Loading [MathJax]/jax/output/SVG/jax.js
Review Topical Sections

Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas?

  • Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.

    Citation: Tiziana M. Florio. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas?[J]. AIMS Neuroscience, 2020, 7(2): 136-152. doi: 10.3934/Neuroscience.2020010

    Related Papers:

    [1] Madeeha Tahir, Ayesha Naz, Muhammad Imran, Hasan Waqas, Ali Akgül, Hussein Shanak, Rabab Jarrar, Jihad Asad . Activation energy impact on unsteady Bio-convection nanomaterial flow over porous surface. AIMS Mathematics, 2022, 7(11): 19822-19845. doi: 10.3934/math.20221086
    [2] Khalil Ur Rehman, Wasfi Shatanawi, Zeeshan Asghar, Haitham M. S. Bahaidarah . Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 2023, 8(7): 15805-15823. doi: 10.3934/math.2023807
    [3] Taqi A. M. Shatnawi, Nadeem Abbas, Wasfi Shatanawi . Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet. AIMS Mathematics, 2022, 7(12): 20545-20564. doi: 10.3934/math.20221126
    [4] Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164
    [5] Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam . A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608
    [6] M. S. Alqarni . Thermo-bioconvection flow of Walter's B nanofluid over a Riga plate involving swimming motile microorganisms. AIMS Mathematics, 2022, 7(9): 16231-16248. doi: 10.3934/math.2022886
    [7] Kiran Sajjan, N. Ameer Ahammad, C. S. K. Raju, M. Karuna Prasad, Nehad Ali Shah, Thongchai Botmart . Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink. AIMS Mathematics, 2023, 8(2): 4237-4260. doi: 10.3934/math.2023211
    [8] J. Kayalvizhi, A. G. Vijaya Kumar, Ndolane Sene, Ali Akgül, Mustafa Inc, Hanaa Abu-Zinadah, S. Abdel-Khalek . An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model. AIMS Mathematics, 2023, 8(2): 3542-3560. doi: 10.3934/math.2023180
    [9] Ali Raza, Umair Khan, Aurang Zaib, Wajaree Weera, Ahmed M. Galal . A comparative study for fractional simulations of Casson nanofluid flow with sinusoidal and slipping boundary conditions via a fractional approach. AIMS Mathematics, 2022, 7(11): 19954-19974. doi: 10.3934/math.20221092
    [10] Latifa I. Khayyat, Abdullah A. Abdullah . The onset of Marangoni bio-thermal convection in a layer of fluid containing gyrotactic microorganisms. AIMS Mathematics, 2021, 6(12): 13552-13565. doi: 10.3934/math.2021787
  • Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.


    A Poisson algebra is a triple, (L,,[,]), where (L,) is a commutative associative algebra and (L,[,]) is a Lie algebra that satisfies the following Leibniz rule:

    [x,yz]=[x,y]z+y[x,z],x,y,zL.

    Poisson algebras appear naturally in the study of Hamiltonian mechanics and play a significant role in mathematics and physics, such as in applications of Poisson manifolds, integral systems, algebraic geometry, quantum groups, and quantum field theory (see [7,11,24,25]). Poisson algebras can be viewed as the algebraic counterpart of Poisson manifolds. With the development of Poisson algebras, many other algebraic structures have been found, such as Jacobi algebras [1,9], Poisson bialgebras [20,23], Gerstenhaber algebras, Lie-Rinehart algebras [16,17,26], F-manifold algebras [12], Novikov-Poisson algebras [28], quasi-Poisson algebras [8] and Poisson n-Lie algebras [10].

    As a dual notion of a Poisson algebra, the concept of a transposed Poisson algebra was recently introduced by Bai et al. [2]. A transposed Poisson algebra (L,,[,]) is defined by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson algebra:

    2z[x,y]=[zx,y]+[x,zy],x,y,zL,

    where (L,) is a commutative associative algebra and (L,[,]) is a Lie algebra.

    It is shown that a transposed Poisson algebra possesses many important identities and properties and can be naturally obtained by taking the commutator in the Novikov-Poisson algebra [2]. There are many results on transposed Poisson algebras, such as those on transposed Hom-Poisson algebras [18], transposed BiHom-Poisson algebras [21], a bialgebra theory for transposed Poisson algebras [19], the relation between 12-derivations of Lie algebras and transposed Poisson algebras [14], the relation between 12-biderivations and transposed Poisson algebras [29], and the transposed Poisson structures with fixed Lie algebras (see [6] for more details).

    The notion of an n-Lie algebra (see Definition 2.1), as introduced by Filippov [15], has found use in many fields in mathematics and physics [4,5,22,27]. The explicit construction of n-Lie algebras has become one of the important problems in this theory. In [3], Bai et al. gave a construction of (n+1)-Lie algebras through the use of n-Lie algebras and some linear functions. In [13], Dzhumadil′daev introduced the notion of a Poisson n-Lie algebra which can be used to construct an (n+1)-Lie algebra under an additional strong condition. In [2], Bai et al. showed that this strong condition for n=2 holds automatically for a transposed Poisson algebra, and they gave a construction of 3-Lie algebras from transposed Poisson algebras with derivations. They also found that this constructed 3-Lie algebra and the commutative associative algebra satisfy the analog of the compatibility condition for transposed Poisson algebras, which is called a transposed Poisson 3-Lie algebra. This motivated them to introduce the concept of a transposed Poisson n-Lie algebra (see Definition 2.2) and propose the following conjecture:

    Conjecture 1.1. [2] Let n2 be an integer and (L,,μn) a transposed Poisson n-Lie algebra. Let D be a derivation of (L,) and (L,μn). Define an (n+1)-ary operation:

    μn+1(x1,,xn+1):=n+1i=1(1)i1D(xi)μn(x1,,ˆxi,,xn+1),x1,,xn+1L,

    where ˆxi means that the i-th entry is omitted. Then, (L,,μn+1) is a transposed Poisson (n+1)-Lie algebra.

    In this paper, based on the identities for transposed Poisson n-Lie algebras given in Section 2, we prove that Conjecture 1.1 holds under a certain strong condition described in Section 3 (see Definition 2.3 and Theorem 3.2).

    Throughout the paper, all vector spaces are taken over a field of characteristic zero. To simplify notations, the commutative associative multiplication () will be omitted unless the emphasis is needed.

    In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson n-Lie algebras.

    Definition 2.1. [15] Let n2 be an integer. An n-Lie algebra is a vector space L, together with a skew-symmetric linear map [,,]:nLL, such that, for any xi,yjL,1in1,1jn, the following identity holds:

    [[y1,,yn],x1,,xn1]=ni=1(1)i1[[yi,x1,,xn1],y1,,ˆyi,,yn]. (2.1)

    Definition 2.2. [2] Let n2 be an integer and L a vector space. The triple (L,,[,,]) is called a transposed Poisson n-Lie algebra if (L,) is a commutative associative algebra and (L,[,,]) is an n-Lie algebra such that, for any h,xiL,1in, the following identity holds:

    nh[x1,,xn]=ni=1[x1,,hxi,,xn]. (2.2)

    Some identities for transposed Poisson algebras in [2] can be extended to the following theorem for transposed Poisson n-Lie algebras.

    Theorem 2.1. Let (L,,[,,]) be a transposed Poisson n-Lie algebra. Then, the following identities hold:

    (1) For any xiL,1in+1, we have

    n+1i=1(1)i1xi[x1,,ˆxi,,xn+1]=0; (2.3)

    (2) For any h,xi,yjL,1in1,1jn, we have

    ni=1(1)i1[h[yi,x1,,xn1],y1,,ˆyi,,yn]=[h[y1,,yn],x1,,xn1]; (2.4)

    (3) For any xi,yjL,1in1,1jn+1, we have

    n+1i=1(1)i1[yi,x1,,xn1][y1,,ˆyi,,yn+1]=0; (2.5)

    (4) For any x1,x2,yiL,1in, we have

    ni=1nj=1,ji[y1,,yix1,,yjx2,,yn]=n(n1)x1x2[y1,y2,,yn]. (2.6)

    Proof. (1) By Eq (2.2), for any 1in+1, we have

    nxi[x1,,xi1,xi+1,,xn+1]=ji[x1,,xi1,xi+1,,xixj,,xn+1].

