
Citation: S. Owyed, M. A. Abdou, A. Abdel-Aty, H. Dutta. Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms[J]. AIMS Mathematics, 2020, 5(3): 2057-2070. doi: 10.3934/math.2020136
[1] | Abdulah A. Alghamdi . Analytical discovery of dark soliton lattices in (2+1)-dimensional generalized fractional Kundu-Mukherjee-Naskar equation. AIMS Mathematics, 2024, 9(8): 23100-23127. doi: 10.3934/math.20241123 |
[2] | Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797 |
[3] | M. Mossa Al-Sawalha, Safyan Mukhtar, Azzh Saad Alshehry, Mohammad Alqudah, Musaad S. Aldhabani . Chaotic perturbations of solitons in complex conformable Maccari system. AIMS Mathematics, 2025, 10(3): 6664-6693. doi: 10.3934/math.2025305 |
[4] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229 |
[5] | Naher Mohammed A. Alsafri . Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics. AIMS Mathematics, 2025, 10(3): 4747-4774. doi: 10.3934/math.2025218 |
[6] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[7] | Imran Siddique, Khush Bukht Mehdi, Sayed M Eldin, Asim Zafar . Diverse optical solitons solutions of the fractional complex Ginzburg-Landau equation via two altered methods. AIMS Mathematics, 2023, 8(5): 11480-11497. doi: 10.3934/math.2023581 |
[8] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[9] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[10] | Azzh Saad Alshehry, Safyan Mukhtar, Ali M. Mahnashi . Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system. AIMS Mathematics, 2024, 9(10): 28058-28078. doi: 10.3934/math.20241361 |
Very recently, there are many models that describe the telecommunications industry, namely, nonlinear Schrodinger's equations, Manakov model (GLL) equation, Gerdjikov-Ivanov model (LPD) equation and many other models of special interest in nonlinear optics [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. On the other hand, fractional calculus has a wide array of various applications in nonlinear science [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]. Schrodinger equation one of the important equations in the last century and widely used in the area of quantum mechanics and quantum optics. Several methods are used in solving Schrodinger equation including approximate, exact and numerical solutions, starting from the perturbation, variational and WKB methods [46,47,48,49,50,51]. Recently, there are many methods were introduced to solve this important equation. On the other hand, the Schrodinger equation and its solutions in the fractional from is studied in many papers [28,29,30,31,32,33]. This paper studies the possibility to find solutions for perturbed fractional time nonlinear Schrodinger equation. In this study, two algorithms schemes are used for constructing the optical solitons solutions to the mentioned model. They are generalized exp(-w(ξ)) method and rational (G'/G2) expansion method.
The outlines of this work are given as: Section 2 presents the fractional calculus of conformable fractional derivatives and some properties; section 3.A, 3.B introduce the two integrations schemes; sections 4.A, 4.B present the new solitons solutions of Eq (13); and the last section is the conclusion.
The derivative used in this paper is, the conformable derivative of order α and can be defined as: Defintion: Let g:(0, ∞) → R, flowing are definition, properties and theorem about used conformable derivatives [22]:
(a)Uα(g)(t)=limε→0(g(t+εt1−α)(−g(t))/ε,t>0,0<α<1, | (1) |
(b)Uα(bg+ch)=BUα(g)+CUα(h), B,C€ R, | (2) |
(c)Uα)tλ(=λtλ−α,λ € | (3) |
(d)Uα(gh)=gUα(h)+hUα(g), | (4) |
(e)Uα(g/h)=(hUα(g)−gUα(h))/h2 | (5) |
If g is differentiable, then U_{α} (g)(t) = t1-α (dg/dh).
Theorem: Let, g:(0, ∞) → R be differentiable and α differentiable function, then
Uα(g∗h)=t1−αh′(t)g′(h(t)) | (6) |
The time fractional nonlinear Schrodinger equation with temporal evolution is given in its dimensionless as follows [9].
i∂αv∂tα+vxx+γv|v|2+i[γ1vxxx+γ2|v|2vx+γ3(|v|2)xv]=0,t>0,0<α<1 | (7) |
In Eq (7) γ1 represents dispersion term, γ2 is nonlinear dispersion andγ3 is the nonlinear dispersion term.
To gain the optical soliton solutions of the Eq (7). With the aid of the hypothesis as [23,24,25,26,27,28].
v(x,t)=V(ξ),ξ=ax+btαΓ(1+α) | (8) |
Then Eq (7) reads
ibV′+a2V′′+γV|V|2+i[γ1a3V′′′+γ2a|V|2V′+γ3a(|V|2)′V]=0 | (9) |
Where V is a complex function defines as
V(ξ)=eiLξU(ξ). | (10) |
Where L is a constant, and U(ξ) is a real function. Making use Eq (10), then Eq (9) yields
(−bL−a2L2+γ1a3l3)U−(γ−γ2aL)U3+(a2−3γ1a3L)U′′=0. | (11) |
(b+2a2L−3γ1a3L2)U′+γ1a3U′′′+(γ2a+2γ3a)U2U′=0. | (12) |
Equation (12), can be rewritten as:
(b+2a2L−3γ1a3L2)U+γ1a3U′′+13(γ2a+2γ3a)U3=0. | (13) |
Given the general fractional nonlinear evolution equation as follows:
H(v,Dαtv,Dβxv,D2αttv,Dβxxv,DαtDβxv,....),0<α,β<1, | (14) |
Making use of e fractional complex transformation as:
v(x,t)=V(ξ),ξ=kxβΓ(1+β)+ctαΓ(1+α), | (15) |
Where k and c are to be determined later, with
Dαtv=σ′tdVdξDαtξ,Dαxv=σ′xdVdξDαxξ, | (16) |
Where σx' = σt' = l, where l is a constant. Then Eq (14) becomes
Z(V,V′,V′′,V′′′,….)=0, | (17) |
In view of this method [24], we express the solution of Eq (17) as:
U(ξ)=∑Ni=0αi(exp(−w(ξ)))i∑Mj=0βj(exp(−w(ξ)))j | (18) |
Where αi,βj are constants to be specified later, and w(ξ) satisfies:
w′(ξ)=exp(−w(ξ))+μexp(w(ξ))+λ | (19) |
Where λ and μ are constants to be evaluated later. The general solutions of Eq (19) reads
Case Ⅰ: when δ=λ2−4μ>0 and μ≠0, gain the hyperbolic function solution is
w1(ξ)=ln(−√δtanh(√δ2(ξ+c1))−λ2μ) | (20) |
Case Ⅱ: If δ=λ2−4μ<0 and, μ≠0, then the trigonometric function solution is:
w2(ξ)=ln(√−δtan(√−δ2(ξ+c1))−λ2μ) | (21) |
Case Ⅲ: If λ2−4μ>0,μ=0 and λ≠0, then the hyperbolic function solution
w3(ξ)=−ln(λexp(λ(ξ+c1))−1) | (22) |
Case Ⅳ: If λ2−4μ=0,μ≠0 and λ≠0 gain the rational function solution is
w4(ξ)=ln(−2(λ(ξ+c1)+2)λ2(ξ+c1)−1) | (23) |
Case Ⅴ: If λ2−4μ=0,μ≠0 and λ≠0, implies to the rational function solution
w5(ξ)=ln(ξ+c1) | (24) |
Where c1 is constant of integration, ξ=kxβΓ(1+β)+ctαΓ(1+α).
With the aid of Eq (18) and Eq (19) into Eq (13), yields the coefficients ofexp(−w(ξ)) to zero, gives a set of algebraic equations which can be solved to find αi, βi μ, λ, c, k. Inserting these values in Eq (18), then the new optical soliton solutions of Eq (14) are obtained.
In view of the (G′G2)-expansion method [36,37,38,39]. The quick gain of this method the solution of Eq (17) can be expressed as
U(ξ)=∑Ni=0aiψi(ξ)∑Mj=0bjψj(ξ)ξ, | (25) |
Where ψ(ξ)=(G′(ξ)G2(ξ)) satisfies
ψ′(ξ)=μ+λψ2(ξ), | (26) |
Where λ≠0 and μ≠1 and a0, ai, bj to be determined. In terms of the general solutions of Eq (19) which can be classified as:
Case Ⅰ: Trigonometric function solution for λμ > 0
ψ(ξ)=√μλ(k1cos√λμξ+k2sin√λμξ)(k2cos√λμξ−k1sin√λμξξ). | (27) |
Case Ⅱ: Hyperbolic function solution for λμ < 0, then
ψ(ξ)=−√|μλ|λ(k1sinh√|λμ|ξ+k2cosh√|λμ|ξ)(k1sinh√|λμ||ξ+k1sinh√|λμ|ξξ) | (28) |
Case Ⅲ: Rational function solution for λ≠0 and μ = 0, then
ψ(ξ)=−k1λ(k1+k2ξ). | (29) |
Where k1 and k2 are constants.
Step 2: The integer N and M in Eq (25) and Eq (18) are determined by balancing between the highest order derivative via
D(∂qu∂ξq)=N−M+q | (30) |
D(uα(∂qu∂ξq)β)=(N−M)α+β(N−M+q) | (31) |
Where α, q, β are real constant.
Step 3: Making use Eq (25) with Eq (26) in Eq (13), collecting the same power ψi(ξ), and to zero, we gain a system of algebraic equations, solved it for values of ai, bj, c. Then optical soliton solutions of Eq (24) are given.
Consequently, to solve Eq (13) usingexp(-wξ) method [30], considering the balance principle to Eq (13), we obtain N = M + 1. By taking M = 1, then N = 2. Then the solution of Eq (13) admits to:
U(ξ)=α0+α1exp(−w(ξ))+α2exp(−2w(ξ))β0+β1exp(−w(ξ)) | (32) |
Inserting Eq (32) into Eq (13) with Eq (19), collecting all power of exp(-φ(ξ)), and using symbolic computation program gives,
Case Ⅰ:
L=L,a=a,b=12(−4L−4γ1aμ+6γ1aL2+γ1aλ2)a2,α0=α0,α1=λα02μ,α2=0,β0=0,β1=β1,γ3=α20γ1+6γ1μ2a2β21α20. | (33) |
Case Ⅱ:
L=L,a=a,b=3γ1a3L2+12γ1a3λ2−2a3γ1μ−2a2L,α0=α0,α1=0,α2=0,β1=β1,β0=12λβ1,γ3=−3λ4γ1a2β21−24μλ2γ1a2β21+8γ2α20+48μ2γ1a2β2116α20 | (34) |
Case Ⅲ:
L=L,a=a,b=a(−6β21aL−γ2α21−2γ3α21+9β21γ1a2L2)3,α0=α1β0β1α1=α1,α2=0,β0=β0,β1=β1,γ3=γ3. | (35) |
In view of Eq (33) with Eqs (20-24) into Eq (32), admits to the following solutions as
Ui(ξ)=α0+λα02μexp(−wi(ξ))β0+β1exp(−wi(ξ)),i=1,…,5vi(x,t)=α0+λα02μexp(−wi(ξ))β0+β1exp(−wi(ξ))eiLξ,i=1,…,5ξ=ax+(−4L−4γ1aμ+6γ1aL2+γ1aλ2)a2tα2Γ(1+α) | (36) |
By using Eq (34) with Eqs (20-24) into Eq (32), we gain the following exact solutions:
Ui(ξ)=α012λβ1+β1exp(−wi(ξ)),i=1,…,5 | (37) |
vi(x,t)=α012λβ1+β1exp(−wi(ξ))eiLξ,i=1,…,5ξ=ax+(3γ1a3L2+12γ1a3λ2−2a3γ1μ−2a2L)tα2Γ(1+α). | (38) |
According to (Case Ⅲ) with Eqs (20-24) into Eq (32), admits to solutions of Eq (7) as
Ui(ξ)=α1β0β1+α1exp(−wi(ξ))β0+β1exp(−wi(ξ)),i=1,…,5 | (39) |
vi(x,t)=α1β0β1+α1exp(−wi(ξ))β0+β1exp(−wi(ξ))eiLξ,i=1,…,5ξ=ax+a(−6β21aL−γ2α21−2γ3α21+9β21γ1a2L2)tα3Γ(1+α) | (40) |
Where wi(ξ), i = 1, …, 5 are given in Eqs (20-24),
It is worth noting that all explored solutions Eqs (36-40) presents optical soliton solutions to Eq (7).
This section, is devoted for obtaining the optical soliton solutions of Eq (13) via the rational (G′G2) method [34,35]. Consider the balance between U'', and U3, we get N = M + 1. For M = 1, we have N = 2. Therefore the solutions of Eq.(25) becomes
U(ξ)=a0+a1ψ(ξ)+a2ψ2(ξ)b0+b1ψ(ξ),ψ(ξ)=G′(ξ)G2(ξ) | (41) |
Eqs (41) is employed to Eqs (13) having the same power of ψ(ξ) and equating to zero, we have a set of algebraic equations. By solving it, we obtain
Case Ⅰ:
L=a+√a2+6γ21a4μλ+3γ1ab3γ1a2,a0=0,a1=−6γ1aμb0√−6γ1γ2+2γ3(γ2+2γ3),a2=√−6γ1γ2+2γ3μb1a,b0=b0,b1=b1. | (42) |
Subsequently, in view of Eq (42) with Eqs (27-29) into Eq (41), admits to the solutions of Eq. (7) as
Ui(ξ)=−6γ1aμb0√−6γ1γ2+2γ3(γ2+2γ3)ψi(ξ)+√−6γ1γ2+2γ3μb1aψ2i(ξ)b0+b1ψi(ξ) | (43) |
vi(x,t)=−6γ1aμb0√−6γ1γ2+2γ3(γ2+2γ3)ψi(ξ)+√−6γ1γ2+2γ3μb1aψ2i(ξ)b0+b1ψi(ξ)ei(a+√a2+6γ21a4μλ+3γ1ab3γ1a2)ξ | (44) |
ψi(ξ)=(G′i(ξ)G2i(ξ)),ξ=ax+btαΓ(1+α),(i=1,2,3) are given in Eqs (27-29).
Case Ⅱ:
L=a+√a2−γ21a4μλ+3γ1ab3γ1a2,a0=−6γ1ab1λ√−6γ1γ2+2γ3(γ2+2γ3),a2=√−6γ1γ2+2γ3μb1a,a1=0,b0=0,b1=b1 | (45) |
In view of Eq (45) with (27-29) into Eq (41), we gain the new solutions for Eq (7) as
Ui(ξ)=−6γ1ab1λ√−6γ1γ2+2γ3(γ2+2γ3)+√−6γ1γ2+2γ3μb1aψ2i(ξ)b1ψi(ξ) | (46) |
vi(x,t)=−6γ1ab1λ6γ1γ2+2γ3(γ2+2γ3)+√−6γ1γ2+2γ3μb1aψ2i(ξ)b1ψi(ξ)ei(a+√a2−γ21a4μλ+3γ1ab3γ1a2)ξ | (47) |
ψi(ξ)=(G′i(ξ)G2i(ξ)),ξ=ax+btαΓ(1+α),(i=1,2,3) are given in Eqs (27-29).
Case Ⅲ:
L=a+√a2+24γ21a4μλ+3γ1ab3γ1a2,a0=6γ1ab1λ√6γ1γ2+2γ3(γ2+2γ3),a2=√−6γ1γ2+2γ3μb1a,a1=0,b0=0,b1=b1. | (48) |
Making use Eq (48) with Eqs (27-29) into Eq (41), we write down explicitly the following solutions of Eq (7) as
Ui(ξ)=6γ1ab1λ√−6γ1γ2+2γ3(γ2+2γ3)+√−6γ1γ2+2γ3μb1aψ2i(ξ)β1ψi(ξ) | (49) |
vi(x,t)=6γ1ab1λ√−6γ1γ2+2γ3(γ2+2γ3)+√−6γ1γ2+2γ3μb1aψ2i(ξ)b1ψi(ξ)ei(a+√a2+24γ21a4μλ+3γ1ab3γ1a2)ξ | (50) |
ψi(ξ)=(G′i(ξ)G2i(ξ)),ξ=ax+btαΓ(1+α),(i=1,2,3) are given in Eqs (27-29).
Case Ⅳ:
L=a+√a2+6γ21a4μλ+3γ1ab3γ1a2,a0=−b1λa√−γ2+2γ16γ1,a1=√6√μλa2γ1γ2+2γ3,a2=0,b0=√−γ2+2γ36γ1√6√μλa2γ1γ2+2γ3b1μa,b1=b1. | (51) |
In view of Eq (51) with Eqs (27-29) into Eq (41), we obtain
Ui(ξ)=−b1λa√−γ2+2γ36γ1+√6√μλa2γ1γ2+2γ3ψi(ξ)√−γ2+2γ36γ1√6√μλa2γ1γ2+2γ3b1μa+b1ψi(ξ) | (52) |
vi(x,t)=−β1λa√−γ2+2γ36γ1+√6√μλa2γ1γ2+2γ3ψi(ξ)√−γ2+2γ36γ1√6√μλa2γ1γ2+2γ3β1μa+β1ψi(ξ)ei(a+√a2+24γ21a4μλ+3γ1ab3γ1a2)ξ | (53) |
ψi(ξ)=(G′i(ξ)G2i(ξ))ξ=ax+btαΓ(1+α),(i=1,2,3) are given in Eqs (27-29).
Thus, the optical solutions of Eq (7) can be captured by Eq (49-53), under the constraints Eq (10) via V(ξ) = eiLξU(ξ).
In this work, the generalized exp(-w(ξ)) and rational (G′G2) expansion methods have been applied for finding the new optical soliton solutions for the perturbed time fractional nonlinear Schrodinger equation with the help of conformable fractional derivative. The results are group of new solutions of Schrodinger equation, where the proposed methods proved better reliability, accuracy and efficiency. The obtained results and figures (1-4) conclude that, the fractional parameter α plays the main rule in the solutions, for example if we substituted by α = 1, the solutions become the same with the obtained by the normal derivative.
The authors declare that there is no conflict of interest in this paper.
[1] | G. A. Zakeri, E. Yomba, Exact solutions of a generalized autonomous Duffing-type equation Appl. Math. Model., 39 (2015), 4607-4616. |
[2] |
A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger's equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1473-1484. doi: 10.1016/j.cnsns.2009.06.017
![]() |
[3] |
A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 3-24. doi: 10.1051/mmnp/2018010
![]() |
[4] |
M. S. Abdalla, S. S. Hassan, M. Abdel-Aty, Entropic uncertainty in the Jaynes Cummings model in presence of a second harmonic generation, Optics Commun., 244 (2005), 431-443. doi: 10.1016/j.optcom.2004.09.051
![]() |
[5] |
A. M. Wazwaz, Multiple complex soliton solutions for the integrable Sinh-Gordon and the modified KdV-Sinh-Gordon equation, Appl. Math. Inf. Sci., 12 (2018), 899-905. doi: 10.18576/amis/120501
![]() |
[6] | A. Atangana, A. Secer, The time-fractional coupled-Korteweg-de-Vries equations, Abstr. Appl. Anal., (2013), Article ID 947986, 8 pages. |
[7] |
O. Ozturk, R. Yilmazer, On applications of the fractional calculus for some singular differential equations, Prog. Frac. Diff. Appl., 4 (2018), 27-33. doi: 10.18576/pfda/040104
![]() |
[8] |
D. Kumar, J. Singh, A. Prakash, et al., Numerical simulation for system of time-fractional linear and nonlinear differential equations, Progr. Fract. Differ. Appl., 5 (2019), 65-77. doi: 10.18576/pfda/050107
![]() |
[9] | A. H. M. Ahmed, L. Y. Cheong, N Zakaria, et al., Statistical properties of a Raman three-level atom interacting with a cavity field, AIP Conf. Proc., 1482 (2012), 373-375. |
[10] | A. H. M. Ahmed, L. Y. Cheong, N. Zakaria, et al., Dynamics of information coded in a single cooper pair box, Int. J. Theor. Phys., 52 (2012), 1979-1988. |
[11] |
E. Yaşar, Y. Yıldırım, E. Yaşar, New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9 (2018), 1666-1672. doi: 10.1016/j.rinp.2018.04.058
![]() |
[12] |
A. Cernea, Continuous family of solutions for fractional integro-differential inclusions of Caputo-Katugampola type, Prog. Frac. Diff. Appl., 5 (2019), 37-42. doi: 10.18576/pfda/050104
![]() |
[13] |
A. Sardar, S. M. Husnain, S. Rizvi, et al., Multiple travelling wave solutions for electrical transmission line model, Nonlinear Dyn., 82 (2015), 1317-1324. doi: 10.1007/s11071-015-2240-9
![]() |
[14] |
Y. Liu, Existence of solutions of multi-point boundary value problems for fractional differential systems with impulse effects, Prog. Frac. Diff. Appl., 3 (2017), 111-140. doi: 10.18576/pfda/030204
![]() |
[15] |
M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV-Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191-1196. doi: 10.1007/s11071-015-2060-y
![]() |
[16] | M. Younis, S. T. R. Rizvi, Optical solitons for ultrashort pulses in nano fibers, J. Nanoelectron. Optoelectron., 10 (2015) 179-182. |
[17] |
Q. Zhou, D. Yao, F. Chen, et al., Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening, J. Mod. Opt., 60 (2013), 854-859. doi: 10.1080/09500340.2013.816384
![]() |
[18] |
A. Biswas, 1-soliton solution of ()-dimensional nonlinear Schrödinger's equation in dual-power law media, Phys. Lett. A., 372 (2008), 5941-5943. doi: 10.1016/j.physleta.2008.07.052
![]() |
[19] |
A. Biswas, Y. Yildirm, E. Yasar, et al., Optical soliton solutions to Fokas-lenells equation using some different methods, Optik, 173 (2018), 21-31. doi: 10.1016/j.ijleo.2018.07.098
![]() |
[20] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
![]() |
[21] |
A. Biswas, M. Mirzazadeh, M. Eslami, Dispersive dark optical soliton with Schödinger-Hirota equation by G'/G-expansion approach in power law medium, Optik, 125 (2014), 4215-4218. doi: 10.1016/j.ijleo.2014.03.039
![]() |
[22] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[23] | N. Boumaza, T. Benouaz, A. Chikhaoui, et al., Numerical simulation of nonlinear pulses propagation in a nonlinear optical directional coupler, Int. J. Phys. Sci., 4 (2009), 505-513. |
[24] |
M. G. Hafez, M. A. Akbar, New exact traveling wave solutions to the (1+1)-dimensional Klein-Gordon-Zakharov equation for wave propagation in plasma using the exp(-Φ(ξ))-expansion method, Propul. Power Res., 4 (2015), 31-39. doi: 10.1016/j.jppr.2015.02.002
![]() |
[25] | M. A. Abdou, S. Owyed, A. Abdel-Aty, et al., Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics, Results Phys., 16 (2020), 102895. |
[26] |
M. A. Abdou, An analytical method for space-time fractional nonlinear differential equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 288-292. doi: 10.1016/j.joes.2017.09.002
![]() |
[27] | A. Elhanbaly, M. A. Abdou, On the solution of fractional space-time nonlinear differential equations, Int. J. Appl. Math. Comput., 5 (2013), 47-58. |
[28] | Z. Hammouch, M. Toufik, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, J. MESA., 4 (2014), 489-498. |
[29] |
A. R. Hadhoud, Quintic non-polynomial spline method for solving the time fractional biharmonic equation, Appl. Math. Inf. Sci., 13 (2019), 507-513. doi: 10.18576/amis/130323
![]() |
[30] | L. Qian, R. A. M. Attia, Y. Qiu, et al., On Breather and Cuspon waves solutions for the generalized higher-order nonlinear Schrodinger equation with light-wave promulgation in an optical fiber, Num. Comp. Meth. Sci. Eng., 1 (2019), 101-110. |
[31] |
A. M. Wazwaz, Study on a new (3+1)-dimensional extensions of the Konopelchenko-Dubrovsky equation, Appl. Math. Inf. Sci., 12 (2018), 1067-1071. doi: 10.18576/amis/120601
![]() |
[32] |
M. A. Abdou, A. A. Soliman, New exact travelling wave solutions for space-time fractional nonlinear equations describing nonlinear transmission lines, Results Phys., 9 (2018), 1497-1501. doi: 10.1016/j.rinp.2018.04.031
![]() |
[33] | G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367-1376. |
[34] |
Kh. A. Gepreel, T. A. Nofal, N. S. Al-Sayali, Optical soliton solutions for nonlinear evolution equations in mathematical physics by using the extended (G'/G) expansion function method, J. Compt. Theor. Nanosci., 14 (2017), 979-990. doi: 10.1166/jctn.2017.6391
![]() |
[35] | N. Alam, F. B. M. Belgacem, Microtubules nonlinear models dynamics investigations through the exp(-Φ(ξ))-expansion method implementation, Mathematics, 4 (2016), 1-13. |
[36] | A. S. J. Al-Saif, M. S. Abdul-Wahab, Application of new simulation scheme for the nonlinear biological population model, Num. Comp. Meth. Sci. Eng., 1 (2019), 89-101. |
[37] |
H. O. Roshid, Md. A. Rahman, The exp(-Φ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations, Results Phys., 4 (2014), 150-155. doi: 10.1016/j.rinp.2014.07.006
![]() |
[38] | E. M. Zayed, A. G. Al Nowehy, Exact solutions of the Biswas-Milovic equation, the ZK(m,n,k) equation and the K(m,n) equation using the generalized Kudryashov method, Open Phys., 14 (2016), 129-139. |
[39] |
S. Bibi, S. T. Mohyud-Din, R. Ullah, et al., Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using-expansion method, Results Phys., 7 (2017), 4434-4439. doi: 10.1016/j.rinp.2017.11.009
![]() |
[40] | M. A. Abdelkawy, I. G. Ameen, A spectral collocation method for coupled system of two dimensional Abel integral equations of the eecond kind, Inf. Sci. Lett., 8 (2019), 89-93. |
[41] |
Kh. A. Gepreel, Exact solutions for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations using the modified (w/g)- expansion method, Comput. Math. Appl., 72 (2016), 2072-2083. doi: 10.1016/j.camwa.2016.08.005
![]() |
[42] | H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 18. |
[43] |
G. Yel, H. M. Baskonus, H. Bulut, Regarding some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031-1039. doi: 10.1007/s12648-018-1347-5
![]() |
[44] |
T. Salahuddin, M. Y. Malik, A. Hussain, et al., Combined effects of variable thermal conductivity and MHD flow on pseudoplastic fluid over a stretching cylinder by using Keller box method, Inf. Sci. Lett., 5 (2016), 11-19. doi: 10.18576/isl/050102
![]() |
[45] | W. Gao, H. F. Ismael, S. A. Mohammed, et al., Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in Kerr media with M-Fractional, Front. Phys., 7 (2019), 197. Doi: 10.3389/fphy.2019.00197. |
[46] |
A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Effect of the Spin-Orbit interaction on partial entangled quantum network, Lect. Notes Elect. Eng., 285 (2014), 529-237. doi: 10.1007/978-981-4585-18-7_59
![]() |
[47] |
M. Zidan, A. Abdel-Aty, A. Younes, et al., A novel algorithm based on entanglement measurement for improving speed of quantum algorithms, Appl. Math. Inf. Sci., 12 (2018), 265-269. doi: 10.18576/amis/120127
![]() |
[48] |
S. Owyed, M. A. Abdou, A. Abdel-Aty, et al., New optical soliton solutions of nonlinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063
![]() |
[49] |
A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Entanglement and teleportation via partial entangled-state quantum network, J. Comput. Theor. Nanosci., 12 (2015), 2213-2220. doi: 10.1166/jctn.2015.4010
![]() |
[50] |
M. Abdel-Aty, General formalism of interaction of a two-level atom with cavity field in arbitrary forms of nonlinearities, Physica A., 313 (2002), 471-487. doi: 10.1016/S0378-4371(02)00999-8
![]() |
[51] | A. Abdel-Aty, N. Zakaria, L. Y. Cheong, et al., Quantum network via partial entangled state, J. Commun., 9 (2014), 379-384. |
1. | Hongyan Zhi, Complete symmetry reductions, conservation laws and exact solutions for a (2 + 1)-dimensional nonlinear Schrödinger equation, 2021, 232, 00304026, 166504, 10.1016/j.ijleo.2021.166504 | |
2. | Loubna Ouahid, Plenty of soliton solutions to the DNA Peyrard-Bishop equation via two distinctive strategies, 2021, 96, 0031-8949, 035224, 10.1088/1402-4896/abdc57 | |
3. | Gamal Mohamed Ismail, Hamdy Ragab Abdl-Rahim, Hijaz Ahmad, Yu-Ming Chu, Fractional residual power series method for the analytical and approximate studies of fractional physical phenomena, 2020, 18, 2391-5471, 799, 10.1515/phys-2020-0190 | |
4. | Loubna Ouahid, M. A. Abdou, Sachin Kumar, Saud Owyed, S. Saha Ray, A plentiful supply of soliton solutions for DNA Peyrard–Bishop equation by means of a new auxiliary equation strategy, 2021, 35, 0217-9792, 10.1142/S0217979221502659 | |
5. | M. T. Darvishi, Mohammad Najafi, Lanre Akinyemi, Hadi Rezazadeh, Gaussons of some new nonlinear logarithmic equations, 2023, 32, 0218-8635, 10.1142/S0218863523500133 | |
6. | Awatif A. Hendi, Loubna Ouahid, Sachin Kumar, S. Owyed, M. A. Abdou, Dynamical behaviors of various optical soliton solutions for the Fokas–Lenells equation, 2021, 35, 0217-9849, 10.1142/S0217984921505291 | |
7. | Shafqat Ur-Rehman, Jamshad Ahmad, Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrödinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03961-9 | |
8. | S. T. R. Rizvi, Aly R. Seadawy, M. Younis, N. Ahmad, S. Zaman, Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives, 2021, 53, 0306-8919, 10.1007/s11082-021-03126-0 | |
9. | Shafqat Ur Rehman, Jamshad Ahmad, Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches, 2023, 98, 0031-8949, 035216, 10.1088/1402-4896/acb8ec | |
10. | Loubna Ouahid, M. A. Abdou, Sachin Kumar, Analytical soliton solutions for cold bosonic atoms (CBA) in a zigzag optical lattice model employing efficient methods, 2022, 36, 0217-9849, 10.1142/S021798492150603X | |
11. | Baojian Hong, Exact solutions for the conformable fractional coupled nonlinear Schrödinger equations with variable coefficients, 2022, 1461-3484, 146134842211354, 10.1177/14613484221135478 | |
12. | Loubna Ouahid, M. A. Abdou, S. Owyed, Sachin Kumar, New optical soliton solutions via two distinctive schemes for the DNA Peyrard–Bishop equation in fractal order, 2021, 35, 0217-9849, 2150444, 10.1142/S0217984921504443 | |
13. | Fouad Fredj, Hadda Hammouche, Mohammed S. Abdo, Wedad Albalawi, Abdulrazak H. Almaliki, Melike Kaplan, A Study on ψ -Caputo-Type Hybrid Multifractional Differential Equations with Hybrid Boundary Conditions, 2022, 2022, 2314-4785, 1, 10.1155/2022/9595398 | |
14. | Sanjaya K. Mohanty, Sachin Kumar, Apul N. Dev, Manoj Kr. Deka, Dmitry V. Churikov, Oleg V. Kravchenko, An efficient technique of G′G–expansion method for modified KdV and Burgers equations with variable coefficients, 2022, 37, 22113797, 105504, 10.1016/j.rinp.2022.105504 | |
15. | Sonia Akram, Jamshad Ahmad, Shahzad Sarwar, Asghar Ali, Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis, 2023, 55, 0306-8919, 10.1007/s11082-023-04723-x | |
16. | Sanjaya K. Mohanty, Balaram Pradhan, Zhanna Sagidullayeva, Ratbay Myrzakulov, Apul N. Dev, Exact solutions for the Bogoyavlensky-Konopelchenko equation with variable coefficients with an efficient technique, 2023, 72, 11100168, 287, 10.1016/j.aej.2023.04.001 | |
17. | H. I. Abdel-Gawad, Multiple solitons structures in optical fibers via PNLSE with a novel truncated M-derivative: modulated wave gain, 2024, 56, 1572-817X, 10.1007/s11082-024-06461-0 | |
18. | Nasir Ullah, Aman Ullah, Sajid Ali, Shafiq Ahmad, Optical solitons solution for the perturbed nonlinear Schrödinger’s equation, 2024, 11, 26668181, 100837, 10.1016/j.padiff.2024.100837 | |
19. | Sanjaya K. Mohanty, Apul N. Dev, 2023, 2819, 0094-243X, 070007, 10.1063/5.0137050 | |
20. | Md. Tarikul Islam, Setu Sarkar, Huda Alsaud, Mustafa Inc, Distinct wave profiles relating to a coupled of Schrödinger equations depicting the modes in optics, 2024, 56, 0306-8919, 10.1007/s11082-023-06088-7 | |
21. | Shafqat Ur Rehman, Jamshad Ahmad, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty, Stability analysis, lump and exact solutions to Sharma–Tasso–Olver–Burgers equation, 2024, 56, 1572-817X, 10.1007/s11082-024-06733-9 |