Citation: Fankang Bu, Jun He, Haorun Li, Qiang Fu. Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
[1] | A. Mardani, E. K. Zavadskas, Z. Khalifah, N. Zakuan, A. Jusoh, K. M. Nor, et al., A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015, Renewable Sustainable Energy Rev., 71 (2017), 216-256. |
[2] | X. Zeng, L. Shu, S. Yan, Y. Shi, F. He, A novel multivariate grey model for forecasting the sequence of ternary interval numbers, Appl. Math. Model, 69 (2019), 273-286. |
[3] | H. Wang, S. He, C. Li, X. Pan, Pythagorean uncertain linguistic variable hamy mean operator and its application to multi-attribute group decision making, J. Autom. Sin., 6 (2019), 194-206. |
[4] | P. Wang, P. Liu, Some Maclaurin symmetric mean aggregation operators based on Schweizer-Sklar operations for intuitionistic fuzzy numbers and their application to decision making, J. Intell. Fuzzy Syst., 36 (2019), 3801-3824. |
[5] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. |
[6] | K. T. Atanassov, G. Pasi, R. R. Yager, Intuitionistic fuzzy interpretations of multi-measurement tool multi-criteria decision making, Int. J. Syst. Sci., 36 (2005), 859-868. |
[7] | K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343-349. |
[8] | D. K. Joshi, S. Kumar, Entropy of interval-valued intuitionistic hesitant fuzzy set and its application to group decision making problems, Granular Comput., 1 (2018), 1-15. |
[9] | D. Ye, D. Liang, P. Hu, Three-Way decisions with interval-valued intuitionistic fuzzy decision-theoretic rough sets in group decision-making, Symmetry, 10 (2018), 281. |
[10] | L. Wu, G. Wei, H. Gao, Y. Wei, Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination, Mathematics, 6 (2018), 294. |
[11] | K. Kumar, D. Pandey, Discussion on the switching between type-2 fuzzy sets and intuitionis-tic fuzzy sets: An application in medical diagnosis, J. Inf. Optim. Sci., 39 (2018), 427-444. |
[12] | S. M. Chen, Z. C. Huang, Multiattribute decision making based on interval-valued intuitionistic fuzzy values and linear programming methodology, Inf. Sci., 381 (2017), 341-351. |
[13] | H. C. J. Chao, C. T. Tung, C. H. Chu, Extension theorems for interval-valued intuitionistic fuzzy sets, J. Discrete Math. Sci. Cryptography, 3 (2018), 707-712. |
[14] | M. Wei, Q. Dai, S. Sun, S. Ionita, Eva. Volná, A. Gavrilov, et al., A prediction model for traffic emission based on interval-valued intuitionistic fuzzy sets and case-based reasoning theory, J. Intell. Fuzzy. Syst., 31 (2016), 3039-3046. |
[15] | H. Zhao, Z. Xu, Z. Yao, Interval-valued intuitionistic fuzzy derivative and differential operations, Int. J. Comput. Int. Syst., 9 (2016), 36-56. |
[16] | F. Meng, X. Chen, Correlation Coefficient of Interval-Valued Intuitionistic Uncertain Linguistic Sets and Its Application, J. Cybern., 48 (2017), 114-135. |
[17] | Y. Kang, S. Wu, D. Cao, W. Weng, New hesitation-based distance and similarity measures on intuitionistic fuzzy sets and their applications, Int. J. Syst. Sci., 49 (2018), 1-17. |
[18] | D. F. Liu, X. H. Chen, D. Peng, Interval-valued intuitionistic fuzzy ordered weighted cosine similarity measure and its application in investment decision-making, Complexity, 2017, 1-11. |
[19] | V. P. Ananthi, P. Balasubramaniam, T. Kalaiselvi, A new fuzzy clustering algorithm for the segmentation of brain tumor, Soft. Comput., 20 (2015), 1-21. |
[20] | Q. Gao, D. L. Xu, An empirical study on the application of the evidential reasoning rule to decision making in financial investment, Knowl. Based Syst., 164 (2019), 226-234. |
[21] | M. Nahangi, Y. Chen, B. Mccabe, Safety-based efficiency evaluation of construction sites using data envelopment analysis (DEA), Saf. Sci., 113 (2019), 382-388. |
[22] | Y. Zhu, X. Wang, S. Deng, M. Zhao, X. Ao, Evaluation of Curtain Grouting Efficiency by Cloud Model - based Fuzzy Comprehensive Evaluation Method, KSCE. J. Civ. Eng., 23 (2019), 2852-2866. |
[23] | A. Kumar, R. N. Rai, Evaluation of Wear Properties of Stir Cast AA7050-10% B4C Ex Situ Composite through Fuzzy-TOPSIS MCDM Method, Solid State Phenom., 291 (2019), 1-12. |
[24] | M. Akram, N. Waseem, P. Liu, Novel approach in decision making with m-Polar fuzzy ELECTRE-I, Int. J. Fuzzy Syst., 21 (2019), 1-13. |
[25] | W. Yunlong, L. Kai, G. Guan, Y. Yanyun, L. Fei, Evaluation method for Green jack-up drilling platform design scheme based on improved grey correlation analysis, Appl. Ocean. Res., 85 (2019), 119-127. |
[26] | S. J. Zhou, B. Liu, J. Meng, Quality evaluation of raw moutan cortex using the AHP and gray correlation-TOPSIS method, Pharmacognosy. Mag., 13 (2017), 528-533. |
[27] | P. P. Das, S. Chakraborty, A grey correlation-based TOPSIS approach for optimization of surface roughness and micro hardness of Nitinol during WEDM operation, Mater. Today Proceedings, 2019. |
[28] | Y. Zhou, X. Liu, F. Li, W. Jiang, Railway route selection based on entropy weight method-gray correlation improvement TOPSIS, IOP Conference Series Earth and Environmental Science, 2019. Available from: https://iopscience.iop.org/journal/1755-1315. |
[29] | S. H. Zyoud, D. Fuchs-Hanusch, A bibliometric-based survey on AHP and TOPSIS techniques. Expert. Syst. Appl, 78 (2017), 158-181. |
[30] | C. T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy. Set. Syst, 114 (2000), 1-9. |
[31] | S. S. Yang, N. Nasr, S. K. Ong, A. Y. C. Nee, Designing automotive products for remanufacturing from material selection perspective. J. Clean. Prod, 153 (2017), 570-579. |
[32] | S. F. Liu, Y. Lin, Grey information theory and practical applications, London: Springer-Verlag, 2011,10-30. |
[33] | K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy. Set. Syst, 20 (1986), 87-96. |
[34] | J. J. Peng, J. Q. Wang, J. Wang, X. H. Chen, Multicriteria decision-making approach with hesitant interval-valued intuitionistic fuzzy sets, Sci. World Journal, 2014 (2014), 1-22. |
[35] | Y. Song, X. Wang, L. Lei, A. Xue, Combination of interval-valued belief structures based on intuitionistic fuzzy set, Knowl. Based. Syst., 67 (2014), 61-70. |
[36] | T. Y. Chen, The extended linear assignment method for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets, Appl. Math. Model, 38 (2014), 2101-2117. |
[37] | Z. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Decis., 22 (2007). |
[38] | E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy. Set. Syst., 114 (2000), 505-518. |
[39] | H. Liao, Z. Xu, X. J. Zeng, Novel correlation coefficients between hesitant fuzzy sets and their application in decision making, Knowl. Based. Syst., 82(2015), 115-127. |
[40] | P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy. Set. Syst., 78 (1996), 305-316. |
[41] | J. Ye, Two effective measures of intuitionistic fuzzy entropy, Computing, 87 (2010), 55-62. |
[42] | W. Zeng, H. Li, Relationship between similarity measure and entropy of interval valued fuzzy sets, Fuzzy. Set. Syst, 157 (2006), 1477-1484. |
[43] | Q. S. Zhang, S. Y. Jiang, A note on information entropy measures for vague sets and its applications, Inf. Sci., 178 (2008), 4184-4191. |
[44] | P. Wang, C. P. Wei, Constructing method of interval-valued intuitionistic fuzzy entropy, Comput. Eng. Appl., 47 (2011), 43-45. |
[45] | C. Lin, G. Kou, Y. Peng, F. E. Alsaadi, Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM, Ann. Oper. Res. (2020), 1-17. |
[46] | C. Y. Xie, Z. Q. Luo, N. Jia, W. Wang, Goafs' risk discrimination based on improved topsis coupled with ga-bp, J. Northeast. Univer., 3 (2016), 440-445. |
[47] | Z. S. Xu, R. R. Yager, Dynamic intuitionistic fuzzy multi-attribute decison making, Int. J. Approx. Reason, 48 (2008), 246-262. |
[48] | Z. S. Xu, J. Chen, Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices, Syst. Eng. Theory Pract., 27 (2007),126-133. |