    Thus, we obtain

    n+1i=1(1)i1nxi[x1,,ˆxi,,xn+1]=n+1i=1n+1j=1,ji(1)i1[x1,,ˆxi,,xixj,,xn+1].

    Note that, for any i>j, we have

    (1)i1[x1,,xj1,xixj,xj+1,,ˆxi,,xn]+(1)j1[x1,,ˆxj,,xi1,xjxi,xi+1,,xn]=(1)i1+(ij1)[x1,,xj1,xj+1,,xi1,xixj,xi+1,,xn]+(1)j1[x1,,ˆxj,,xi1,xjxi,xi+1,,xn]=((1)j2+(1)j1)[x1,,xj1,xj+1,,xi1,xixj,xi+1,,xn]=0,

    which gives n+1i=1n+1j=1,ji(1)i1[x1,,ˆxi,,xixj,,xn+1]=0.

    Hence, we get

    n+1i=1(1)i1nxi[x1,,ˆxi,,xn+1]=0.

    (2) By Eq (2.2), we have

    [h[y1,,yn],x1,,xn1]n1i=1[[y1,,yn],x1,,hxi,,xn1]=nh[[y1,,yn],x1,,xn1],

    and, for any 1jn,

    (1)j1([h[yj,x1,,xn1],y1,,ˆyj,,yn1]+ni=1,ij[[yj,x1,,xn1],y1,,hyi,,ˆyj,,yn1])=(1)j1nh[[yj,x1,,xn1],y1,,ˆyj,,yn1].

    By taking the sum of the above n+1 identities and applying Eq (2.1), we get

    [h[y1,,yn],x1,,xn1]n1i=1[[y1,,yn],x1,,hxi,,xn1]+nj=1(1)j1([h[yj,x1,,xn1],y1,,ˆyj,,yn1]+ni=1,ij[[yj,x1,,xn1],y1,,hyi,,ˆyj,,yn1])=nh[[y1,,yn],x1,,xn1]+nhnj=1(1)j1[[yj,x1,,xn1],y1,,ˆyj,,yn1]=0.

    We denote

    Aj:=ni=1,ij(1)i1[[yi,x1,,xn1],y1,,hyj,,ˆyi,,yn],1jn,Bi:=[[y1,,yn],x1,,hxi,,xn1],1in1.

    Then, the above equation can be rewritten as

    ni=1(1)i1[h[yi,x1,,xn1],y1,,ˆyi,,yn][h[y1,,yn],x1,,xn1]+nj=1Ajn1i=1Bi=0. (2.7)

    By applying Eq (2.1) to Aj,1jn, we have

    Aj=ni=1,ij(1)i1[[yi,x1,,xn1],y1,,hyj,,ˆyi,,yn]=[[y1,,hyj,,yn],x1,,xn1]+(1)j[[hyj,x1,,xn1],y1,,ˆyj,,yn].

    Thus, we get

    nj=1Aj=nj=1[[y1,,hyj,,yn],x1,,xn1]+nj=1(1)j[[hyj,x1,,xn1],y1,,ˆyj,,yn]=n[h[y1,,yn],x1,,xn1]+nj=1(1)j[[hyj,x1,,xn1],y1,,ˆyj,,yn].

    By applying Eq (2.1) to Bi,1in1, we have

    Bi=[[y1,,yn],x1,,hxi,,xn1]=nj=1(1)j1[[yj,x1,,hxi,,xn1],y1,ˆyj,,yn].

    Thus, we get

    n1i=1Bi=n1i=1nj=1(1)j1[[yj,x1,,hxi,,xn1],y1,ˆyj,,yn]=nj=1n1i=1(1)j1[[yj,x1,,hxi,,xn1],y1,ˆyj,,yn].

    Note that, by Eq (2.2), we have

    n1i=1(1)j1[[yj,x1,,hxi,,xn1],y1,ˆyj,,yn]=(1)j1n[h[yj,x1,,xi,,xn1],y1,ˆyj,,yn]+(1)j[[hyj,x1,,xi,,xn1],y1,ˆyj,,yn].

    Thus, we obtain

    n1i=1Bi=nj=1(1)j1n[h[yj,x1,,xi,,xn1],y1,ˆyj,,yn]+nj=1(1)j[[hyj,x1,,xi,,xn1],y1,ˆyj,,yn].

    By substituting these equations into Eq (2.7), we have

    ni=1(1)i1[h[yi,x1,,xn1],y1,,ˆyi,,yn][h[y1,,yn],x1,,xn1]+n[h[y1,,yn],x1,,xn1]+nj=1(1)j[[hyj,x1,,xn1],y1,,ˆyj,,yn]nj=1(1)j1n[h[yj,x1,,xi,,xn1],y1,ˆyj,,yn]nj=1(1)j[[hyj,x1,,xi,,xn1],y1,ˆyj,,yn]=0,

    which implies that

    (n1)(ni=1(1)i[h[yi,x1,,xn1],y1,,ˆyi,,yn]+[h[y1,,yn],x1,,xn1])=0.

    Therefore, the proof of Eq (2.4) is completed.

    (3) By Eq (2.2), for any 1jn+1, we have

    (1)j1n[yj,x1,,xn1][y1,,ˆyj,,yn+1]=n+1i=1,ij(1)j1[y1,,yi[yj,x1,,xn1],,ˆyj,,yn+1].

    By taking the sum of the above n+1 identities, we obtain

    n+1j=1(1)j1n[yj,x1,,xn1][y1,,ˆyj,,yn+1]=n+1j=1n+1i=1,ij(1)j1[y1,,yi[yj,x1,,xn1],,ˆyj,,yn+1].

    Thus, we only need to prove the following equation:

    n+1j=1n+1i=1,ij(1)j1[y1,,yi[yj,x1,,xn1],,ˆyj,,yn+1]=0.

    Note that

    n+1j=1n+1i=1,ij(1)j1[y1,,yi[yj,x1,,xn1],,ˆyj,,yn+1]=n+1i=1n+1j=1,ji(1)j1[y1,,yi[yj,x1,,xn1],,ˆyj,,yn+1]=n+1i=1i1j=1(1)i+j1[yi[yj,x1,,xn1],y1,,ˆyj,,ˆyi,,yn+1]+n+1i=1n+1j=i+1(1)i+j[yi[yj,x1,,xn1],y1,,ˆyi,,ˆyj,,yn+1](2.4)=n+1i=1(1)i[yi[y1,,ˆyi,,yn+1],x1,,xn1](2.3)=0.

    Hence, the conclusion holds.

    (4) By applying Eq (2.2), we have

    n2x1x2[y1,y2,,yn]=nx1nj=1[y1,,yjx2,,yn]=ni=1nj=1,ji[y1,,yix1,,yjx2,,yn]+nj=1[y1,,yjx1x2,,yn]=ni=1nj=1,ji[y1,,yix1,,yjx2,,yn]+nx1x2[y1,,yn],

    which gives

    n(n1)x1x2[y1,y2,,yn]=ni=1nj=1,ji[y1,,yix1,,yjx2,,yn].

    Hence, the proof is completed.

    To prove Conjecture 1.1, we need the following extra condition.

    Definition 2.3. A transposed Poisson n-Lie algebra (L,,[,,]) is called strong if the following identity holds:

    y1[hy2,x1,,xn1]y2[hy1,x1,,xn1]+n1i=1(1)i1hxi[y1,y2,x1,,ˆxi,,xn1]=0 (2.8)

    for any y1,y2,xiL,1in1.

    Remark 2.1. When n=2, the identity is

    y1[hy2,x1]+y2[x1,hy1]+hx1[y1,y2]=0,

    which is exactly Theorem 2.5 (11) in [2]. Thus, in the case of a transposed Poisson algebra, the strong condition always holds. So far, we cannot prove that the strong condition fails to hold for n3.

    Proposition 2.1. Let (L,,[,,]) be a strong transposed Poisson n-Lie algebra. Then,

    y1[hy2,x1,,xn1]hy1[y2,x1,,xn1]=y2[hy1,x1,,xn1]hy2[y1,x1,,xn1] (2.9)

    for any y1,y2,xiL,1in1.

    Proof. By Eq (2.3), we have

    hy1[y2,x1,,xn1]+hy2[y1,x1,,xn1]=n1i=1(1)i1hxi[y1,y2,x1,,ˆxi,,xn1].

    Then, the statement follows from Eq (2.8).

    In this section, we will prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras. First, we recall the notion of derivations of transposed Poisson n-Lie algebras.

    Definition 3.1. Let (L,,[,,]) be a transposed Poisson n-Lie algebra. The linear operation D:LL is called a derivation of (L,,[,,]) if the following holds for any u,v,xiL,1in:

    (1) D is a derivation of (L,), i.e., D(uv)=D(u)v+uD(v);

    (2) D is a derivation of (L,[,,]), i.e.,

    D([x1,,xn])=ni=1[x1,,xi1,D(xi),xi+1,,xn].

    Lemma 3.1. Let (L,,[,,]) be a transposed Poisson n-Lie algebra and D a derivation of (L,,[,,]). For any yiL,1in+1, we have the following:

    (1)

    n+1i=1(1)i1D(yi)D([y1,,ˆyi,,yn+1])=n+1i=1n+1j=1,ji(1)i1D(yi)[y1,,D(yj),,ˆyi,,yn+1]; (3.1)

    (2)

    n+1i=1(1)i1D(yi)D([y1,,ˆyi,,yn+1])=n+1i=1n+1j=1,jin+1k=j+1,ki(1)iyi[y1,,D(yj),,D(yk),,ˆyi,,yn+1], (3.2)

    where, for any i>j, ji denotes the empty sum, which is equal to zero.

    Proof. (1) The statement follows immediately from Definition 3.1.

    (2) By applying Eq (3.1), we need to prove the following equation:

    n+1i=1n+1j=1,ji(1)i1nD(yi)[y1,,D(yj),,ˆyi,,yn+1]=n+1i=1n+1j=1,jin+1k=j+1,ki(1)inyi[y1,,D(yj),,D(yk),,ˆyi,,yn+1].

    For any 1in+1, denote Ai:=nn+1j=1,ji(1)i1D(yi)[y1,,D(yj),,ˆyi,,yn+1]. Then, we have

    n+1i=1n+1j=1,ji(1)i1nD(yi)[y1,,D(yj),,ˆyi,,yn+1]=n+1i=1Ai.

    Note that

    Ai=(1)i1(nD(yi)[D(y1),y2,,ˆyi,,yn+1]+nD(yi)[y1,D(y2),y3,,ˆyi,,yn+1]++nD(yi)[y1,,ˆyi,,yn,D(yn+1)])=(1)i1([D(yi)D(y1),y2,,ˆyi,,yn+1]+n+1k=2,ki[D(y1),y2,,ykD(yi),,ˆyi,,yn+1]+[y1,D(yi)D(y2),y3,,ˆyi,,yn+1]+n+1k=1,k2,i[y1,D(y2),y3,,ykD(yi),,ˆyi,,yn+1]++[y1,,ˆyi,,yn,D(yi)D(yn+1)]+nk=1,ki[y1,,ykD(yi),,ˆyi,,yn,D(yn+1)])=(1)i1n+1j=1,ji[y1,,D(yi)D(yj),,ˆyi,,yn+1]+(1)i1n+1j=1,jin+1k=1,kj,i[y1,,D(yj),,ykD(yi),,ˆyi,,yn+1].

    Thus, we have

    n+1i=1Ai=n+1j=1n+1i=1,ij(1)j1[y1,,D(yj)D(yi),,ˆyj,,yn+1]+n+1i=1n+1j=1,jin+1k=1,ki,j(1)i1[y1,,D(yj),,ykD(yi),,ˆyi,,yn+1]=T1+T2,

    where

    T1:=n+1j=1n+1i=1,ij(1)j1[y1,,D(yj)D(yi),,ˆyj,,yn+1],T2:=n+1i=1n+1j=1,jin+1k=1,ki,j(1)i1[y1,,D(yj),,ykD(yi),,ˆyi,,yn+1].

    Note that

    T1=n+1j,i=1Bji,

    where Bji=(1)j1[y1,,D(yj)D(yi),,ˆyj,,yn+1] for any 1jin+1, and Bii=0 for any 1in+1.

    For any 1i,jn+1, without loss of generality, assume that i<j; then, we have

    Bji+Bij=(1)j1[y1,,D(yj)D(yi),,ˆyj,,yn+1]+(1)i1[y1,,ˆyi,,D(yi)D(yj),,yn+1]=(1)j1[y1,,D(yj)D(yi),,ˆyj,,yn+1]+(1)i1+ji+1[y1,,D(yj)D(yi),,ˆyj,,yn+1]=0,

    which implies that T1=n+1j,i=1Bji=0.

    Thus, we get that n+1i=1Ai=T2.

    We rewrite

    n+1i=1n+1j=1,jin+1k=j+1,ki(1)inyi[y1,,D(yj),,D(yk),,ˆyi,,yn+1]=n+1i=1n+1j=1,jin+1k=j+1,kin+1t=1,tj,k,i(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1]+n+1i=1n+1j=1,jin+1k=j+1,ki(1)i[y1,,yiD(yj),,D(yk),,ˆyi,,yn+1]+n+1i=1n+1j=1,jin+1k=j+1,ki(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=M1+M2+M3,

    where

    M1:=n+1i=1n+1j=1,jin+1k=j+1,kin+1t=1,tj,k,i(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1],M2:=n+1i=1n+1j=1,jin+1k=j+1,ki(1)i[y1,,yiD(yj),,D(yk),,ˆyi,,yn+1],M3:=n+1i=1n+1j=1,jin+1k=j+1,ki(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1].

    Note that

    M1=n+1i=1n+1j=1,jin+1k=j+1,kin+1t=1,tj,k,i(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1]=n+1i,j,k,t=1Bijkt,

    where

    Bijkt={0,if any two indices are equal or k<j;(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1],otherwise.

    For any 1j,kn+1, without loss of generality, assume that t<i; then, we have

    Bijkt+Btjki=(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1]+(1)t[y1,,D(yj),,D(yk),,ˆyt,,ytyi,,yn+1]=(1)i[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1]+(1)t+it1[y1,,D(yj),,D(yk),,ytyi,,ˆyi,,yn+1]=0,

    which implies that M1=0.

    Therefore, we only need to prove the following equation:

    M2+M3=n+1i=1n+1j=1,jin+1k=1,ki,j(1)i1[y1,,D(yj),,ykD(yi),,ˆyi,,yn+1].

    First, we have

    n+1j=1,jin+1k=j+1,ki(1)i[y1,,yiD(yj),,D(yk),,ˆyi,,yn+1]+n+1j=1,jin+1k=j+1,ki(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1k=1,kik1j=1,ji(1)i[y1,,yiD(yj),,D(yk),,ˆyi,,yn+1]+n+1j=1,jin+1k=j+1,ki(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1j=1,jij1k=1,ki(1)i[y1,,yiD(yk),,D(yj),,ˆyi,,yn+1]+n+1j=1,jin+1k=j+1,ki(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1j=1,jin+1k=1,ki,j(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1].

    Thus,

    M2+M3=n+1i=1n+1j=1,jin+1k=1,ki,j(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1j=1n+1i=1,ijn+1k=1,ki,j(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1j=1n+1i=1,iji1k=1,kj(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]+n+1j=1n+1i=1,ijn+1k=i+1,kj(1)i[y1,,D(yj),,ˆyi,,yiD(yk),,yn+1].

    Note that, for any 1jn+1, we have

    n+1i=1,iji1k=1,kj(1)i[y1,,D(yj),,yiD(yk),,ˆyi,,yn+1]=n+1i=1,iji1k=1,kj(1)i[y1,,D(yj),,yk1,yiD(yk),yk+1,,ˆyi,yn+1]=n+1i=1,iji1k=1,kj(1)k1[y1,,D(yj),,ˆyk,,yi1,yiD(yk),yi+1,,yn+1]=n+1i=1,iji1k=1,kj(1)k1[y1,,D(yj),,ˆyk,,yiD(yk),,yn+1].

    Similarly, we have

    n+1i=1,ijn+1k=i+1,kj(1)i[y1,,D(yj),,ˆyi,,yiD(yk),,yn+1]=n+1i=1,ijn+1k=i+1,kj(1)k1[y1,,D(yj),,yiD(yk),,ˆyk,,yn+1].

