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1. Introduction

Let )’ denote the class of meromorphic function of the form:

1 (o)
A(w) = —+ E a0, (1.1)
w t=0

which are analytic in the punctured open unit disc U* = {w : w € Cand 0 < |w| < 1} = U — {0}, where
U =U"U{0}. Let 6 (w) € )., be given by

1 (o)
bw)=—+ Zb,wﬁ (1.2)
=0
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then the Convolution (Hadamard product) of A (w) and ¢ (w) is denoted and defined as:
1 (o)
%0 (@) = =+ ) abw'
w t=0

In 1967, MacGregor [17] introduced the concept of majorization as follows.

Definition 1. Let A and 6 be analytic in U*. We say that A is majorized by 6 in U* and written as
Aw) < 6 (w) w € U™, if there exists a function ¢ (w) , analytic in U*, satisfying

()] <1, and A(w)=¢W)6(w), weU". (1.3)

In 1970, Robertson [19] gave the idea of quasi-subordination as:

Definition 2. A function A(w) is subordinate to 6 (w) in U and written as: 1(w) < 6 (w), if there
exists a Schwarz function k(w), which is holomorphic in U* with |k(w)] < 1, such that
A(w) = O6(k(w)). Furthermore, if the function 6 (w) is univalent in U*, then we have the following
equivalence (see [16]):

Aw) <6 (w) and A (U) Cc 6 (U). (1.4)

Further, A (w) is quasi-subordinate to 6 (w) in U* and written is
Aw)<,0(w) (wel),

; Aw)

if there exist two analytic functions ¢ (w) and k (w) in U* such tha @)

is analytic in U* and
(W) <1 and k(w)<|lwl <1 welU",

satisfying
Aw) =¢p(w)d(k(w) welU". (1.5)

(1) For ¢ (w) = 1in (1.5), we have
A(w)=0k(w)) welU,
and we say that the A function is subordinate to ¢ in U*, denoted by (see [20])
Alw)<do(w) (welU").

(i1) If k (w) = w, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related
work on majorization see [1,4,9,21].
Let us consider the second order linear homogenous differential equation (see, Baricz [6]):

Wk (@) +awk (@) + [Bo? =V + (1 - )| k(W) = 0. (1.6)

The function k,, g(w), is known as generalized Bessel’s function of first kind and is the solution
of differential equation given in (1.6)

[

B (—ﬁ)t g 2t+y
brale) = ZF(I+1)F(t+v+ 1 +“T+1)(2) ' (-7

t=0
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Let us denote

2T(v+ % |
Lv,a/,ﬁ/l (w) = —kv,a,ﬁ(wz),

w%+1

LS AT+ ,
—+ ) (@),

AT+ 2Tt + v+ 1 + %)

where v, a and 8 are positive real numbers. The operator £,z is a variation of the operator
introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the
convolution, we define the operator L, , s as follows:

( Lv,(l,ﬁ/l)(w) = Lv,a/,,B ((,()) * /l((,()),
1§ CpTe ey

w AT+ 2T + v + 1+ %)

a(w)'. (1.8)

t=0

The operator £, , 3 was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8),
we have

a+1

)(zv_l,a,ﬁm))"—(w . )(Lm,ﬁa ). 19

a+1

w(llv,a,ﬁ/l (a)))j+1 = (V -1+

By taking @ = 8 = 1, the above operator reduces to ( £,1)(w) studied by Aouf et al. [2].

Definition 3. Let -1 < B<A<1,neC—-{0}, je Wandv, a,B > 0. A function A € ), is said to be

in the class M;’,é(n, %; A, B) of meromorphic functions of complex order n # 0 in U if and only if

0 (Lrapt @)
(Lapt @)

1

n

1
-
n

(1.10)

ey )
(Lrapd @)

+v+j]—%

Remark 1.

