi)NGi(wi)[d2(u:Gi)2+2λi1d2(u:Gi)+λ2i1]+d1i=2uNGi(vi)NGi(wi)[d2(u:Gi)2+2λi1d2(u:Gi)+2μi+1d2(u:Gi)+2λi1μi+1+λ2i1+μ2i+1]+d1i=1[δ2i+ν2i+1]+2d1i=1δiνi+1
    =di=1LM1(Gi)+uNG1(w1)[2μ2d2(u:G1)+μ22]+uNGd(vd)[2λd1d2(u:Gd)+λ2d1]+d1i=2  uNGi(wi)NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d1i=2  uNGi(vi)NGi(wi)[2λi1d2(u:Gi)+λ2i1]+2d1i=2  uNGi(vi)NGi(wi)[λi1d2(u:Gi)+μi+1d2(u:Gi)+λi1μi+1]+d1i=2  uNGi(vi)NGi(wi)(λ2i1+μ2i+1)+2d1i=1δiνi+1.

    Corollary 19. In a chain graph C, if G1=G2==Gd=G, then LM1(C)=dLM1(G)+uNG(w)[2μd2(u:G)+μ2]+uNG(v)[2λd2(u:G)+λ2]+(d2)uNG(w)NG(v)[2μd2(u:G)+μ2]+(d2)uNG(v)NG(w)[2λd2(u:G)+λ2]+2(d2)uNG(v)NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d2)uNG(v)NG(w)(λ2+μ2)+2(d1)δν.

    Lemma 20. Let G1,G2,,Gd, d5 be C3-free connected graphs and let C=C(G1,G2,,Gd;w1,v2,w2,v3,,wd1,vd) be the chain graph formed using these graphs. Then the degree of any vertex u in C is given as follows:

    deg(u:C)={deg(u:G1),ifuV(G1){w1}deg(u:Gd),ifuV(Gd){vd}deg(u:Gi),ifuV(Gi){vi,wi},2id1λi+μi+1,ifu=wi=vi+1,1id1, (2.6)

    where μi=deg(vi:Gi),λi=deg(wi:Gi) for all 1id

    Finally, we compute the third leap Zagreb index of the chain graph C by applying Lemma 17 and 2.16.

    Theorem 21. LM3(C)=di=1LM3(Gi)+uNG1(w1)μ2deg(u:G1)+uNGd(vd)λd1deg(u:Gd)+d1i=2uNGi(wi)NGi(vi)μi+1deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)λi1deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)(λi1deg(u:Gi)+μi+1deg(u:Gi))+d1i=1(δiμi+1+νi+1λi).

    Proof. By virtue of Lemma 17 and 20

    LM3(C)=uV(C)d2(u)deg(u)=uV(G1)NG1[w1]d2(u:G1)deg(u:G1)+uNG1(w1)(d2(u:G1)+μ2)deg(u:G1)+uV(Gd)NGd[vd]d2(u:Gd)deg(u:Gd)+uNGd(vd)(d2(u:Gd)+λd1)deg(u:Gd)+d1i=2uV(Gi){NGi[wi]NGi[vi]}d2(u:Gi)deg(u:Gi)+d1i=2uNGi(wi)NGi(vi)(d2(u:Gi)+μi+1)deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)(d2(u:Gi)+λi1)deg(u:Gi)+d1i=2uNGi(vi)NGi(wi)(d2(u:Gi)+λi1+μi+1)deg(u:Gi)+d1i=1(δi+νi+1)(λi+μi+1).

    Thus the result follows.

    Corollary 22. In a chain graph C, if G1=G2==Gd=G, then LM3(C)=dLM3(G)+uNG(w)μdeg(u:G)+uNG(v)λdeg(u:G)+(d2)(uNG(w)NG(v)μdeg(u:G)+uNG(v)NG(w)λdeg(u:G)+uNG(v)NG(w)(λ+μ)deg(u:G))+(d1)(δμ+νλ).

    In this section, we determine the first and third leap Zagreb indices of some molecular graph structures. Two vertices v and w of a hexagon H (C6) (please refer Figure 4) are said to be in

    Figure 4.  Ortho, meta and para positions of two vertices in a hexagon H.

