Citation: Akhter Rasheed, Saqib Hussain, Syed Ghoos Ali Shah, Maslina Darus, Saeed Lodhi. Majorization problem for two subclasses of meromorphic functions associated with a convolution operator[J]. AIMS Mathematics, 2020, 5(5): 5157-5170. doi: 10.3934/math.2020331
[1] | A. A. A. Abubaker, M. Darus, D. Breaz, Majorization for a subclass of β-spiral functions of order α involving a generalized linear operator, Adv. Decis. Sci., 2011 (2011), 1-9. |
[2] | M. K. Aouf, A. O. Mostafa, H. M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 2015 (2015), 1-6. |
[3] | O. Altintas, H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-183. |
[4] | O. Altintas, O. Ozkan, H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var., 46 (2001), 207-218. |
[5] | A. Baricz, E. Deniz, M. Caglar, et al. Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1255-1280. doi: 10.1007/s40840-014-0079-8 |
[6] | A. Baricz, Generalized Bessel Functions of the First Kind, Springer-Verlag, Berlin, 2010. |
[7] | E. Deniz, Differential subordination and superordination results for an operator associated with the generalized Bessel function, Preprint, 2012. |
[8] | E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator, CUBO, 14 (2012), 119-125. doi: 10.4067/S0719-06462012000100010 |
[9] | S. P. Goyal, P. Goswami, Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie Sklodowska Lublin-Polonia., 66 (2016), 57-62. |
[10] | P. Goswami, M. K. Aouf, Majorization properties for certain classes of analytic functions using the Salagean operator, Appl. Math. Lett., 23 (2010), 1351-1354. doi: 10.1016/j.aml.2010.06.030 |
[11] | P. Goswami, Z. G. Wang, Majorization for certain classes of analytic functions, Acta Univ. Apulensis Math. Inform., 21 (2009), 97-104. |
[12] | S. P. Goyal, S. K. Bansal, P. Goswami, Majorization for certain classes of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Inform., 6 (2010), 45-50. |
[13] | S. P. Goyal, P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett., 22 (2009), 1855-1858. doi: 10.1016/j.aml.2009.07.009 |
[14] | S. H. Li, H. Tang, E. Ao, Majorization properties for certain new classes of analytic functions using the Salagean operator, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1 |
[15] | A. O. Mostafa, M. K. Aouf, H. M. Zayed, Convolution properties for some subclasses of meromorphic bounded functions of complex order, Int. J. Open Probl. Complex Anal., 236 (2016), 1-8. |
[16] | S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker, New York, 2000. |
[17] | T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95-102. doi: 10.1215/S0012-7094-67-03411-4 |
[18] | J. K. Prajapat, M. K. Aouf, Majorization problem for certain class of p-valently analytic function defined by generalized fractional differintegral operator, Comput. Math. Appl., 63 (2012), 42-47. doi: 10.1016/j.camwa.2011.10.065 |
[19] | M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Am. Math. Soc., 76 (1970), 1-9. doi: 10.1090/S0002-9904-1970-12356-4 |
[20] | H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992. |
[21] | H. Tang, G. T. Deng, S. H. Li, Majorization properties for certain classes of analytic functions involving a generalized differential operator, J. Math. Res. Appl., 33 (2013), 578-586. |
[22] | H. Tang, S. H. Li, G. T. Deng, Majorization properties for a new subclass of θ- spiral functions of order γ, Math. Slovaca, 64 (2014), 1-12. doi: 10.2478/s12175-013-0181-7 |