(i). ForA =1, B= -1 and » = 0, we denote the class
M0,0;1,-1) = M5 (1)

So, A € My, %; A, B) if and only if

1
1-=

n

R

w (Lv,a,ﬁ/l (w))j-H . O
— + v+ > L.
(-£v,cr,,3/1 (w))J J

(ii). Fora=1,B=1, Mlvijl'(n, 0; 1, —1) reduces to the class M”/(n).

j+1
%[1—1(M+v+j)] > 0.
n\ (La(w)y
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Definition 4. A function A € }] is said to be in the class N;’;),(G,b;A,B) of meromorphic spirllike
functions of complex order b +# 0 in U™, if and only if

0 (Lyapt @)
(Lrapd @)

eiH

" bcosh

1+Aw
1+ Bw’

(1.11)

+j+1]<

where,
(—g<9<g, —1§,8<A§1,n€©—{0},jeW,v,a,,B>0andweU*).

(7). ForA =1and B = —1, we set
vj . _ A
Naﬁ(ga ba 1a _1) - Na”g(07 b)a

where N;:é(@, b) denote the class of functions A € ), satisfying the following inequality:

o
R
lb cos @

(if). For6 = 0 and @ = 8 = 1 we write

j+l
w(Lw,ﬁ/l(w)). +j+ 1] <1.

(Luapd @)

NYI(0,b;1,-1) = N™(b),

where N*/(b) denote the class of functions A € 3’ satisfying the following inequality:

<1.

® [1 (w (LA (@)
b\ (LA (w))

+j+1)

A majorization problem for the normalized class of starlike functions has been examined by MacGregor
[17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12, 13], Goswami et al. [10, 11],
Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different
classes of analytic functions.

The objective of this paper is to examined the problems of majorization for the classes

M(Vl’j;(n, #;A, B) and N, (6, b; A, B).

2. Majorization problem for the class Ml’jg(n, %, A, B)

In Theorem 1, we prove majorization property for the class M;’,g(n, x;A, B).
Theorem 1. Let the function A € ), and suppose that 6 € M;’L(n, x;, A, B). If (L,,,a,ﬁ/l ((u))j is majorized

by (.Ew,ﬁé (a)))j in U*, then

j+l
', (ol <o), 2.1)

(£r0er@)"| < [( L1t @)
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where ro = ro(n, %, v, a, B, A, B) is the smallest positive roots of the equation

—p(v—1+a/+1) (A-B)n| —(a+1)|Bl]r3—(V—l+a+l) p(a+1)+p2|B|—|Bl]r2

2 =% 2 2 2
—(v—1+“+1)[(A_B)|"| —(“+1)|B|+p2|3|—1 re
2 =% 2
p(v_1+a+1)(a+1)
2 2
_— 2.2)

Proof. Since 6 € M;”;;(n, %; A, B), we have

j+l1 Jj+l
1 ©(Liasd ) | 1 {©(Liagd @) | 1+ Akw)
- — Al Ikl — v+ = T2 B o) (2.3)
T (Lyapd @) T (Lyapd @) + Ble(w)
where k (w) = cjw + cow? + ..., is analytic and bounded functions in U* with
k(w)] <o (weUY). 2.4)
Taking
j+1
1 w(Ly,a,ﬁ5 (w))] _
§(w)y=1-- — v+l (2.5)
n (:Lv,a,ﬂé ((1)))
In (2.3), we have
1 + Ak (w)
- 1= —"
§ (W) — 2|8 (w) -1 T+ Bk (@)’
which implies _
1+ (4222 )k (w)
= 2.6
S ) | + Bk (w) (26)
Using (2.6) in (2.5), we get
j+1
O(Liwgd @) v+ [ LB+ 0+ ) B k() o
(-Lv,a,ﬁ(s ((1)))] 1+ Bk (CU)
Application of Leibnitz’s Theorem on (1.9) gives
j+1 + 1 j +1 j
0(Lyagd @) = (v —1+ 2 )(Lv_l,aﬁa @) - (v +j+ 2 )(Lw,ﬁa W). @8
By using (2.8) in (2.7) and making simple calculations, we have
Lyapd (@) o —[4Bn_ (e21) Bk ()
( B )_2 [1 9(2)] . (2.9)

(Loaps@) (1 +BE@)(v=1+ )
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Or, equivalently

i (1+Bk(w) (v -1+ %) ;
(£Lr0pd @) = P [Ty PV Y (Lr-1apd @) - (2.10)

Since |k (w)| < |wl, (2.10) gives us

[1+1Bllw|] (v—1+ 2

1—xe~#

) '(Lv—l,a,ﬁ5 (w))j'

|l

(£00s0 @)

a+l
2

[1+1Bllwll (v -1+ %)

— a+l (A-B)In| a+1
5 - [—1_% - (T) |B|] |l

(L0108 @) 2.11)

Since (Lwﬁ/l (w))J is majorized by (.l:mﬁé (w))J in U*. So from (1.3), we have

(Lrapd @) = 0 (@) (Lragd @) . (2.12)

Differentiating (2.12) with respect to w then multiplying with w, we get

. ’ . -
(£10p2 (@) = 09 (@) (Lrap6 (@) + w09 (@) (Lagd @) . (2.13)
By using (2.8), (2.12) and (2.13), we have
j+1 1 , ' j+1
(Lrap @) = —————06 () (L1 @) + ¢ (@) (L1060 @) (2.14)
(v -1+ %)
On the other hand, noticing that the Schwarz function ¢ satisfies the inequality
’ 1 - 2

o @) < O ey (2.15)

1 - o
Using (2.8) and (2.15) in (2.14), we get

w (1 =lp @)1+ Bllwll(v=-1+2)

(v= 1+ 5 (- lP) (51 = [=55 - (55) B )

X|(£o10s0 @)],

(Loapr@)] < [ko @)+

By taking
lwl=r, lpwl=p O=<p<]),

reduces to the inequality

D, (p)
) ([ ()]

'(.ﬁy,a,ﬁ/l (a)))j‘ < ( ‘(-Ev—l,w,ﬁ(s (a)))j‘ ,
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where

plo= 121 2) (5 <[5 - (1) ]
+r(1=p?) [1+|Blr] (v -1+ )

a+l) , a+1 )
—r[1+|B|r](v—1+ : )p +p(v—l+ > )(1—r)

(a+1 _[(A—B)lnl_(a+1)B

Oi(p) =

2 1 - 2 2

r)+r[1+|B|r](v—1+“+1), (2.16)

takes in maximum value at p = 1 with ry = ro(n, %, v, @, 8, A, B) where r is the least positive root of
the (2.2). Furthermore, if 0 < &, < ro(n, %, v, @, 5, A, B), then the function i (p) defined by

(o) = —§0[1+|B|§o](v—1+ a+1)p2+p(v—l+a;1)(l—€§)

a+1 (A-B)n| a+1 B
2 | 1-x \ 2

fo)"‘fo[l+|B|§o](V—1+a;1), (2.17)

is an increasing function on the interval (0 < p < 1), so that

a+1_((A—B)I77| _(w+1)3)§0]

2 I —x 2

vilp) < Y1) = (v— 1+ “; 1)(1 - &)
0<p<1,0<& <rnxA,B)).
Hence, upon setting p = 1 in (2.17), we achieve (2.1). O
Special Cases: Let A = 1 and B = —1 in Theorem 1, we obtain the following corollary.
Corollary 1. Let the function A € ), and suppose that § € M;’é(n, %, A, B). If (Lmﬁ/l (w))j is majorized
by (.EV,Q,B(S (a)))j in U*, then

) (|w|<rl)’

(cumt)|<|e.me)”

where ry = r\(n, %, v, @, B) is the least positive roots of the equation

1\[ 2 1 1 1
(v—1+a;_ ) il —(CH_ )r3—(v—1+a+ )p(a+ )+p2—1]r2—

P 1—x 2 2 2
(V_1+a/+1)

2
0

2n| a+1 ) a+1\fa+1
- -1 -1
'D{l—% ( > )}+p r+plv + > >

) (2.18)

Here, r = —1 is one of the roots (2.18) and the other roots are given by

I G o G R DI
N 20— ) [ - (o) |

oo
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Taking » = 0 in corollary 1, we state the following:
Corollary 2. Let the function A € ), and suppose that 6 € M{V;’g(n, x; A, B). If (Lwﬁ/l (w))j is majorized

by (Lw,,gé (w))j in U*, then

) (|w|<r2)’

(£0e1 @)™ < [(Lomsd @)™

where ry = r,(n,v, a, B) is the lowest positive roots of the equation
a+1 a+1 a+1 a+1
-1 200l - S (v-1 21| -
e [ G ol e [ e AR

o= o (25 22

= 0, (2.19)

given by

r2:k1— \/k%—4p2( 1+“+1)[2|77| (“T)](y Tl)(%)

20 (v =1+ 55t) [2ml - () |

ol

Taking @ = B = 1 in corollary 2, we get the following:

where

klz(v—1+a+

Corollary 3. Let the function A € ¥, and suppose that § € M, (77,% A,B). If ( vapd (w)) is majorized
by( va,80 (w)) in U*, then

’ (|w|<r3)’

(com)<l(zmw)”

where ry = r3(1n,v) is the lowest positive roots of the equation

ov[2nl - 1]r3—v[p+p2— l]rz—v[p(Zlnl— D) +p° - 1]r+pv
= 0, (2.20)

given by

ky - \/kg 4oy 20 - 1] v
20v 2] - 1] ’

rs =

where
k=v[p2inl -2} +0" ~1].
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3. Majorization problem for the class N(Z’L(G, b;A, B)
Secondly, we exam majorization property for the class N;’,'{_;,(G, b; A, B).
Theorem 2. Let the function A € ), and suppose that 6 € N(%(Q, b; A, B). If

(Lipd @) < (Luagd @) (7€0,1,2.0),

then - -
(Lopt @) | < [(Loaps @) ], (0l <r),

where ry = 14(0,b,v,a, 3, A, B) is the smallest positive roots of the equation

—p[ 1 ]r3—1
p{v+“; —1}—|Bl(1—p2)(v—l+a;r )]ﬂ |
}+(1—102)(v—1+a;L )

+1
(B—A)bcos9+(v+ “2 - 1)|B|

1
p{‘(B—A)bcosQ+(v+ “; - 1)|B|

+ r
1
+p v+a+ —1]20,
T T *
(—§<9<§, —1§,8<A§1,77€C—{0},V,oz,ﬁ>0,andw€U).

Proof. Since 6 € N;”g(e, b; A, B), so

619

~ bcosh

0(Lapd @) ) 14w
A e
(Lrapd (@)

where, k (w) is defined as (2.4).
From (3.3), we have

W(Lrasd @) [(B=A)bcost—(j+ 1) Be|k(w) = (j+1)e
(Loaps@) ¢ (1 + B () '

Now, using (2.8) in (3.4) and making simple calculations, we obtain

j+l

~[B-A)bcoso+ (v+ 2t — 1) Be? |k (w)
(Lv_lﬂ,ﬁé (w))j + [(v +j+ “T“) - 1] et
(L1000 (a,))" e (1 + Bk () (v - 1+ %)
which, in view of |k (w)| < |w| (w € U*), immediately yields the following inequality

) (1 + 1Bl k (@)]) (v = 1 + 2£)

’

J
‘(Lv,a,ﬁd (a))) ‘ < H(B  A)boosd+ (V . GTH 3 I)BemH Ik (w)|

+ [(V + "T“) — 1] |ei9|

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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x|(Li-rasd @)). (3.6)

Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have

ol (1= lp (@) (1 + Bl ) (v - 1 + 2£)
(1 - lP) {lB=arpcosos (vt —1) Bl ]

| + [(V + “T”) — 1]
x|(£o10s0 @)

(Lrast@)]| < [le@i+

By setting |w| =71, |p(w)=p (0<p<1),leads us to the inequality

; Dy (p)
(£ sapt@)] < 1=y | {lB=20cos0+ (4251 1) ]|
+(v+2)-1
(v+e22)

X|(£o-1090 @)’

: (3.7

where the function ®,(p) is given by

{'(B—A)bcose+(v+ ol _ 1)3'},,

+(v+ %)—1

+r(1—p2)(1+Br)(v—1+a+1).

Osp) = p(1-7)

2

®,(p) its maximum value at p = 1 with ry, = r4(6,b,v, @, 8, A, B) given in (3.2). Moreover if 0 < ¢, <
r4(6,b,v,a, B, A, B), then the function.

{[B-arbcose+ (v+ 25 - 1) B &

+(v+%)—1

+§1(1—p2)(1+B§1)(V—1+ “”),

i) = p(1-8)

2

increasing on the interval 0 < p < 1, so that ¥, (p) does not exceed

{‘(B—A)bc0s6+ (v+ 22— 1)3‘}51

+(v+“7“)—1

va(l) = (1 - &)

Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof. O

AIMS Mathematics Volume 5, Issue 5, 5157-5170.
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Special Cases: Let A = 1 and B = —1 in Theorem 2, we obtain the following corollary.

Corollary 4. Let the function A € ), and suppose that 6 € N;”é(e, b; A, B). If

(Lrapl @) < (Luapd @) . (j€0,1,2,..),

then 1 il
(Lot @) < [(Loapi @)

where rs = rs5(0, b, v, a,B) is the lowest positive roots of the equation

|-

[p{v+a-2|_1—l}—(l—pz)(v—l+a;1)

o (ol <rs),

+1
—p”—2b0059+ (v+ az - 1)

o+

1 1
[p{|—2bc0s0+(v+a+ —1)}+(1—p2)(v—1+a-2'_ )r+
a+1
p[v + - 1] = 0. (3.8)
Where r = —1 is first roots and the other two roots are given by

Ko — \//<(2)+4,o2 [‘—2bcos0+(y+ el _ I)H [v+ el _ 1]

rs = )
-2p [‘—219 cosf + (v + “T“ - 1)”

Ko = [(1—p2)(v—1+“;1)—p{‘—2bc0s0+2(v+“;’1 —1)|}]

Which reduces to Corollary 4 for 6 = 0.

and

Corollary 5. Let the function A € ), and suppose that 6 € N(Z’j'g(@, b;A, B). If

(Lrapd @) < (Luapd @), (j€0,1,2,.),

then . .
(Lrap @) ] < (Lot @)

where rg = 14(b, v, @, B) is the least positive roots of the equation

_pH—2b+(:+a;1—1)]r3— |
[p{v+a,; —1}—1(1—p2)(v—1+a/;— ) |
[,<){‘—217+(v+a;L —1)}+(1—p2)(v—1+a;)

AIMS Mathematics Volume 5, Issue 5, 5157-5170.
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pv+a/—2i_1—1}:(), (3.9)
given by
. \/Kf+4p2H—2b+(v+ ol _ 1)” [v+ 2t 1]
o ~2p |20+ (v+ 2t - 1) ’
and

“ :[(1—pz)(v—1+a;1)—p{‘—2b+2(v+a;1—1)‘}].

Taking @ = 8 = 1 in corollary 5, we get.

Corollary 6. Let the function A € ), and suppose that 6 € N;”é(e, b; A, B). If

(Lipd @) < (Luagd @) (7€0,1,2,.0),

then
j+l

‘(Lmﬁ/l (w))j+1 ‘ < ‘(ﬁm,ﬁé (w))

where r; = r7(b, V) is the lowest positive roots of the equation

o (wl<r),

—p|-2b+v|r - [pv— (1 —pz)v] P+

[p|—2b+v| +(1 —pz) v]r+p[v] =0, (3.10)
given by
Ky — \/Kg + 402 [|-2b + V] [V]
"o 2pl2b
and

k= [(1-p%)v—pll-2b+2v]}].
4. Conclusion

In this paper, we explore the problems of majorization for the classes MZ’jg(n,%;A,B) and

N;”;}(H, b; A, B) by using a convolution operator £, , 3. These results generalizes and unify the theory
of majorization which is an active part of current ongoing research in Geometric Function Theory. By
specializing different parameters like v, 17, %, 6 and b, we obtain a number of important corollaries in
Geometric Function Theory.
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