    (ⅰ) ortho-position, if they are adjacent in H

    (ⅱ) meta-position, if they are distance two in H

    (ⅲ) para-position, if they are distance three in H.

    We connect h5 ortho-hexagons to form a polyphenyl chain denoted by Oh as follows:

    One can observe that the Polyphenyl chain Oh shown in Figure 5 is a B1 type bridge graph. Therefore, from Corollary 7, we get

    LM1(Oh)=hLM1(G)+(4h6)μ2+(4h8)ν+(12h26)μ+(4h4)[νμ+uNG(v)d2(u:G)]+4h12=24h+(4h6)(4)+(4h8)(2)+(12h26)(2)+(4h4)(4)+(4h4)(4)+4h12=108h136.
    Figure 5.  Polyphenyl chain Oh.

    Similarly,

    From Corollary 10, we get

    LM3(Oh)=24h+(2h2)(2)+(2h2)(2)+2(2)(3h5)+2(h1)(2+4)+4h10=60h50

    The polyphenyl chain Mh is formed by connecting h5 meta-hexagons as shown in Figure 6.

    Figure 6.  Polyphenyl chain Mh.

    The polyphenyl chain Ph is formed by connecting h5 para-hexagons as shown in the following Figure 7.

    Figure 7.  Polyphenyl chain Ph.

    It is clear that the Polyphenyl chains Mh and Ph are type-Ⅱ bridge graphs B2.

    Using Corollary 2.9, we get

    LM1(Mh)=hLM1(G)+λ+μ+2uNG(w)d2(u:G)+(h2)[uNG(w)NG(v)(2d2(u:G)+1)]+(h2)uNG(v)NG(w)(2d2(u:G)+1)+4(h2)uNG(v)NG(w)(d2(u:G)+1)+2uNG(v)d2(u:G)+(h1)μ2+2(h1)δμ+2(h1)νλ+(h1)λ2=24h+4+2(4)+(h2)[2(2)+1]+(h2)[2(2)+1]+4(h2)(2+1)+2(4)+(h1)(4)+4(h1)(4)+(h1)(4)

    Thus LM1(Mh)=70h48.

    Similarly, by Corollary 13, we have

    LM1(Ph)=24h+4+2(4)+(h2)[2(4)+2]+(h2)(8+2)+4(h2)(0)+2(4)+(h1)(4)+8(h1)+8(h1)+(h1)(4)

    Therefore, LM1(Ph)=68h44.

    Using Corollary 2.12, we get

    LM3(Mh)=24h+8+(h2)8+(h1)12+h(4)4=48h24
    LM3(Ph)=24h+8+(h2)8+(h1)12+4h4=48h24.

    Next, we shall see an application related to the chain graph C. The spiro-chain SPC4(d,3) is a chain graph formed using d5 copies of the cycle C4.

    Here the number 3 in the construction denotes the position of the vertices v and w in the spiro-chain (refer Figure 8).

    Figure 8.  Spiro-chain SPC4(d,3) formed with d5 copies of C4 connected in 3rd position.

    The spiro-chain SPC6(d,4) is a chain graph formed using d5 copies of the cycle C6 or hexagon where the vertices v and w are connected in the 4th position (refer Figure 9).

    Figure 9.  Spiro-chain SPC6(d,4) formed with d5 copies of C6 connected in 4th position.

    By applying Corollary 19, we get

    LM1(SPC4(d,3))=dLM1(G)+uNG(w)[2μd2(u:G)+μ2]+uNG(v)[2λd2(u:G)+λ2]+(d2)uNG(w)NG(v)[2μd2(u:G)+μ2]+(d2)uNG(v)NG(w)[2λd2(u:G)+λ2]+2(d2)uNG(v)NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d2)uNG(v)NG(w)(λ2+μ2)+2(d1)δν=54d66.

    Similarly, from Corollary 19, we have LM1(SPC6(d,4))=80d56.

    By applying Corollary 22, we get

    LM3(SPC4(d,3))=8d+2(2+2)+2(2+2)+(d2)(16)+(d1)(4)=28d20

    Similarly, from Corollary 22, we have LM3(SPC6(d,4))=48d24.

    We have computed exact values of one of the recent topological invariants namely first and third leap Zagreb indices for bridge and chain graphs. It is worth mentioning that computing second leap Zagreb index of bridges and chain graphs has not yet addressed and interested researchers may work on it. Also these indices need to be explored for several other interesting graph structures arising from mathematical chemistry and other branches of science.

    The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions. This work was supported in part by the National Key Technologies R & D Program of China under Grant 2017YFB0802300, 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.

    The authors declare that no competing interests exist.



    [1] Apicella G, Dacorogna M, Di Lorenzo E, et al. (2019) Improving the forecast of longevity by combining models. N Am Actuar J 23: 298–319. https://doi.org/10.1080/10920277.2018.1556701 doi: 10.1080/10920277.2018.1556701
    [2] Booth H, Hyndman RJ, Tickle L, et al. (2006) Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr Res 15: 298–319. https://doi.org/10.4054/DemRes.2006.15.9 doi: 10.4054/DemRes.2006.15.9
    [3] Bozzo G, Levantesi S, Menzietti M (2021) Longevity risk and economic growth in sub-populations: evidence from Italy. Decis Econ Financ 44: 101–115. https://doi.org/10.1007/s10203-020-00275-x doi: 10.1007/s10203-020-00275-x
    [4] Brouhns N, Denuit M, Vermunt JK (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31: 373–393. https://doi.org/10.1016/S0167-6687(02)00185-3 doi: 10.1016/S0167-6687(02)00185-3
    [5] Cairns A, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73: 687–718. https://doi.org/10.1016/S0167-6687(02)00185-3 doi: 10.1016/S0167-6687(02)00185-3
    [6] Cairns A, Blake D, Dowd K, et al. (2009) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N Am Actuar J 13: 1–35. https://doi.org/10.1080/10920277.2009.10597538 doi: 10.1080/10920277.2009.10597538
    [7] Chen H, MacMinn R, Sun T (2015) Multi-population mortality models: A factor copula approach. Insur Math Econ 63: 135–146. https://doi.org/10.1016/j.insmatheco.2015.03.022 doi: 10.1016/j.insmatheco.2015.03.022
    [8] Chen RY, Millossovich P (2018) Sex-specific mortality forecasting for UK countries: a coherent approach. Eur Actuar J 8: 69–95. https://doi.org/10.1007/s13385-017-0164-0 doi: 10.1007/s13385-017-0164-0
    [9] Currie ID (2013) Smoothing constrained generalized linear models with an application to the Lee-Carter model. Stat Model 13: 69–93. https://doi.org/10.1177/1471082X12471373 doi: 10.1177/1471082X12471373
    [10] Currie ID, Durban M, Eilers PHC (2018) Smoothing and forecasting mortality rates. Stat Model 4: 279–298. https://doi.org/10.1191/1471082X04st080oa doi: 10.1191/1471082X04st080oa
    [11] Danesi IL, Haberman S, Millossovich P (2018) Forecasting mortality in subpopulations using Lee–Carter type models: A comparison. Insur Math Econ 62: 151–161. https://doi.org/10.1016/j.insmatheco.2015.03.010 doi: 10.1016/j.insmatheco.2015.03.010
    [12] Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–Carter and Poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. J Popul Res 7: 29–48. https://doi.org/10.1177/1471082X0600700103 doi: 10.1177/1471082X0600700103
    [13] De Waegenaere A, Melenberg B, Stevens R (2010) Longevity risk. De Econ 158: 151–192. https://doi.org/10.1007/s10645-010-9143-4 doi: 10.1007/s10645-010-9143-4
    [14] Enchev V, Kleinow T, Cairns A (2017) Multi-population mortality models: fitting, forecasting and comparisons. Scand Actuar J 4: 319–342. https://doi.org/10.1080/03461238.2015.1133450 doi: 10.1080/03461238.2015.1133450
    [15] Franzini L, Giannoni M (2010) Determinants of health disparities between Italian regions. BMC Public Health 10: 1–10. https://doi.org/10.1186/1471-2458-10-296 doi: 10.1186/1471-2458-10-296
    [16] Gao G, Shi Y (2021). Age-coherent extensions of the Lee–Carter model. Scand Actuar J 10: 998–1016. https://doi.org/10.1080/03461238.2021.1918578 doi: 10.1080/03461238.2021.1918578
    [17] Hainaut D, Denuit M (2020) Wavelet-based feature extraction for mortality projection. ASTIN B J IAA 50: 675–707. https://doi.org/10.1017/asb.2020.18 doi: 10.1017/asb.2020.18
    [18] Hyndman RJ, Ullah MS (2007) Robust forecasting of mortality and fertility rates: A functional data approach. Comput Stat & Data Anal 51: 4942–4956. https://doi.org/10.1016/j.csda.2006.07.028 doi: 10.1016/j.csda.2006.07.028
    [19] Hyndman R, Booth H, Yasmeen F (2017) Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50: 261–283. https://doi.org/10.1007/s13524-012-0145-5 doi: 10.1007/s13524-012-0145-5
    [20] Kleinow T (2015) A common age effect model for the mortality of multiple populations. Insur Math Econ 63: 147–152. https://doi.org/10.1007/s13524-012-0145-5 doi: 10.1007/s13524-012-0145-5
    [21] Lee RD, Carter LR (1992) Modeling and forecasting US mortality. J Am Stat Assoc 87: 659–671. https://doi.org/10.1080/01621459.1992.10475265 doi: 10.1080/01621459.1992.10475265
    [22] Li N, Lee R (2005) Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42: 575–594. https://doi.org/10.1353/dem.2005.0021 doi: 10.1353/dem.2005.0021
    [23] Li J (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. Popul Stud 67: 111–126. https://doi.org/10.1080/00324728.2012.689316 doi: 10.1080/00324728.2012.689316
    [24] Nigri A, Levantesi S, Marino M, et al. (2019) A deep learning integrated Lee–Carter model. Risks 7: 33. https://doi.org/10.3390/risks7010033 doi: 10.3390/risks7010033
    [25] Perla F, Richman R, Scognamiglio S, et al. (2021) Time-series forecasting of mortality rates using deep learning. Scand Actuar J 2021: 1–27. https://doi.org/10.1080/03461238.2020.1867232 doi: 10.1080/03461238.2020.1867232
    [26] Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting with age-specific enhancement. Insur Math Econ 33: 255–272. https://doi.org/10.1016/S0167-6687(03)00138-0 doi: 10.1016/S0167-6687(03)00138-0
    [27] Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38: 556–570. https://doi.org/10.1016/j.insmatheco.2005.12.001 doi: 10.1016/j.insmatheco.2005.12.001
    [28] Richman R, Wüthrich MV (2021) A neural network extension of the Lee–Carter model to multiple populations. Ann Actuar Sci 15: 346–366. https://doi.org/10.1017/S1748499519000071 doi: 10.1017/S1748499519000071
    [29] Schnürch S, Kleinow T, Korn R (2021) Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model. Risks 9: 45. https://doi.org/10.3390/risks9030045 doi: 10.3390/risks9030045
    [30] Shang HL, Yang Y (2021) Forecasting Australian subnational age-specific mortality rates. J Popul Res 38: 1–24. https://doi.org/10.1007/s12546-020-09250-0 doi: 10.1007/s12546-020-09250-0
    [31] Wilmoth JR and Shkolnikov V (2021) University of California, Berkeley (US), and Max Planck Institute for Demographic Research (Germany).
  • This article has been cited by:

    1. Xiujun Zhang, Zhiqiang Zhang, Natarajan Chidambaram, Subhasri Jaganathan, Narasimhan Devadoss, Vignesh Ravi, On degree and distance-based topological indices of certain interconnection networks, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03010-0
    2. Kinkar Chandra Das, Sourav Mondal, Zahid Raza, On Zagreb connection indices, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03437-5
    3. Sourav Mondal, Kinkar Chandra Das, Zagreb connection indices in structure property modelling, 2023, 69, 1598-5865, 3005, 10.1007/s12190-023-01869-5
    4. Deepa Balasubramaniyan, Natarajan Chidambaram, Vignesh Ravi, Muhammad Kamran Siddiqui, QSPR analysis of anti‐asthmatic drugs using some new distance‐based topological indices: A comparative study, 2024, 124, 0020-7608, 10.1002/qua.27372
    5. Yaşar NACAROĞLU, ON LEAP ZAGREB INDICES OF A SPECIAL GRAPH OBTAINED BY SEMIGROUPS, 2023, 6, 2618-5660, 16, 10.33773/jum.1333260
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2032) PDF downloads(152) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog