Processing math: 100%
Research article

Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition

  • Received: 22 June 2020 Accepted: 13 August 2020 Published: 24 August 2020
  • MSC : 39A13, 34B18, 34A08

  • In this paper, we obtain sufficient conditions for the existence, uniqueness of solutions for a fractional q-difference equation with nonlocal Erdélyi-Kober q-fractional integral condition. Our approach is based on some classical fixed point techniques, as Banach contraction principle and Schauder's fixed point theorem. Examples illustrating the obtained results are also presented.

    Citation: Min Jiang, Rengang Huang. Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition[J]. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421

    Related Papers:

    [1] Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752
    [2] Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067
    [3] Mohamed Jleli, Bessem Samet . Nonexistence for fractional differential inequalities and systems in the sense of Erdélyi-Kober. AIMS Mathematics, 2024, 9(8): 21686-21702. doi: 10.3934/math.20241055
    [4] Miao Yang, Lizhen Wang . Lie symmetry group, exact solutions and conservation laws for multi-term time fractional differential equations. AIMS Mathematics, 2023, 8(12): 30038-30058. doi: 10.3934/math.20231536
    [5] Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional q–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437
    [6] Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245
    [7] Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709
    [8] Jarunee Soontharanon, Thanin Sitthiwirattham . On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044
    [9] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [10] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
  • In this paper, we obtain sufficient conditions for the existence, uniqueness of solutions for a fractional q-difference equation with nonlocal Erdélyi-Kober q-fractional integral condition. Our approach is based on some classical fixed point techniques, as Banach contraction principle and Schauder's fixed point theorem. Examples illustrating the obtained results are also presented.


    The aim of this paper is to establish the existence and uniqueness of solutions for the following nonlinear Riemann-Liouville q-fractional differential equation subject to nonlocal Erdélyi-Kober q-fractional integral conditions

    {Dαqx(t)+f(t,x(t),Dδqx(t))=0,t(0,T),x(0)=0,ax(T)=ni=1λiIηi,μi,βiqx(ξi), (1.1)

    where Dαq and Dρq are the fractional q-derivative of Riemann-Liouville type of order α and δ on (0,T) respectively, 1<α<2,0<δ<1,fC([0,T]×R×R,R), Iηi,μi,βiq denotes the Erdélyi-Kober fractional q-integral of order μi on (0,T), μi>0,βi>0,ηiR and ξi(0,T), a,λi(i=1,2,,n) are some given constants.

    The q-calculus or quantum calculus is an old subject that was initially developed by Jackson [1], basic definitions and properties of q-calculus can be found in [2]. The fractional q-calculus had its origin in the works by Al-Salam [3] and Agarwal [4]. In recent years, considerable interest in q-fractional differential equations has been stimulated due to its applicability in mathematical modeling in different branches like engineering, physics and technical, etc. There are many papers and books dealing with the theoretical development of q-fractional calcaulus and the existence of solutions of boundary value problems for nonlinear q-fractional differential equations, for examples and details, one can see [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] and references therein.

    In [9], Zhao, Chen and Zhang considered the following nonlocal q-integral boundary value problem of nonlinear fractional q-derivatives equation:

    {Dαqx(t)+f(t,x(t))=0,t(0,1),x(0)=0,x(1)=μIβqx(η)=μη0(ηqs)(β1)Γq(β)x(s)dqs,

    where q(0,1),1<α2,0<β2,0<η<1 and μ>0. Dαq is the fractional q-derivative of Riemann-Liouville type of order α. By using the the generalized Banach contraction principle, the monotone iterative method, and Krasnoselskiis fixed point theorem, the authors obtained some existence results of positive solutions to the above problem.

    In [10], the authors investigated the q-integral boundary value problem for q-integro-difference equations involving Riemann-Liouville q-derivatives and a q-integral of different orders as follows:

    {(λDαq+(1λ)Dβq)x(t)=af(t,x(t))+bIδqg(t,x(t)),t[0,1],a,bR+,μ10(1qs)(γ11)Γq(γ1)x(s)dqs+(1μ)10(1qs)(γ21)Γq(γ2)x(s)dqs,x(0)=0,

    where, q(0,1),1<α,β<2,0<δ<1,0<λ1 and 0μ1,αβ>1. Dαq denotes the Riemann-Liouville fractional q-derivative of order α and f,g:[0,1]×RR are continuous functions.

    In [23], the authors considered the existence of solutions for the following nonlinear Riemann-Liouville fractional differential equation with nonlocal Erdélyi-Kober fractional integral conditions

    {(λDqx(t)=f(t,x(t)),t(0,T),,x(0)=0,αx(T)=mi=1βiIγi,δiηix(ξi),

    where 1<q2,Dq is the Riemann-Liouville fractional derivative of order q, Iγi,δiηi is the Erdélyi-Kober fractional integral of order δi>0 with ηi>0 and γiR,i=1,2,,m,f:[0,T]×RR is a continuous function and αi,βiR,ξi(0,T),i=1,2,,m are given constants.

    As we all know, few people solve the existence of solutions for a nonlinear Riemann-Liouville q-fractional differential equation subject to nonlocal Erdélyi-Kober q-fractional integral conditions. Inspired by the paper [23], we consider the existence and uniqueness for problem (1.1) by using Banach contraction principle and Schauder's fixed point theorem.

    Here we recall some definitions and fundamental results on fractional q-integral and fractional q-derivative. See the references [4,5,6,7] for complete theory.

    For q(0,1), define [a]q=1qa1q,aR. The q-factorial function is defined as (ab)(n)=n1k=0(abqk),a,bR, If n is a positive integer. If ν is not a positive integer, then (ab)(ν)=aνn=0abqnabqν+n. If b=0, then a(ν)=aν. The q-gamma function is defined by Γq(α)=(1q)(α1)(1q)α1,α>0, and satisfies Γq(α+1)=[α]qΓq(α).

    The q-derivative of a function f is defined by (Dqf)(t)=f(t)f(qt))(1q)t,(Dqf)(0)=limt0(Dqf)(t). The q-integral of a function f defined on the interval [0,b] is given by (Iqf(t)=t0f(s)dqs=(1q)ti=0qif(qit),t[0,b].

    Some results about operator Dq and Iq can be found in references [4]. Let us define fractional q-derivative and q-integral and outline some of their properties [4,6,8].

    Definition 1 ([4]) Let α0 and f be a function. The fractional q-integral of Riemann-Liouville type is given by (I0qf)(t)=f(t) and

    (Iαqf)(t)=1Γq(α)t0(tqs)(α1)f(s)dqs,α>0,t[0,b].

    Definition 2 ([6]) The fractional q-derivative fractional of Riemann-Liouville type of order ν0 is defined by D0qf(t)=f(t) and

    Dνqf(t)=DlqIlνqf(t),ν>0,

    where l is the smallest integer greater than or equal to ν.

    Definition 3 ([24]) For 0<q<1, the Erdélyi-Kober fractional q-integral of order μ>0 with β>0 and ηR of a continuous function f:(0,)R is defined by

    Iη,μ,βqf(t)=βtβ(η+μ)Γq(μ)t0(tβsβq)(μ1)sηf(s)dqs.

    provided the right side is pointwise defined on R+.

    Remark 1 For β=1 the above operator is reduced to the q-analogue Kober operator

    Iη,μqf(t)=t(η+μ)Γq(μ)t0(tsq)(μ1)sηf(s)dqs

    that is given in [4]. For η=0 the q-analogue Kober operator is reduced to the Riemann-Liouville fractional q-integral with a power weight:

    Iμqf(t)=tμΓq(μ)t0(tsq)(μ1)f(s)dqs,μ>0.

    Lemma 1 ([4]) Let α,βR+ and f be a continuous function on [0,b]. The Riemann-Liouville fractional q-integral has the following semi-group property

    IβqIαqf(t)=IαqIβqf(t)=Iα+βqf(t).

    Lemma 2 ([8]) Let f be a q-integrable function on [0,b]. Then the following equality holds

    DαqIαqf(t)=f(t),forα>0,t[0,b].

    Lemma 3 ([4]) Let α>0 and p be a positive integer. Then for t[0,b] the following equality holds

    IαqDpqf(t)=DpqIαqf(t)p1k=0tαp+kΓq(α+kp+1)Dkqf(0).

    Lemma 4 ([24]) For f(t)=tλ and β>0,μ>0,η,λR,0<q<1, then

    Iη,μ,βqtλ=β[1β]qΓq(η+1+λβ)Γq(μ+η+1+λβ)tλ.

    In this section, we will give the main results of this paper. Let the space E={xC([0,T],R),DδqxC([0,T],R)} be endowed with the norm x=maxt[0,T]|x(t)|+maxt[0,T]|Dδqx(t)|. It is known that the space E is a Banach space. To obtain our main results, we need the following lemma.

    Lemma 5 Let h(t)C([0,T],R). Then for any t[0,T], the solution of the following problem

    {Dαqx(t)+h(t)=0,t(0,T),x(0)=0,ax(T)=ni=1λiIηi,μi,βiqx(ξi). (3.1)

    is given by

    x(t)=Iαqh(t)+tα1M(aIαqh(T)ni=1λiIηi,μi,βiqIαqh(ξi)), (3.2)

    where M=aTα1ni=1λiIηi,μi,βiqξα1i=aTα1ni=1λiβi[1βi]qΓq(ηi+1+α1βi)Γq(μi+ηi+1+α1βi)ξα1i0.

    Proof. Applying the operator Iαq on both sides of the first equation of (3.1) for t(0,T) and using Lemma 1 and Lemma 2, we have

    x(t)=Iαqh(t)+c1tα1+c2tα2. (3.3)

    Applying the initial value condition x(0)=0, we get c2=0. By the boundary value condition, we have

    ni=1λiIηi,μi,βiqIαqh(ξi)+c1ni=1λiIηi,μi,βiqξα1i=aIαqh(T)+c1aTα1,

    that is

    c1=aIαqh(T)ni=1λiIηi,μi,βiqIαqh(ξi)aTα1ni=1λiIηi,μi,βiqIαqξα1i=aIαqh(T)ni=1λiIηi,μi,βiqIαqh(ξi)M.

    Substituting c1,c2 to (3.3), we obtain the solution (3.2). This completes the proof.

    Using the Lemma 5, we can define an operator Q:EE as follows:

    Qx(t)=Iαqf(s,x(s),Dδqx(s))(t)+tα1M(aIα1qf(s,x(s),Dρqx(s))(T)ni=1λiIηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi)), (3.4)

    where

    Iαqf(s,x(s),Dδqx(s))(τ)=1Γq(α)τ0(τqs)(α1)f(s,x(s),Dδqx(s))dqs

    and τ{t,T,ξ1,ξ2,ξn}. Then, the existence of solutions of system (1.1) is equivalent to the problem of fixed point of operator Q in (3.4).

    In the following, we will use some classical fixed point techniques to give our main results.

    Theorem 1 Suppose that there exists a function L(t):[0,T]R+ q-integrable such that

    |f(t,x,y)f(t,˜x,˜y)|L(t)(|x˜x|+|y˜y|),

    for each x,˜x,y,˜yR. Then problem (1.1) has an unique solution on [0,T] if

    L1+L3+Tα1|M|(1+TδΓq(α)Γq(αδ))(|a|L2+ni=0|λi|βi[1βi]qL1Γq(ηi+1)Γq(μi+ηi+1))<1, (3.5)

    where L1=supt[0,T]IαqL(t),L2=supt[0,T]Iα1qL(t),L3=supt[0,T]IαδqL(t).

    Proof. The conclusion will follow once we have shown that the operator Q defined (3.4) is contractively with respect to a suitable norm on E.

    For any functions x,yE, we have

    |(Qx)(t)(Qy)(t)||1Γq(α)t0(tqs)(α1)(f(s,x(s),Dδqx(s))f(s,y(s),Dδqy(s))dqs|+tα1M(||a|Γq(α1)T0(Tqs)(α2)(f(s,x(s),Dδqx(s))f(s,y(s),Dδqy(s))dqs|+ni=0|λi||βiξβi(ηi+μi)iΓq(μi)ξi0(ξβiisβiq)(μi1)sβi(ηi+1)11Γq(α)s0(sqτ)(α1)(f(τ,x(τ),Dδqx(τ))f(τ,y(τ),Dδqy(τ))dqτdqs|)xyΓq(α)t0(tqs)(α1)L(s)dqs+Tα1M(|a|Γq(α1)T0(Tqs)(α2)L(s)dqs+ni=0|λi||βiξβi(ηi+μi)iΓq(μi)Γq(α)ξi0(ξβiisβiq)(μi1)sβi(ηi+1)1s0(sqτ)(α1)L(τ)dqτdqs)xy≤∥xy(L1+Tα1|M|(|a|L2+L1ni=0|λi||βiξβi(ηi+μi)iΓq(μi)ξi0(ξβiisβiq)(μi1)sβi(ηi+1)1dqs))=(L1+Tα1|M|(|a|L2+L1ni=0|λi|βi[1βi]qΓq(ηi+1)Γq(μi+ηi+1))xy.

    on the other hand

    Dδq(Qx)(t)=DδqIαqf(s,x(s),Dδqx(s))(t)+1M(aIα1qf(s,x(s),Dδqx(s))(T)ni=1λiIηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi))Dδqtα1=DρqIδqIαδqf(s,x(s),Dδqx(s))(t)+1M(aIα1qf(s,x(s),Dδqx(s))(T)ni=1λiIηi,μi,βiqIαqf(s,x(s),Dρqx(s))(ξi))Γq(α)Γq(αδ)tα1δ=Iαδqf(s,x(s),Dδqx(s))(t)+1M(aIα1qf(s,x(s),Dδqx(s))(T)ni=1λiIηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi))Γq(α)Γq(αδ)tα1δ.

    Thus

    |Dδq(Qx)(t)Dδq(Qy)(t)||Iαδq(f(s,x(s),Dδqx(s))(t)f(s,y(s),Dδqy(s)))(t)|+Γq(α)tα1δ|M|Γq(αδ)(|aIα1q(f(s,x(s),Dδqx(s))(T)f(s,y(s),Dδqy(s)))(T)|+ni=1|λi||Iηi,μi,βiqIαq((f(s,x(s),Dρqx(s))f(s,y(s),Dδqy(s)))(ξi))|IαδqL(s)(t)+Γq(α)Tα1δ|M|Γq(αδ)(|a|Iα1qL(s)(T)+ni=1λiIηi,μi,βiqIαqL(τ)(ξi))(L3+Γq(α)Tα1δ|M|Γq(αδ)(|a|L2+ni=0|λi|βi[1βi]qL1Γq(ηi+1)Γq(μi+ηi+1)))xy,

    which implies that

    QxQy∥≤{L1+L3+Tα1|M|(1+TδΓq(α)Γq(αδ))(|a|L2+ni=0|λi|βi[1βi]qL1Γq(ηi+1)Γq(μi+ηi+1))}xy.

    Thus the operator Q is a contraction in view of the condition (3.5). By Banach's contraction mapping principle, the problem (1.1) has an unique solution on [0,T]. This completes the proof.

    Corollary 1 Assume that there exists L0>0 such that

    |f(t,x,y)f(t,˜x,˜y)|L0(|x˜x|+|y˜y|),

    for each t[0,T] and x,˜x,y,˜yR. Then the problem (1.1) has an unique solution whenever

    (TαΓq(α+1)+Tαδ+1Γq(αδ+1)+|a||M|(T2α2Γqα+T2α2Γq(αδ))+1|M|(Tα1δ[α]qΓq(αδ)+Tα1Γq(α+1))ni=1|λi|Iηi,μi,ξiqsα(ξi))L0<1,

    where Iηi,μi,ξiqsα(ξi)=βi[1βi]qΓq(ηi+1+α1βi)Γq(μi+ηi+1+α1βi)ξαi.

    In the following Theorem, the existence results for nontrivial solution for problem (1.1) are presented. For convenience, we denote

    ζ=ni=1|λi|Iηi,μi,ξiq1(ξi)=ni=1|λi|βi[1βi]qΓq(ηi+1)Γq(μi+ηi+1),
    ϱi=maxt[0,T]1Γq(α)t0(tqs)(α1)li(s)dqs,i=1,2,3,
    σi=maxt[0,T]1Γq(α1)t0(tqs)(α2)li(s)dqs,i=1,2,3,
    ςi=maxt[0,T]1Γq(αδ)t0(tqs)(αδ1)li(s)dqs,i=1,2,3,

    where li(t),i=1,2,3 are defined in Theorem 2.

    Theorem 2 Let f:[0,T]×R×RR be a continuous function. Assume there exist three nonnegative continuous functions li(t),i=1,2,3 such that

    |f(t,x(t),Dδqx(t))|l1(t)+l2(t)|x(t)|r1+l3(t)|Dδqx(t)|r2,0<ri<1,i=1,2,

    and f(t,0,0)0 for t[0,T]. Then the problem (1.1) has a nontrivial solution.

    Proof. We shall use Schauder's fixed point theorem to prove our theorem. Define Ed={x:xE,x∥≤d}, where dmax{3(ς1+|a|σ1ρ+ϱ1(1+ρ)ζ),3(ς2+|a|σ2ρ+ϱ2(1+ρ)ζ)11r1,3(ς3+|a|σ3ρ+ϱ3(1+ρ)ζ)11r2} and ρ=Tα1|M|+Tαδ1|M|Γq(α)Γq(αδ1). Note that Ed is a closed, bounded and convex subset of the Banach space E. We now show that Q:EdEd. In fact, for xEd we have that

    |x(t)|maxt[0,T]|x(t)|≤∥x∥≤d,
    |Dρqx(t)|maxt[0,T]|Dρqx(t)|≤∥x∥≤d,

    which implies

    |f(t,x(t),Dδqx(t)|l1(t)+l2(t)dr1+l3(t)dr2.

    Thus

    |Qx(t)|1Γq(α)t0(tqs)(α1)(l1(s)+l2(s)dr1+l3(s)dr3dqs+tα1M(|a|Γq(α1)T0(Tqs)(α2)(l1(s)+l2(s)dr1+l3(s)dr3dqs+ni=1|λi|βiξβi(ηi+μi)iΓq(μi)ξi0(ξβiisβiq)(μi1)sβ(ηi+1)11Γq(α)s0(sqτ)(α1)(l1(τ)+l2(τ)dr1+l3(τ)dr3)dqτdqs(ϱ1+ϱ2dr1+ϱ3dr2)(1+ζ)Tα1|M|+Tα1|a||M|(σ1+σ2dr1+σ3dr2).
    |DρqQx(t)|[(ϱ1+ϱ2dr1+ϱ3dr2)ζ+|a|(σ1+σ2dr1+σ3dr2)]Tαδ1|M|Γq(α)Γq(αδ)+(ς1+ς2dr1+ς3dr2).

    From the two inequalities above, we get

    Qx∥=maxt[0,T]|x(t)|+maxt[0,T]|Dδqx(t)|(ς1+|a|σ1ρ+ϱ1(1+ρ)ζ)+(ς2+|a|σ2ρ+ϱ2(1+ρ)ζ)dr1+(ς3+|a|σ3ρ+ϱ3(1+ρ)ζ)dr2d3+d3+d3=d.

    Hence, Q maps Ed into Ed. Also, it is easy to check that Q is continuous, since f is continuous. For each xEd and each 0<t1<t2<T, we have

    |(Qx)(t2)(Qx)(t1)||1Γq(α)t10[(t2qs)(α1)(t1qs)(α1)]f(s,x(s),Dδqx(s))dqs|+|1Γq(α)t2t1(t2qs)(α1)f(s,x(s),Dδqx(s))dqs|+|tα12tα11M(||a|Iα1qf(s,x(s),Dδqx(s))(T)+ni=1|λi|Iηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi))|.
    |(DρqQx)(t2)(DδqQx)(t1)||Iαδqf(s,x(s),Dδqx(s))(t2)Iαδqf(s,x(s),Dδqx(s))(t1)|+|1M(aIα1qf(s,x(s),Dδqx(s))(T)ni=1λiIηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi))Γq(α)Γq(αδ)(tα1δ2tα1δ1)||1Γq(αδ)t10[(t2qs)(αδ1)(t1qs)(αδ1)]f(s,x(s),Dδqx(s))dqs|+|1Γq(α)t2t1(t2qs)(α1δ)f(s,x(s),Dδqx(s))dqs|+|tα12tα1δ1MΓq(α)Γq(αδ)(||a|Iα1qf(s,x(s),Dδqx(s))(T)+ni=1|λi|Iηi,μi,βiqIαqf(s,x(s),Dδqx(s))(ξi))|.

    Let t2t1, we get Qx(t2)Qx(t2)∥→0. Thus, Q is uniformly bounded and equicontinuous. The theorem of Arzelá-Ascoli implies that Q is completely continuous. By Schauder's fixed point theorem, Q has a fixed point in Ed. Clearly x=0 is not a fixed point because f(t,0,0)0 for t[0,T]. Hence, the problem (1.1) has at least one nontrivial solution. This proves the theorem.

    Remark 2 In the Theorem 2, if ri>1,i=1,2, we may choose l2(t),l3(t) and d such that

    |f(t,x(t),Dδqx(t)|l2(t)|x(t)|r1+l3(t)|Dδqx(t)|r2,

    and

    0<dmin{(12(ς2+|a|σ2ρ+ϱ2(1+ρ)ζ))1r11,(12(ς3+|a|σ3ρ+ϱ3(1+ρ)ζ))1r21}.

    For ri=1,i=1,2, we have the following theorem.

    Theorem 3 Let f:[0,T]×R×RR be a continuous function. Assume there exist three nonnegative continuous functions li(t),i=1,2,3 such that

    |f(t,x(t),Dδqx(t))|l1(t)+l2(t)|x(t)|+l3(t)|Dδqx(t)|,

    and max{ς2+|a|σ2ρ+ϱ2(1+ρ)ζ),(ς3+|a|σ3ρ+ϱ3(1+ρ)ζ)}<13. Further, assume that f(t,0,0)0 for t[0,T]. Then the problem (1.1) has a nontrivial solution.

    Proof. Let d>3(ς1+|a|σ1ρ+ϱ1(1+ρ)ζ), The proof is similar to Theorem 2, so it is omitted. This completes the proof.

    Although Theorems 2 and Theorem 3 provide some simple conditions on the existence of solution of problem (1.1) and Theorem 1 provides a condition on the existence and uniqueness on the solution of problem (1.1), the following theorem provides an easily verifiable condition for the existence of a nontrivial solution for the problems (1.1).

    Theorem 4 Assume that f:[0,T]×R×RR with f(t,0,0)0 for t[0,T] and xE. Suppose that

    limx∥→maxt[0,T]|f(t,x(t),Dδqx(t))|x=0 (3.6)

    holds. Then problem (1.1) has at least one nontrivial solution.

    Proof. Choose a constant A such that

    A(TαΓq(α+1)+|a|T2α2|M|Γq(α)+Tα1κ|M|Γq(α+1)+TαδΓq(αδ+1)+|a|T2α2δ|M|Γq(αδ)+Tα1δκ|M|[α]qΓq(αδ))<1,

    where κ=ni=1|λi|βi[1βi]qΓq(ηi+1+αβi)Γq(μi+1+αβi)ξαi.

    By the condition (3.6), there exists a constant c1 such that

    |f(t,x(t),Dδqx(t))|<Axfor any t[0,T]andx∥≥c1.

    Since f:[0,T]×R×RR, we can find another constant A1>0 such that |f(t,x(t),Dδqx(t))|<A1, for t[0,T] and x∥≤c1. Let c=max{A1A,c1}, then for any x∥≤c, we have |f(t,x(t),Dδqx(t))|<Ac. Set

    Ec={xE:∥x∥≤c}.

    Then for any xEc, we have

    |Qx(t)|1Γq(α)t0(tqs)(α1)Acdqs+tα1M(|a|Γq(α1)T0(Tqs)(α2)Acdqs+ni=1|λi|βiξβi(ηi+μi)iΓq(μi)ξi0(ξβiisβiq)(μi1)sβ(ηi+1)11Γq(α)s0(sqτ)(α1)Acdqτdqs(TαΓq(α+1)+Tα1|M|(Tα1|a|Γq(α)+κΓq(α+1)))Ac. (3.7)
    |Dρq(Qx)(t)|1Γq(αδ)t0(tqs)(αδ1)Acdqs+Γq(α)Tαδ1|M|Γq(αδ)(|a|Γq(α1)T0(Tqs)(α2)Acdqs+ni=1|λi|βiξβi(ηi+μi)iΓq(μi)ξi0(ξβiisβiq)(μi1)sβ(ηi+1)11Γq(α)s0(sqτ)(α1)Acdqτdqs)=(TαδΓq(αδ+1)+|a|T2α2δ|M|Γq(αδ)+Tα1δκ|M|[α]qΓq(αδ))Ac. (3.8)

    Thus

    Qx=maxt[0,T]|Qx(t)|+maxt[0,T]|DδqQx(t)|(TαΓq(α+1)+Tα1|M|(Tα1|a|Γq(α)+κΓq(α+1)))Ac+(TαδΓq(αδ+1)+|a|T2α2δ|M|Γq(αδ)+Tα1ρκ|M|[α]qΓq(αδ))Ac=A(TαΓq(α+1)+|a|T2α2|M|Γq(α)+Tα1κ|M|Γq(α+1)+TαδΓq(αδ+1)+|a|T2α2δ|M|Γq(αδ)+Tα1δκ|M|[α]qΓq(αδ))c<c. (3.9)

    From (3.9), we obtain Q(Ec)Ec. By Schauder fixed point theorem, Q has at least one fixed point in Ec. Clearly, x=0 is not a fixed point because f(t,0,0)0. Therefore, problem (1.1) has at least one nontrivial solution, which completes the proof.

    In this section, we illustrate the results obtained in the last section.

    Example1 Consider the following fractional-order boundary value problem involving nonlocal Erdélyi-Kober fractional q-integral conditions:

    {D3212x(t)+t21+et(|x(t)+D1412x(t)|1+2|x(t)+D1412x(t)|+cost+2)+1=0,x(0)=0,5x(1)=1100I38,54,11012x(14)+3100I18,74,1512x(12), (4.1)

    where q=12,δ=14,T=1,α=32,a=3,λ1=1100,λ2=3100,β1=110,β2=15,η1=38,η2=18,ξ1=14,ξ2=12,μ1=54,μ1=74, and f(t,,x(t),Dδqx(t))=t21+et(|x(t)+D1212x(t)|1+2|x(t)+D1212x(t)|+cost+2)+1.

    By computation, we deduce that

    |f(t,,x(t),Dδqx(t))f(t,,y(t),Dρqy(t))|t22(|x(t)y(t)|+|D1412x(t)D1412y(t)|),

    then, the first condition is satisfied with L(t)=t22.

    M=51100×110[10]qΓ12(38+1+302)Γ12(54+38+1+302)3100×15[5]qΓ12(18+1+152)Γ12(74+18+1+152)>51100×15(1(12)10)(14)123100×25(1(12)5)(12)12>5150065004.9860.
    L1=supt[0,1]1Γq(32)t0(tqs)(321)s22dqs=12Γq(3)Γq(4.5).
    L2=supt[0,1]1Γq(321)t0(tqs)(322)s22dqs=12Γq(3)Γq(3.5).
    L3=supt[0,1]1Γq(3214)t0(tqs)(32141)s22dqs=12Γq(3)Γq(4.25).
    L1+L3+Tα1|M|(1+TρΓq(α)Γq(αρ))(|a|L2+ni=0|λi|βi[1βi]qL1Γq(ηi+1)Γq(μi+ηi+1))12Γq(3)Γq(4.5)+12Γq(3)Γq(4.25)+14.986(52Γq(3)Γq(3.5)+1100×110×12[10]qΓq(3)Γq(4.5)+3100×15×12Γq(3)Γq(4.5)+52Γq(32)Γq(3)Γq(54)Γq(3.5)+1100×110×12[10]qΓq(32)Γq(3)Γq(54)Γq(3.5)+3100×15×12[5]qΓq(32)Γq(3)Γq(54)Γq(3.5))0.894875<1.

    Hence, by Theorem 1, the boundary value problem (1.1) has an unique solution on [0, 1].

    Example2 Consider the following fractional-order boundary value problem involving nonlocal Erdélyi-Kober fractional q-integral conditions:

    {D75qx(t)+12πsin(π|x|)(|x|+|Dδqx|)12|x|+|Dδqx|+1+1=0,t(0,1)x(0)=0,5x(1)=17I13,54,110qx(14)+310I18,74,15qx(12).

    Here, q=12,δ=14. f(t,x(t),Dρqx(t))=12πsin(π|x|)(|x|+|Dδqx|)12|x|+|Dδqx|+1+1,

    |f(t,x(t),Dδqx(t))|x=|12πsin(π|x|)(|x|+|Dδqx|)12|x|+|Dδqx|+1+1|x12(|x|+|Dδqx|)12+1x0,asx∥→.

    Therefore, the conclusion of Theorem 4 implies that problem (1.1) has at least one solution on [0, 1].

    In this work, we utilize Banach contraction principle and Schauder's fixed point theorem to research the existence, uniqueness of solutions for a q-fractional differential equation with nonlocal Erdélyi-Kober q-fractional integral condition and in which the nonlinear term contains a fractional q-derivative of Rieman-Liouville type. Some existence and uniqueness results of solutions are obtained, we also provide an easily verifiable condition for the existence of nontrivial solution for the problem (1.1).

    This research was Supported by Science and Technology Foundation of Guizhou Province (Grant No. [2016]7075, [2019]1162), by the Project for Young Talents Growth of Guizhou Provincial Department of Education under(Grant No. Ky[2017]133), and by the project of Guizhou Minzu University under (Grant No.16yjrcxm002).

    The authors declare no conflict of interest.



    [1] D. O. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [2] V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2001.
    [3] W. A. Al-Salam, Some fractional q-integral and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135-140. doi: 10.1017/S0013091500011469
    [4] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc., 66 (1969), 365-370. doi: 10.1017/S0305004100045060
    [5] P. Rajkovic, S. Marinkovic, M. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359-373.
    [6] P. M. Rajkovic, S. D. Marinković, M. S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. doi: 10.2298/AADM0701311R
    [7] M. H. Annaby, Z. S. I. Mansour, q-fractional calculus and equations, Springer, Berlin, 2012.
    [8] R. Ferreira, Positive solutions for a class of boundary value problems with fractional q-difference, Comput. Math. Appl., 61 (2011), 367-373. doi: 10.1016/j.camwa.2010.11.012
    [9] Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Differ. Equ., 2013 (2013), 1-15. doi: 10.1186/1687-1847-2013-1
    [10] B. Ahmad, J. J. Nieto, A. Alsaedi, et al. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909. doi: 10.1016/j.jfranklin.2014.01.020
    [11] M. Jiang, S. M. Zhong, Existence of solutions for nonlinear fractional q-difference equations with Riemann-Liouville type q-derivatives, J. Appl. Math. Comput., 47 (2015), 429-459. doi: 10.1007/s12190-014-0784-3
    [12] B. Ahmad, S. K. Ntouyas, J. Tariboon, Impulsive fractional q-difference equations with separated boundary conditions, Appl. Math. Comput., 281 (2016), 199-213.
    [13] J. Ren, C. B. Zhai, A fractional q-difference equation with integral boundary conditions and comparison theorem, Int. J. Nonlinear Sci. Numer. Simul., 18 (2017), 575-583. doi: 10.1515/ijnsns-2017-0056
    [14] Y. Cui, S. Kang, H. Chen, Uniqueness of solutions for an integral boundary value problem with fractional q-differences, J. Appl. Anal. Comput., 8 (2018), 524-531.
    [15] S. Etemad, S. K. Ntouyas, B. Ahmad, Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders, Mathematics, 7 (2019), 1-15.
    [16] T. Zhang, Y. Tang, A difference method for solving the q-fractional differential equations, Appl. Math. Lett., 98 (2019), 292-299. doi: 10.1016/j.aml.2019.06.020
    [17] K. Ma, X. H. Li, S. R. Sun, Boundary value problems of fractional q-difference equations on the half-line, Bound. Value Probl., 2019 (2019), 1-16. doi: 10.1186/s13661-018-1115-7
    [18] G. T. Wang, Z. B. Bai, L. Zhang, Successive iterations for unique positive solution of a nonlinear fractional q-integral boundary value problem, J. Appl. Anal. Comput., 9 (2019), 1204-1215.
    [19] J. Ren, C. Zhai, Nonlocal q-fractional boundary value problem with Stieltjes integral conditions, Nonlinear Anal. Model. Control, 24, (2019), 582-602.
    [20] X. H. Li, Z. L. Han, X. Li, Boundary value problems of fractional q-difference Schröinger equations, Appl. Math. Lett., 46 (2015), 100-105. doi: 10.1016/j.aml.2015.02.013
    [21] T. Zhang, Q. Guo, The solution theory of the nonlinear q-fractional differential equations, Appl. Math. Lett., 104 (2020), 106282.
    [22] P. Lyu, S.Vong, An efficient numerical method for q-fractional differential equations, Appl. Math. Lett., 103 (2020), 106156.
    [23] N. Thongsalee, S. Ntouyas, J. Tariboon, Nonlinear Riemann-Liouville fractional differential equations with nonlocal Eedélyi-Kober fractional integral conditions, Fract. Calc. Appl. Anal., 19 (2016), 480-497.
    [24] L. Gaulue, Some results involving generalized Eedélyi-Kober fractional q-integral operators, Revista Tecno-Cientfica URU., 6 (2014), 77-89.
  • This article has been cited by:

    1. AHMED ALSAEDI, HANA AL-HUTAMI, BASHIR AHMAD, RAVI P. AGARWAL, EXISTENCE RESULTS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL q-INTEGRO-DIFFERENCE EQUATIONS WITH q-INTEGRAL-COUPLED BOUNDARY CONDITIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22400424
    2. Akbar Zada, Mehboob Alam, Khansa Hina Khalid, Ramsha Iqbal, Ioan-Lucian Popa, Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00623-9
    3. Mehboob Alam, Khansa Hina Khalid, Analysis of q ‐fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi–Kober q ‐fractional integral conditions , 2023, 0170-4214, 10.1002/mma.9208
    4. Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi, Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions, 2023, 8, 2473-6988, 19313, 10.3934/math.2023985
    5. Ahmed Alsaedi, Bashir Ahmad, Hana Al-Hutami, Nonlinear Multi-term Impulsive Fractional q-Difference Equations with Closed Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-023-00934-5
    6. Achraf Zinihi, Moulay Rchid Sidi Ammi, Ahmed Bachir, Pradip Debnath, Existence of solutions for a q-fractional p-Laplacian SIR model, 2024, 1425-6908, 10.1515/jaa-2024-0113
    7. AHMED ALSAEDI, HANA AL-HUTAMI, BASHIR AHMAD, INVESTIGATION OF A NONLINEAR MULTI-TERM IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEM OF FRACTIONAL q-INTEGRO-DIFFERENCE EQUATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23401916
    8. Ahmed Alsaedi, Martin Bohner, Bashir Ahmad, Boshra Alharbi, On a fully coupled nonlocal multipoint boundary value problem for a dual hybrid system of nonlinear q-fractional differential equations, 2024, 14, 1664-3607, 10.1142/S1664360724500061
    9. Boshra Alharbi, Ahmed Alsaedi, Ravi P. Agarwal, Bashir Ahmad, Existence results for a nonlocal q-integro multipoint boundary value problem involving a fractional q-difference equation with dual hybrid terms, 2024, 32, 1844-0835, 5, 10.2478/auom-2024-0026
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3719) PDF downloads(179) Cited by(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog