Citation: Emilio N. M. Cirillo, Matteo Colangeli, Adrian Muntean, T. K. Thoa Thieu. A lattice model for active-passive pedestrian dynamics: a quest for drafting effects[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 460-477. doi: 10.3934/mbe.2020025
[1] | G. Albi, M. Bongini, E. Cristiani, et al., Invisible control of self–organizing agents leaving unknown environments, SIAM J. Appl. Math., 76 (2016), 1683–1710. |
[2] | K. Fridolf, E. Ronchi, D. Nilsson, et al., Movement speed and exit choice in smoke–filled rail tunnels, Fire Safety J., 59 (2013), 8–21. |
[3] | F. Müller, O. Wohak and A. Schadschneider, Study of influence of groups on evacuation dynamics using a cellular automaton model, Transport. Res. Procedia, 2 (2014), 168–176. |
[4] | J.–H. Wang and J.–H. Sun. Principal aspects regarding to the emergency evacuation of large–scale crowds: A brief review of literatures until 2010, Procedia Eng., 71 (2014), 1–6. |
[5] | S. Xue, B. Jia, R. Jiang, et al., Pedestrian evacuation in view and hearing limited condition: The impact of communication and memory, Phys. Lett. A, 380 (2016), 3029–3035. |
[6] | A. Ciallella, E. N. M. Cirillo, P. Curseu, et al., Free to move or trapped in your group: Mathematical modeling of information overload and coordination in crowded populations, Math. Mod. Meth. Appl. Sci., 28 (2018), 1831–1856. |
[7] | C. von Krüchten and A. Schadschneider, Empirical study on social groups in pedestrian evacuation dynamics, Physica A, 475 (2017), 129–141. |
[8] | H. Oh and J. Park, Main factor causing "faster–is–slower" phenomenon during evacuation: rodent experiment and simulation, Sci. Rep., 7 (2017), 13724. |
[9] | M. Colangeli, A. Muntean, O. Richardson, et al., Modelling interactions between active and passive agents moving through heterogeneous environments, in G. Libelli, N. Bellomo (Eds), Crowd Dynamics, vol. 1: Theory, Models and Safety Problems (pp. 211–254). Modeling and Simulation in Science, Engineering and Technology, Boston, Birkhäuser, 2019. |
[10] | O. Richardson, A. Jalba and A. Muntean, The effect of environment knowledge in evacuation scenarios involving fire and smoke–a multiscale modelling and simulation approach, Fire Technol., 55 (2019), 415–436. |
[11] | J. P. Agnelli, F. Colasuonno and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Math. Mod. Meth. Appl. S., 25 (2015), 109–129. |
[12] | N. Bellomo, D. Clarke, L. Gibelli, et al., Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management, Phys. Life Rev., 18 (2016), 1–21. |
[13] | E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Series in Modeling, Simulation and Applications, vol. 12, Springer, 2014. |
[14] | A. Ciallella and E. N. M. Cirillo, Linear Boltzmann dynamics in a strip with large reflective obstacles: stationary state and residence time, Kinetic Relat. Mod., 11 (2018), 1475–1501. |
[15] | E. N. M. Cirillo, O. Krehel, A. Muntean, et al., Lattice model of reduced jamming by a barrier, Phys. Rev. E, 94 (2016), 042115. |
[16] | E. Cristiani and D. Peri. Handling obstacles in pedestrian simulations: Models and optimization, Appl. Math. Model., 45 (2017), 285–302. |
[17] | I. D. Couzin, J. Krause, N. R. Franks, et al., Effective leadership and decision–making in animal groups on the move. Nature, 433 (2005), 513–516. |
[18] | D. Andreucci, D. Bellaveglia, E. N. M. Cirillo, et al., Monte Carlo study of gating and selection in potassium channels. Phys. Rev. E, 84 (2011), 021920. |
[19] | G. A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Texts in Applied Mathematics, vol. 60, Springer Verlag, Berlin, 2014. |
[20] | H. Spohn, Large Scale Dynamics of Interacting Particles, Springer–Verlag Berlin Heidelberg, 1991. |
[21] | B. Blocken, T. van Druenen, Y. Toparlar, et al., Aerodynamic drag in cycling pelotons: new insights by CFD simulation and wind tunnel testing, J. Wind Eng. Ind. Aerod., 179 (2018), 319–337. |
[22] | B. Blocken, Y. Toparlar, T. van Druenen, et al., Aerodynamic drag in cycling team time trials, J. Wind Eng. Ind. Aerod., 182 (2018), 128–145. |
[23] | D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487–490. |
[24] | A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics–inspired cellular automaton model for pedestrian dynamics, Physica A, 312 (2002), 260–276. |
[25] | M. Colangeli, A. De Masi and E. Presutti, Microscopic models for uphill diffusion, J. Phys. A: Math. Theor., 50 (2017), 435002. |