    Thus,

    M2+M3=n+1j=1n+1i=1,iji1k=1,kj(1)k1[y1,,D(yj),,ˆyk,,yiD(yk),,yn+1]+n+1j=1n+1i=1,ijn+1k=i+1,kj(1)k1[y1,,D(yj),,yiD(yk),,ˆyk,,yn+1]=n+1j=1n+1i=1,ijn+1k=1,ki,j(1)k1[y1,,D(yj),,yiD(yk),,ˆyk,,yn+1]=n+1k=1n+1j=1,jkn+1i=1,ij,k(1)k1[y1,,D(yj),,yiD(yk),,ˆyk,,yn+1]=n+1i=1n+1j=1,jin+1k=1,kj,i(1)i1[y1,,D(yj),,ykD(yi),,ˆyi,,yn+1].

    The proof is completed.

    Theorem 3.1. Let (L,,[,,]) be a strong transposed Poisson n-Lie algebra and D a derivation of (L,,[,,]). Define an (n+1)-ary operation:

    μn+1(x1,,xn+1):=n+1i=1(1)i1D(xi)[x1,,ˆxi,,xn+1] (3.3)

    for any xiL,1in+1. Then, (L,μn+1) is an (n+1)-Lie algebra.

    Proof. For convenience, we denote

    μn+1(x1,,xn+1):=[x1,,xn+1].

    On one hand, we have

    [[y1,,yn+1],x1,,xn](3.3)=n+1i=1(1)i1[D(yi)[y1,,ˆyi,,yn+1],x1,,xn](3.3)=n+1i=1(1)i1D(D(yi)[y1,,ˆyi,,yn+1])[x1,,xn]+n+1i=1nj=1(1)i+j1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn]=n+1i=1(1)i1D2(yi)[y1,,ˆyi,,yn+1][x1,,xn]+n+1i=1(1)i1D(yi)D([y1,,ˆyi,,yn+1])[x1,,xn]+n+1i=1nj=1(1)i+j1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn](3.1)=n+1i=1(1)i1D2(yi)[y1,,ˆyi,,yn+1][x1,,xn]+n+1i=1n+1k=1,ki(1)i1D(yi)[y1,,D(yk),,ˆyi,,yn+1][x1,,xn]+n+1i=1nj=1(1)i+j1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn]=n+1i=1(1)i1D2(yi)[y1,,ˆyi,,yn+1][x1,,xn]+n+1k=1k1i=1(1)k+i1D(yi)[D(yk),y1,,ˆyi,,ˆyk,,yn+1][x1,,xn]+n+1k=1n+1i=k+1(1)i+kD(yi)[D(yk),y1,,ˆyk,,ˆyi,,yn+1][x1,,xn]+n+1i=1nj=1(1)i+j1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn].

    On the other hand, for any 1kn, we have

    (1)k1[[yk,x1,,xn],y1,,ˆyk,,yn+1](3.3)=(1)k1[D(yk)[x1,,xn],y1,,ˆyk,,yn+1]+nj=1(1)j+k1[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,yn+1](3.3)=(1)k1D(D(yk)[x1,,xn])[y1,,ˆyk,,yn+1]+k1i=1(1)i+k1D(yi)[D(yk)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]+n+1i=k+1(1)i+kD(yi)[D(yk)[x1,,xn],y1,,ˆyk,,ˆyi,,yn+1]+nj=1(1)j+k1D(D(xj)[yk,x1,,ˆxj,,xn])[y1,,ˆyk,,yn+1]+nj=1n+1i=k+1((1)i+jD(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,ˆyi,,yn+1])+nj=1k1i=1((1)i+j1D(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyi,,ˆyk,,yn+1])=(1)k1D2(yk)[x1,,xn][y1,,ˆyk,,yn+1]+k1i=1(1)i+k1D(yi)[D(yk)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]+n+1i=k+1(1)i+kD(yi)[D(yk)[x1,,xn],y1,,ˆyk,,ˆyi,,yn+1]+nj=1(1)j+k1D2(xj)[yk,x1,,ˆxj,,xn][y1,,ˆyk,,yn+1]+nj=1n+1i=k+1((1)i+jD(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,ˆyi,,yn+1])+nj=1k1i=1((1)i+j1D(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyi,,ˆyk,,yn+1])+(1)k1D(yk)D([x1,,xn])[y1,,ˆyk,,yn+1]+nj=1(1)j+k1D(xj)D([yk,x1,,ˆxj,,xn])[y1,,ˆyk,,yn+1](3.2)=(1)k1D2(yk)[x1,,xn][y1,,ˆyk,,yn+1]+k1i=1(1)i+k1D(yi)[D(yk)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]+n+1i=k+1(1)i+kD(yi)[D(yk)[x1,,xn],y1,,ˆyk,,ˆyi,,yn+1]+nj=1(1)j+k1D2(xj)[yk,x1,,ˆxj,,xn][y1,,ˆyk,,yn+1]+nj=1n+1i=k+1((1)i+jD(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,ˆyi,,yn+1])+nj=1k1i=1((1)i+j1D(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyi,,ˆyk,,yn+1])+nj=1nt=j+1(1)kyk[x1,,D(xj),,D(xt),,xn][y1,,ˆyk,,yn+1]+ni=1nj=1,ji(1)k+ixi[D(yk),x1,,D(xj),,ˆxi,,xn][y1,,ˆyk,,yn+1]+ni=1nj=1,jint=j+1,ti(1)k+ixi[yk,x1,,D(xj),D(xt),,ˆxi,,xn][y1,,ˆyk,,yn+1].

    We denote

    n+1i=1(1)i1[[yi,x1,,xn],y1,,ˆyi,,yn+1]=7i=1Ai,

    where

    A1:=n+1i=1(1)i1D2(yi)[x1,,xn][y1,,ˆyi,,yn+1],A2:=n+1k=1nj=1(1)k+j1D2(xj)[yk,x1,,ˆxj,,xn][y1,,ˆyk,,yn+1],A3:=n+1i=1nj=1nk=j+1(1)iyi[x1,,D(xj),,D(xk),,xn][y1,,ˆyi,,yn+1],A4:=n+1k=1ni=1nj=1,jint=j+1,ti((1)k+ixi[yk,x1,,D(xj),D(xt),,ˆxi,,xn][y1,,ˆyk,,yn+1]),A5:=n+1k=1k1i=1(1)k+i1D(yi)[D(yk)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]+n+1k=1n+1i=k+1(1)i+kD(yi)[D(yk)[x1,,xn],y1,,ˆyk,,ˆyi,,yn+1],A6:=n+1k=1ni=1nj=1,ji((1)k+ixi[D(yk),x1,,D(xj),,ˆxi,,xn][y1,,ˆyk,,yn+1]),A7:=n+1k=1nj=1n+1i=k+1((1)k+i+jD(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,ˆyi,,yn+1])+n+1k=1nj=1k1i=1((1)k+i+j1D(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyi,,ˆyk,,yn+1]).

    By Eq (2.5), for fixed j, we have

    n+1k=1(1)k+j1D2(xj)[yk,x1,,ˆxj,,xn][y1,,ˆyk,,yn+1]=0.

    So, we obtain that A2=0.

    By Eq (2.3), for fixed j and k, we have

    n+1i=1(1)iyi[x1,,D(xj),,D(xk),,xn][y1,,ˆyi,,yn+1]=0.

    So, we obtain that A3=0.

    By Eq (2.5), for fixed j and t, we have

    n+1k=1(1)k+ixi[yk,x1,,D(xj),D(xt),,ˆxi,,xn][y1,,ˆyk,,yn+1]=0.

    So, we obtain that A4=0.

    By Eq (2.9), for fixed i and k, we have

    (1)k+i1D(yi)[D(yk)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]+(1)i+kD(yk)[D(yi)[x1,,xn],y1,,ˆyi,,ˆyk,,yn+1]=(1)k+i1D(yi)[D(yk),y1,,ˆyi,,ˆyk,,yn+1][x1,,xn]+(1)i+kD(yk)[D(yi),y1,,ˆyi,,ˆyk,,yn+1][x1,,xn].

    Thus, we obtain

    A5=n+1k=1k1i=1(1)k+i1D(yi)[D(yk),y1,,ˆyi,,ˆyk,,yn+1][x1,,xn]+n+1k=1n+1i=k+1(1)i+kD(yi)[D(yk),y1,,ˆyk,,ˆyi,,yn+1][x1,,xn].

    By Eq (2.3), for fixed j and k, we have

    ni=1(1)k+ixi[D(yk),x1,,D(xj),,ˆxi,,xn]=(1)k1D(yk)[x1,,D(xj),,xn]+(1)k+j1D(xj)[D(yk),x1,,xn]=(1)k+jD(yk)[D(xj),x1,,ˆxj,,xn]+(1)k+j1D(xj)[D(yk),x1,,xn].

    Thus, we get

    A6=n+1k=1nj=1(1)k+jD(yk)[D(xj),x1,,ˆxj,,xn][y1,,ˆyk,,yn+1]+n+1k=1nj=1(1)k+j1D(xj)[D(yk),x1,,xn][y1,,ˆyk,,yn+1].

    By Eq (2.4), for fixed j and i, we have

    n+1k=i+1(1)k+i+j1D(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyi,,ˆyk,,yn+1]+i1k=1(1)k+i+jD(yi)[D(xj)[yk,x1,,ˆxj,,xn],y1,,ˆyk,,ˆyi,,yn+1]=(1)j+i1D(yi)[D(xj)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn].

    So, we obtain

    A7=nj=1n+1i=1(1)j+i1D(yi)[D(xj)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn].

    By Eq (2.9), we have

    (1)i+jD(yi)[D(xj),x1,,ˆxj,,xn][y1,,ˆyi,,yn+1]+(1)i+j1D(xj)[D(yi),x1,,xn][y1,,ˆyi,,yn+1]+(1)j+i1D(yi)[D(xj)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn]=(1)j+i1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn].

    So, we get

    A6+A7=n+1i=1nj=1(1)j+i1D(xj)[D(yi)[y1,,ˆyi,,yn+1],x1,,ˆxj,,xn].

    Thus, we have

    7i=1Ai=A1+A5+A6+A7=[[y1,,yn+1],x1,,xn].

    Therefore, (L,μn+1) is an (n+1)-Lie algebra.

    Now, we can prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras.

    Theorem 3.2. With the notations in Theorem 3.1, (L,,μn+1) is a strong transposed Poisson (n+1)-Lie algebra.

    Proof. For convenience, we denote μn+1(x1,,xn+1):=[x1,,xn+1]. According to Theorem 3.1, we only need to prove Eqs (2.2) and (2.8).

    Proof of Eq (2.2). By Eq (3.3), we have

    n+1i=1[x1,,hxi,,xn+1]=D(hx1)[x2,,xn+1]+n+1j=2(1)j1D(xj)[hx1,x2,,ˆxj,,xn+1]D(hx2)[x1,x3,,xn+1]+n+1j=1,j2(1)j1D(xj)[x1,hx2,x3,,ˆxj,,xn+1]++(1)nD(hxn)[x1,,xn]+nj=1(1)j1D(xj)[x1,,ˆxj,,xn,hxn+1]=n+1i=1(1)i1D(hxi)[x1,,ˆxi,,xn]+n+1i=1n+1j=1,ji(1)j1D(xj)[x1,,,hxi,,ˆxj,,xn+1]=n+1i=1(1)i1D(hxi)[x1,,ˆxi,,xn+1]+n+1j=1n+1i=1,ij(1)j1D(xj)[x1,,hxi,,ˆxj,,xn+1]=n+1i=1(1)i1hD(xi)[x1,,ˆxi,,xn+1]+n+1i=1(1)i1xiD(h)[x1,,ˆxi,,xn+1]+n+1j=1n+1i=1,ij(1)j1D(xj)[x1,,hxi,,ˆxj,,xn+1](2.3)=n+1i=1(1)i1hD(xi)[x1,,ˆxi,,xn+1]+n+1j=1n+1i=1,ij(1)j1D(xj)[x1,,hxi,,ˆxj,,xn+1](3.3)=h[x1,,xn+1]+n+1j=1n+1i=1,ij(1)j1D(xj)[x1,,hxi,,ˆxj,,xn+1](2.2)=h[x1,,xn+1]+nhn+1j=1(1)j1D(xj)[x1,,ˆxj,,xn+1](3.3)=h[x1,,xn+1]+nh[x1,,xn+1]=(n+1)h[x1,,xn+1].

    Proof of Eq (2.8). By Eq (3.3), we have

    y1[hy2,x1,,xn]y2[hy1,x1,,xn]+ni=1(1)i1hxi[y1,y2,x1,,ˆxi,,xn]=y1y2D(h)[x1,,xn]+y1hD(y2)[x1,,xn]y1D(x1)[hy2,x2,,xn]+y1D(x2)[hy2,x1,x3,,xn]++(1)ny1D(xn)[hy2,x1,,xn1]y2y1D(h)[x1,,xn]y2hD(y1)[x1,,xn]+y2D(x1)[hy1,x2,,xn]y2D(x2)[hy1,x1,x3,,xn]++(1)n1y2D(xn)[hy1,x1,,xn1]+hx1D(y1)[y2,x2,,xn]hx1D(y2)[y1,x2,,xn]+hx1D(x2)[y1,y2,x3,,xn]++(1)n+1hx1D(xn)[y1,y2,x2,,xn1]hx2D(y1)[y2,x1,x3,,xn]+hx2D(y2)[y1,x1,x3,,xn]hx2D(x1)[y1,y2,x3,,xn]++(1)n+2hx2D(xn)[y1,y2,x1,x3,,xn1]++(1)n1hxnD(y1)[y2,x1,,xn1]+(1)nhxnD(y2)[y1,x1,,xn1]+(1)n+1hxnD(x1)[y1,y2,x2,,xn1]++(1)2n1hxnD(xn1)[y1,y2,x1,,xn2]=y2hD(y1)[x1,,xn]+hx1D(y1)[y2,x2,,xn]+ni=2(1)i1hxiD(y1)[y2,x1,,ˆxi,,xn]+y1hD(y2)[x1,,xn]hx1D(y2)[y1,x2,,xn]+ni=2(1)ihxiD(y2)[y1,x1,,ˆxi,,xn]y1D(x1)[hy2,x2,,xn]+y2D(x1)[hy1,x2,,xn]+ni=2(1)i1hxiD(x1)[y1,y2,x2,,ˆxi,,xn]+y1D(x2)[hy2,x1,x3,,xn]y2D(x2)[hy1,x1,x3,,xn]+hx1D(x2)[y1,y2,x3,,xn]+ni=3(1)ihxiD(x2)[y1,y2,x1,x3,,ˆxi,,xn]+(1)ny1D(xn)[hy2,x1,,xn1]+(1)n1y2D(xn)[hy1,x1,,xn1]+n1j=1(1)n+j1hxjD(xn)[y1,y2,x1,,ˆxj,,xn1]=A1+A2+ni=1Bi,

    where

    A1:=y2hD(y1)[x1,,xn]+ni=1(1)i1hxiD(y1)[y2,x1,,ˆxi,,xn],A2:=y1hD(y2)[x1,,xn]+ni=1(1)ihxiD(y2)[y1,x1,,ˆxi,,xn],

    and, for any 1in,

    Bi:=(1)iy1D(xi)[hy2,x1,,ˆxi,,xn]+(1)i1y2D(xi)[hy1,x1,,ˆxi,,xn]+i1j=1(1)i+j1hxjD(xi)[y1,y2,x1,,ˆxj,,ˆxi,,xn]+nj=i+1(1)i+jhxjD(xi)[y1,y2,x1,,ˆxi,,ˆxj,,xn].

    By Eq (2.3), we have

    A1=hD(y1)(y2[x1,,xn]+ni=1(1)i1xi[y2,x1,,ˆxi,,xn])=0.

    Similarly, we have that A2=0.

    By Eq (2.8), for any 1in, we have

    Bi=(1)iD(xi)(y1[hy2,x1,,ˆxi,,xn]y2[hy1,x1,,ˆxi,,xn]+i1j=1(1)j1hxj[y1,y2,x1,,ˆxj,,ˆxi,,xn]+nj=i+1(1)jhxj[y1,y2,x1,,ˆxi,,ˆxj,,xn])=0.

    Thus, we get

    y1[hy2,x1,,xn]y2[hy1,x1,,xn]+ni=1(1)i1hxi[y1,y2,x1,,ˆxi,,xn]=0.

    The proof is completed.

    Example 3.1. The commutative associative algebra L=k[x1,x2,x3], together with the bracket

    [x,y]:=xD1(y)yD1(x),x,yL.

    gives a transposed Poisson algebra (L,,[,]), where D1=x1 ([2, Proposition 2.2]). Note that the transposed Poisson algebra (L,,[,]) is strong according to Remark 2.5. Now, let D2=x2; one can check that D2 is a derivation of (L,,[,]). Then, there exists a strong transposed Poisson 3-Lie algebra defined by

    [x,y,z]:=D2(x)(yD1(z)zD1(y))+D2(y)(zD1(x)xD1(z))+D2(z)(xD1(y)yD1(x)), x,y,zL.

    We note that [x1,x2,x3]=x3, which is non-zero. The strong condition can be checked as follows:

    For any h,y1,y2,z1,z2L, by a direct calculation, we have

    y1[hy2,z1,z2]=y1z1hD1(z2)D2(y2)y1z2hD1(z1)D2(y2)+y1y2z1D1(z2)D2(h)y1y2z2D1(z1)D2(h)y1y2hD1(z2)D2(z1)+y1z2hD1(y2)D2(z1)+y1y2z2D1(h)D2(z1)+y1y2hD1(z1)D2(z2)y1z1hD1(y2)D2(z2)y1y2z1D1(h)D2(z2),
    y2[hy1,z1,z2]=y2z1hD1(z2)D2(y1)+y2z2hD1(z1)D2(y1)y1y2z1D1(z2)D2(h)+y1y2z2D1(z1)D2(h)+y1y2hD1(z2)D2(z1)y2z2hD1(y1)D2(z1)y1y2z2D1(h)D2(z1)y1y2hD1(z1)D2(z2)+y2z1hD1(y1)D2(z2)+y1y2z1D1(h)D2(z2),
    hz1[y1,y2,z2]=hy2z1D1(z2)D2(y1)hz1z2D1(y2)D2(y1)hy1z1D1(z2)D2(y2)+hz1z2D1(y1)D2(y2)+hy1z1D1(y2)D2(z2)hy2z1D1(y1)D2(z2),
    hz2[y1,y2,z1]=hy2z2D1(z1)D2(y1)+hz1z2D1(y2)D2(y1)+hy1z2D1(z1)D2(y2)hz1z2D1(y1)D2(y2)hy1z2D1(y2)D2(z1)+hy2z2D1(y1)D2(z1).

    Thus, we get

    y1[hy2,z1,z2]y2[hy1,z1,z2]+hz1[y1,y2,z2]hz2[y1,y2,z1]=0.

    We have studied transposed Poisson n-Lie algebras. We first established an important class of identities for transposed Poisson n-Lie algebras, which were subsequently used throughout the paper. We believe that the identities developed here will be useful in investigations of the structure of transposed Poisson n-Lie algebras in the future. Then, we introduced the notion of a strong transposed Poisson n-Lie algebra and derived an (n+1)-Lie algebra from a strong transposed Poisson n-Lie algebra with a derivation. Finally, we proved the conjecture of Bai et al. [2] for strong transposed Poisson n-Lie algebras.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    Ming Ding was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under grant number 202201020103.

    The authors declare that there is no conflict of interest.


    Acknowledgments



    Author acknowledges Profs. Marcello Alecci for general supervision of the research group and proofreading, Angelo Galante for stimulating discussions and Giuseppe Di Giovanni for encouraging comments and proofreading.

    Funding



    University of L'Aquila RIA 2019 research funds.

    Conflict of interest



    Author declares no conflicts of interest in this paper.

    [1] Anholt RRC (2020) Evolution of epistatic networks and the genetic basis of innate behaviors. Trends Genet 36: 24-29. doi: 10.1016/j.tig.2019.10.005
    [2] Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74: 975-989. doi: 10.1016/j.neuron.2012.05.011
    [3] Adolph KE (2002) Babies' steps make giant strides toward a science of development. Infant Behav Dev 25: 86-90. doi: 10.1016/S0163-6383(02)00106-6
    [4] Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. PNAS 105: 809-813. doi: 10.1073/pnas.0707021105
    [5] Slater A, Quinn PC (2001) Face recognition in the newborn infant. Inf Child Dev 10: 21-24. doi: 10.1002/icd.241
    [6] Ekman P, Friesen W (1971) Constants across cultures in the face and emotion. J Pers Social Psychol 17: 124-129. doi: 10.1037/h0030377
    [7] Miellet S, Vizioli L, He L, et al. (2013) Mapping face recognition information use across cultures. Front Pshycol 4.
    [8] Grillner S, Robertson B (2016) The basal ganglia over 500 million years. Curr Biol 26: R1088-R1100. doi: 10.1016/j.cub.2016.06.041
    [9] Stephenson-Jones M, Samuelsson E, Ericsson J, et al. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21: 1081-1091. doi: 10.1016/j.cub.2011.05.001
    [10] Romo R, de Lafuente V (2013) Conversion of sensory signals into perceptual decisions. Prog Neurobiol 103: 41-75. doi: 10.1016/j.pneurobio.2012.03.007
    [11] Boettiger CA, D'Esposito M (2005) Frontal networks for learning and executing arbitrary Stimulus–Response associations. J Neurosci 25: 2723-2732. doi: 10.1523/JNEUROSCI.3697-04.2005
    [12] Garr E (2019) Contributions of the basal ganglia to action sequence learning and performance. Neurosci Biobehav Rev 107: 279-295. doi: 10.1016/j.neubiorev.2019.09.017
    [13] Wu T, Hallett M, Chana P (2015) Motor automaticity in Parkinson's disease. Neurobiol Dis 82: 226-234. doi: 10.1016/j.nbd.2015.06.014
    [14] Marinelli L, Quartarone A, Hallett M, et al. (2017) The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol 128: 1127-1141. doi: 10.1016/j.clinph.2017.03.042
    [15] Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199: 43-52. doi: 10.1016/j.bbr.2008.10.034
    [16] Kobesova A, Kolar P (2014) Developmental kinesiology: Three levels of motor control in the assessment and treatment of the motor system. J Bodyw Mov Ther 18: 23-33. doi: 10.1016/j.jbmt.2013.04.002
    [17] Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 13: 266-271. doi: 10.1016/0166-2236(90)90107-L
    [18] Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7: 464-76. doi: 10.1038/nrn1919
    [19] Hiebert NM, Vo A, Hampshire A, et al. (2014) Striatum in stimulus–response learning via feedback and in decision making. Neuroimage 101: 448-457. doi: 10.1016/j.neuroimage.2014.07.013
    [20] Jenkins IH, Jahanshahi M, Jueptner M, et al. (2000) Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123: 1216-1228. doi: 10.1093/brain/123.6.1216
    [21] Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21: 1-22. doi: 10.1016/S0278-5846(96)00157-1
    [22] Shu SY, Jiang G, Zeng QY, et al. (2015) The marginal division of the striatum and hippocampus has different role and mechanism in learning and memory. Mol Neurobiol 51: 827-839. doi: 10.1007/s12035-014-8891-6
    [23] Seger CA (2008) How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev 32: 265-278. doi: 10.1016/j.neubiorev.2007.07.010
    [24] Arroyo-García LE, Rodríguez-Moreno A, Flores G (2018) Apomorphine effects on the hippocampus. Neural Regen Res 13: 2064-2066. doi: 10.4103/1673-5374.241443
    [25] Bissonette GB, Roesch MR (2016) Neurophysiology of rule switching in the corticostriatal circuit. Neuroscience 14: 64-76.
    [26] Shu SY, Jiang G, Zeng QY, et al. (2019) A New neural pathway from the ventral striatum to the nucleus basalis of Meynert with functional implication to learning and memory. Mol Neurobiol 56: 7222-7233. doi: 10.1007/s12035-019-1588-0
    [27] Goodman J, Packard MG (2017) Memory Systems of the Basal Ganglia. Handbook of Basal Ganglia Structure and Function Academic Press, 725-740.
    [28] Peall KJ, Lorentzos MS, Heyman I, et al. (2017) A review of psychiatric co-morbidity described in genetic and immune mediated movement disorders. Neurosci Biobehav Rev 80: 23-25. doi: 10.1016/j.neubiorev.2017.05.014
    [29] Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5: 59. doi: 10.3389/fnana.2011.00059
    [30] Graybiel AM (1997) The basal ganglia and cognitive pattern generators. Schizophr Bull 23: 459-69. doi: 10.1093/schbul/23.3.459
    [31] Leisman G, Moustafa AA, Shafir T (2016) Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health 4: 94. doi: 10.3389/fpubh.2016.00094
    [32] Nobili A, Latagliata EC, Viscomi MT, et al. (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun 8: 14727. doi: 10.1038/ncomms14727
    [33] Intzandt B, Beck EN, Silveira CRA (2018) The effects of exercise on cognition and gait in Parkinson's disease: A scoping review. Neurosci Biobeh Rev 95: 136-169. doi: 10.1016/j.neubiorev.2018.09.018
    [34] Crowley EK, Nolan YM, Sullivan AM (2019) Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 172: 2-22. doi: 10.1016/j.pneurobio.2018.11.003
    [35] Feng YS, Yang SD, Tan ZX, et al. (2020) The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci 245: 117345. doi: 10.1016/j.lfs.2020.117345
    [36] Cunnington R, Iansek R, Thickbroom GW, et al. (1996) Effects of magnetic stimulation over supplementary motor area on movement in Parkinson's disease. Brain 119: 815-822. doi: 10.1093/brain/119.3.815
    [37] Grieb B, von Nicolai C, Engler G, et al. (2013) Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease. Front Syst Neurosci 7: 95. doi: 10.3389/fnsys.2013.00095
    [38] Bouchekioua Y, Tsutsui-Kimura I, Sanob H, et al. (2018) Striatonigral direct pathway activation is sufficient to induce repetitive behaviors. Neurosci Res 132: 53-57. doi: 10.1016/j.neures.2017.09.007
    [39] Smith KS, Graybiel AM (2016) Habit formation. Dialogues Clin Neurosci 18: 33-43. doi: 10.31887/DCNS.2016.18.1/ksmith
    [40] Jin X, Costa RM (2015) Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol 33: 188-196. doi: 10.1016/j.conb.2015.06.011
    [41] Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70: 119-136. doi: 10.1006/nlme.1998.3843
    [42] Thorn CA, Atallah H, Howe M, et al. (2010) Differential Dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66: 781-795. doi: 10.1016/j.neuron.2010.04.036
    [43] Smith KS, Graybiel AM (2014) Investigating habits: strategies, technologies and models. Front Behav Neurosci 8: 39.
    [44] Iachini T, Ruggiero G, Ruotolo F, et al. (2014) Motor resources in peripersonal space are intrinsic to spatial encoding: Evidence from motor interference. Acta Psychol 153: 20-27. doi: 10.1016/j.actpsy.2014.09.001
    [45] Wang C, Chen X, Knierim JJ (2020) Egocentric and allocentric representations of space in the rodent brain. Curr Opin Neurobiol 60: 12-20. doi: 10.1016/j.conb.2019.11.005
    [46] Glover S, Bibby E, Tuomi E (2020) Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res 238: 931-944. doi: 10.1007/s00221-020-05756-4
    [47] Soriano M, Cavallo A, D'Ausilio A, et al. (2018) Movement kinematics drive chain selection toward intention detection. PNAS 115: 10452-10457. doi: 10.1073/pnas.1809825115
    [48] Del Vecchio M, Caruana F, Sartori I, et al. (2020) Action execution and action observation elicit mirror responses with the same temporal profile in human SII. Commun Biol 3: 80. doi: 10.1038/s42003-020-0793-8
    [49] McBride SD, Parker MO (2015) The disrupted basal ganglia and behavioural control: An integrative cross-domain perspective of spontaneous stereotypy. Behav Brain Res 276: 45-58. doi: 10.1016/j.bbr.2014.05.057
    [50] Guzulaitis R, Alaburda A, Hounsgaard J (2013) Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation. J Physiol 120: 2542-2554.
    [51] Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Res 217: 380-386. doi: 10.1016/0006-8993(81)90015-9
    [52] Grillner S (1991) Recombination of motor pattern generators. Curr Biol 1: 231-3. doi: 10.1016/0960-9822(91)90066-6
    [53] Kalueff AV, Stewart AM, Song C, et al. (2015) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17: 45-59. doi: 10.1038/nrn.2015.8
    [54] Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and Automaticity. Trends Cogn Sci 14: 208-215. doi: 10.1016/j.tics.2010.02.001
    [55] Redgrave R, Rodriguez M, Smith Y, et al. (2011) Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 11: 760-772. doi: 10.1038/nrn2915
    [56] Dezfouli A, Balleine BW (2012) Habits, action sequences and reinforcement learning. Eur J Neurosci 35: 1036-1051. doi: 10.1111/j.1460-9568.2012.08050.x
    [57] Hernández LF, Redgrave P, Obeso JA (2015) Habitual behaviour and dopamine cell vulnerability in Parkinson disease. Front Neuroanat 9: 99.
    [58] Helie S, Chakravarthy S, Moustafa AA (2013) Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci 7: 174. doi: 10.3389/fncom.2013.00174
    [59] Smith KS, Graybiel AM (2013) A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79: 361-374. doi: 10.1016/j.neuron.2013.05.038
    [60] Hart G, Leung BK, Balleine BW (2014) Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol Learn Mem 108: 104-118. doi: 10.1016/j.nlm.2013.11.003
    [61] Hinman JR, Chapman GW, Hasselmo ME (2019) Neural representation of environmental boundaries in egocentric coordinates. Nat Commun 10: 2772. doi: 10.1038/s41467-019-10722-y
    [62] Florio TM (2017) The 6-Hydroxydopamine Hemiparkinsonian Rat Model: Evidence of Early Stage Degeneration of the Nigrostriatal Pathway. Xjenza Online Available from: https://www.xjenza.org/JOURNAL/OLD/5-2-2017/05.pdf.
    [63] Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41: 245-251. doi: 10.1016/S0028-3932(02)00157-4
    [64] Calabresi P, Maj R, Pisani A, et al. (1992) Longterm synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12: 4224-4233. doi: 10.1523/JNEUROSCI.12-11-04224.1992
    [65] Calabresi P, Centonze D, Gubellini P, et al. (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61: 231-265. doi: 10.1016/S0301-0082(99)00030-1
    [66] Calabresi P, Picconi B, Tozzi A, et al. (2007) Dopamine mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30: 211-219. doi: 10.1016/j.tins.2007.03.001
    [67] Pisani A, Centonze D, Bernardi G, et al. (2005) Striatal synaptic plasticity: Implications for motor learning and Parkinson's disease. Movement Disord 20: 395-402. doi: 10.1002/mds.20394
    [68] Centonze D, Picconi B, Gubellini P, et al. (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13: 1071-1077. doi: 10.1046/j.0953-816x.2001.01485.x
    [69] Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: Neuropsychological studies. Behav Brain Res 199: 53-60. doi: 10.1016/j.bbr.2008.11.020
    [70] Atallah HE, Frank MJ, O'Reilly RC (2004) Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. Neurobiol Learn Mem 82: 253-267. doi: 10.1016/j.nlm.2004.06.004
    [71] Brown JW, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks 17: 471-510. doi: 10.1016/j.neunet.2003.08.006
    [72] Aron AR, Behrens TE, Smith S, et al. (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27: 3743-52. doi: 10.1523/JNEUROSCI.0519-07.2007
    [73] Baunez C, Nieoullon A, Amalric M (1995) Dopamine and complex sensorimotor integration: further studies in a conditioned motor task in the rat. Neuroscience 65: 375-384. doi: 10.1016/0306-4522(94)00498-T
    [74] Lehéricy S, Benali H, Van de Moortele PF, et al. (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci 102: 12566-12571. doi: 10.1073/pnas.0502762102
    [75] Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271. doi: 10.1016/0166-2236(90)90107-L
    [76] Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington's disease. Trends Cogn Sci 2: 379-388. doi: 10.1016/S1364-6613(98)01231-5
    [77] Bédard P, Sanes JN (2009) On a basal ganglia role in learning and rehersing visual-MPTPr associations. Neuroimage 47: 1701-1710. doi: 10.1016/j.neuroimage.2009.03.050
    [78] Delgado MR, Miller MM, Inati S, et al. (2005) An fMRI study of reward-related probability learning. Neuroimage 24: 862-873. doi: 10.1016/j.neuroimage.2004.10.002
    [79] Grol MJ, de Lange FP, Verstraten FA, et al. (2006) Cerebral changes during performance of overlearned arbitrary visuomotor associations. J Neurosci 26: 117-125. doi: 10.1523/JNEUROSCI.2786-05.2006
    [80] Seger CA, Cincotta CM (2006) Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cereb Cortex 16: 1546-1555. doi: 10.1093/cercor/bhj092
    [81] Boettiger CA, D'Esposito M (2005) Frontal networks for learning and executing arbitrary stimulus–response associations. J Neurosci 25: 2723-2732. doi: 10.1523/JNEUROSCI.3697-04.2005
    [82] Buch ER, Brasted PJ, Wise SP (2006) Comparison of population activity in the dorsal premotor cortex and putamen during the learning of arbitrary visuomotor mappings. Exp Brain Res 169: 69-84. doi: 10.1007/s00221-005-0130-y
    [83] Charpier S, Mahon S, Deniau JM (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91: 1209-1222. doi: 10.1016/S0306-4522(98)00719-2
    [84] Bonsi P, Florio T, Capozzo A, et al. (2003) Behavioural learning-induced increase in spontaneous GABAA-dependent synaptic activity in rat striatal cholinergic interneurons. Eur J Neurosci 17: 174-178. doi: 10.1046/j.1460-9568.2003.02410.x
    [85] Frank MJ, Loughry B, O'Reilly RC (2001) Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cogn Affect Behav Neurosci 1: 137-160. doi: 10.3758/CABN.1.2.137
    [86] Fino E, Glowinski J, Venance L (2005) Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 25: 11279-11287. doi: 10.1523/JNEUROSCI.4476-05.2005
    [87] Fino E, Deniau JM, Venance L (2008) Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 586: 265-282. doi: 10.1113/jphysiol.2007.144501
    [88] Fino E, Deniau JM, Venance L (2009) Brief subthreshold events can act as Hebbian signals for long-term plasticity. PloS ONE 4: e6557. doi: 10.1371/journal.pone.0006557
    [89] Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39. doi: 10.1038/361031a0
    [90] Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23: 649-711. doi: 10.1146/annurev.neuro.23.1.649
    [91] Martin SJ, Morris RG (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12: 609-636. doi: 10.1002/hipo.10107
    [92] Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84: 87-136. doi: 10.1152/physrev.00014.2003
    [93] Giordano N, Iemolo A, Mancini M, et al. (2018) Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain 141: 505-520. doi: 10.1093/brain/awx351
    [94] Cameron IGM, Coe CB, Watanabe M, et al. (2009) Role of the basal ganglia in switching a planned response. Eur J Neurosci 29: 2413-2425. doi: 10.1111/j.1460-9568.2009.06776.x
    [95] Hikosaka O, Isoda M (2010) Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 14: 154-161. doi: 10.1016/j.tics.2010.01.006
    [96] Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, et al. (2008) Functional organization of the basal ganglia: Therapeutic implications for Parkinson's Disease. Movement Disord 23: S548-S559. doi: 10.1002/mds.22062
    [97] Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425. doi: 10.1016/S0301-0082(96)00042-1
    [98] Reynolds JNJ, Hyland BI, Wickens JR (2019) A cellular mechanism of reward-related learning. Nature 413: 67-70. doi: 10.1038/35092560
    [99] Vandaele Y, Mahajan NR, Ottenheimer DJ, et al. (2019) Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife 8: e49536. doi: 10.7554/eLife.49536
    [100] Klaus A, Martins GJ, Paixao VB, et al. (2017) The spatiotemporal organization of the striatum encodes action space. Neuron 95: 1171-1180. doi: 10.1016/j.neuron.2017.08.015
    [101] Florio TM, Scarnati E, Rosa I, et al. (2018) The basal ganglia: More than just a switching device. CNS Neurosci Ther 24: 677-684. doi: 10.1111/cns.12987
    [102] Florio TM, Confalone G, Sciarra A, et al. (2013) Switching ability of over trained movements in a Parkinson's disease rat model. Behav Brain Res 250: 326-333. doi: 10.1016/j.bbr.2013.05.020
    [103] Patel N, Jankovic J, Hallett M (2014) Sensory aspects of movement disorders. Lancet Neurol 13: 100-112. doi: 10.1016/S1474-4422(13)70213-8
    [104] Williams-Gray CH, Worth PF (2016) Parkinson's disease. Movement DisordersMedicine (Baltimore) 44: 542-546. doi: 10.1016/j.mpmed.2016.06.001
    [105] Asakawa T, Fang H, Sugiyama K, et al. (2016) Human behavioural assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 68: 741-772. doi: 10.1016/j.neubiorev.2016.06.036
    [106] Obeso JA, Stamelou M, Goetz CG, et al. (2017) Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32: 1264-1310. doi: 10.1002/mds.27115
    [107] Berganzo K, Tijero B, González-Eizaguirre A, et al. (2016) Motor and non-motor symptoms of Parkinson's disease and their impact on quality of life and on different clinical subgroups. Neurologia 31: 585-591. doi: 10.1016/j.nrl.2014.10.010
    [108] Cameron IGM, Watanabe M, Pari G, et al. (2010) Executive impairment in Parkinson's disease: Response automaticity and task switching. Neuropsychologia 48: 1948-57. doi: 10.1016/j.neuropsychologia.2010.03.015
    [109] Magrinelli F, Picelli A, Tocco P, et al. (2016) Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinsons Dis 2016: 9832839.
    [110] Mancini M, Carlson-Kuhta P, Zampieri C, et al. (2012) Postural sway as a marker of progression in Parkinson's disease: A pilot longitudinal study. Gait Posture 36: 471-476. doi: 10.1016/j.gaitpost.2012.04.010
    [111] Rosa I, Di Censo D, Ranieri B, et al. (2020) Comparison between Tail Suspension Swing Test and Standard Rotation Test in revealing early motor behavioral changes and neurodegeneration in 6-OHDA hemiparkinsonian rats. Int J Mol Sci 21: 2874. doi: 10.3390/ijms21082874
    [112] Siragy T, Nantel J (2020) Absent arm swing and dual tasking decreases trunk postural control and dynamic balance in people with Parkinson's disease. Front Neurol 11: 213. doi: 10.3389/fneur.2020.00213
    [113] Fox ME, Mikhailova MA, Bass CE, et al. (2016) Cross-hemispheric dopamine projections have functional significance. Proc Natl Acad Sci 113: 6985-6990. doi: 10.1073/pnas.1603629113
    [114] Lisman JE, Grace AA (2005) The Hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 46: 703-713. doi: 10.1016/j.neuron.2005.05.002
    [115] Cordella A, Krashia P, Nobili A, et al. (2018) Dopamine loss alters the hippocampus-nucleus accumbens synaptic transmission in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 116: 142-154. doi: 10.1016/j.nbd.2018.05.006
    [116] Casarrubea M, Di Giovanni G, Crescimanno G, et al. (2019) Effects of Substantia Nigra pars compacta lesion on the behavioural sequencing in the 6-OHDA model of Parkinson's disease. Behav Brain Res 362: 28-35. doi: 10.1016/j.bbr.2019.01.004
    [117] Gilat M, Bell PT, Ehgoetz Martens KA, et al. (2017) Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage 152: 207-220. doi: 10.1016/j.neuroimage.2017.02.073
    [118] Wissner-Gross AD, Freer CE (2013) Causal entropic forces. Phys Rev Lett 110: 168702-1-168702-5.
    [119] Merchant H, Averbeck BB (2017) The computational and neural basis of rhythmic timing in medial premotor cortex. J Neurosci 37: 4552-4564. doi: 10.1523/JNEUROSCI.0367-17.2017
    [120] Athalye VR, Carmena JM, Costa RM (2020) Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr Opin Neurobiol 60: 145-154. doi: 10.1016/j.conb.2019.11.023
  • This article has been cited by:

    1. Muhammad Sohail, Muhammad Hussain Ali, Kamaleldin Abodayeh, Syed Tehseen Abbas, Bio-convective boundary layer flow of Maxwell nanofluid via optimal homotopic procedure with radiation and Darcy-Forchheimer impacts over a stretched sheet, 2025, 46, 0143-0750, 10.1080/01430750.2025.2462583
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4324) PDF downloads(332) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog