Research article

A family of interior-penalized weak Galerkin methods for second-order elliptic equations

  • Received: 28 August 2020 Accepted: 12 October 2020 Published: 19 October 2020
  • MSC : 65N15, 65N30, 35J15

  • Interior-penalized weak Galerkin (IPWG) finite element methods are proposed and analyzed for solving second order elliptic equations. The new methods employ the element $(\mathbb{P}_{k}, \mathbb{P}_{k}, \mathcal{RT}_{k})$, with dimensions of space $d = 2, 3$, and the optimal a priori error estimates in discrete $H^1$-norm and $L^2$-norm are established. Moreover, provided enough smoothness of the exact solution, superconvergence in $H^1$ and $L^2$ norms can be derived. Some numerical experiments are presented to demonstrate flexibility, effectiveness and reliability of the IPWG methods. In the experiments, the convergence rates of the IPWG methods are optimal in $L^2$-norm, while they are suboptimal for NIPG and IIPG if the polynomial degree is even.

    Citation: Kaifang Liu, Lunji Song. A family of interior-penalized weak Galerkin methods for second-order elliptic equations[J]. AIMS Mathematics, 2021, 6(1): 500-517. doi: 10.3934/math.2021030

    Related Papers:

  • Interior-penalized weak Galerkin (IPWG) finite element methods are proposed and analyzed for solving second order elliptic equations. The new methods employ the element $(\mathbb{P}_{k}, \mathbb{P}_{k}, \mathcal{RT}_{k})$, with dimensions of space $d = 2, 3$, and the optimal a priori error estimates in discrete $H^1$-norm and $L^2$-norm are established. Moreover, provided enough smoothness of the exact solution, superconvergence in $H^1$ and $L^2$ norms can be derived. Some numerical experiments are presented to demonstrate flexibility, effectiveness and reliability of the IPWG methods. In the experiments, the convergence rates of the IPWG methods are optimal in $L^2$-norm, while they are suboptimal for NIPG and IIPG if the polynomial degree is even.


    加载中


    [1] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, vol. 44, SpringerVerlag, Berlin, 2013.
    [2] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, third ed., 2008.
    [3] S. Chai, Y. Zou, W. Zhao, A weak Galerkin method for C0 element for forth order linear parabolic equation, Adv. Appl. Math. Mech., 11 (2019), 467-485. doi: 10.4208/aamm.OA-2018-0028
    [4] W. Chen, F. Wang, Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36 (2016), 897-921. doi: 10.1093/imanum/drv012
    [5] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Springer New York, 2004.
    [6] C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng., 79 (2009), 1309-1331. doi: 10.1002/nme.2579
    [7] Q. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Meth. Part. D. E., 6 (2013), 2004-2024.
    [8] G. Lin, J. Liu, L. Mu, X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437. doi: 10.1016/j.jcp.2014.07.001
    [9] K. Liu, L. Song, S. Zhao, A new over-penalized weak Galerkin method. Part I: second-order elliptic problems, Discret. Contin. Dyn. Syst. - B, 22 (2017).
    [10] K. Liu, L. Song, S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880. doi: 10.4208/jcm.1705-m2016-0744
    [11] L. Mu, J. Wang, G. Wei, X. Ye, S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125. doi: 10.1016/j.jcp.2013.04.042
    [12] L. Mu, J. Wang, X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255. doi: 10.1093/imanum/dru026
    [13] L. Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58. doi: 10.1016/j.cam.2015.02.001
    [14] L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.
    [15] L. Mu, J. Wang, X. Ye, A least-squares-based weak Galerkin finite element method for second order elliptic equations, SIAM J. Sci. Comput., 39 (2017), A1531-A1557.
    [16] L. Mu, J. Wang, X. Ye, S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 64 (2015), 363-386.
    [17] L. Mu, J. Wang, X. Ye, S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173. doi: 10.1016/j.jcp.2016.08.024
    [18] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers in Applied Mathematics, SIAM, 2008.
    [19] S. Shields, J. Li, E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. with Appl., 74 (2017), 2106-2124. doi: 10.1016/j.camwa.2017.07.047
    [20] L. Song, K. Liu, S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218. doi: 10.1007/s10915-016-0296-4
    [21] L. Song, S. Zhao, K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80. doi: 10.1016/j.apnum.2018.01.021
    [22] C. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, J. Comput. Appl. Math., 341 (2018), 127-143. doi: 10.1016/j.cam.2018.04.015
    [23] C. Wang, J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. with Appl., 68 (2014), 2314-2330. doi: 10.1016/j.camwa.2014.03.021
    [24] C. Wang, J. Wang, R. Wang, R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366. doi: 10.1016/j.cam.2015.12.015
    [25] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003
    [26] J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4
    [27] J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174. doi: 10.1007/s10444-015-9415-2
    [28] R. Wang, X. Wang, Q. Zhai, K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numer. Meth. Part. D. E., 34 (2018), 1009-1032. doi: 10.1002/num.22242
    [29] R. Wang, R. Zhang, X. Zhang, Z. Zhang, Supercloseness analysis and polynomial preserving Recovery for a class of weak Galerkin Methods, Numer. Meth. Part. D. E., 34 (2018), 317-335. doi: 10.1002/num.22201
    [30] X. Wang, N. S. Malluwawadu, F. Gao, T. C. McMillan, A modified weak Galerkin finite element method, J. Comput. Appl. Math., 271 (2014), 319-327. doi: 10.1016/j.cam.2014.04.014
    [31] X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699.
    [32] Q. Zhai, X. Ye, R. Wang, R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. with Appl., 74 (2017), 2243-2252. doi: 10.1016/j.camwa.2017.07.009
    [33] H. Zhu, Y. Zou, S. Chai, C. Zhou, Numerical approximation to a stochastic parabolic PDE with weak Galerkin method, Numer. Math. Theory Methods Appl., 11 (2018), 604-617. doi: 10.4208/nmtma.2017-OA-0122
    [34] H. Zhu, Y. Zou, S. Chai, C. Zhou, A weak Galerkin method with RT elements for a stochastic parabolic differential equation, East Asian J. Appl. Math., 9 (2019), 818-830.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3108) PDF downloads(138) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog