Review Special Issues

Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis

  • Parkinson’s disease (PD) is associated with a selective loss of the neurons in the midbrain area called the substantia nigra pars compacta and the loss of projecting nerve fibers in the striatum. Predominant pathological hallmarks of PD are the degeneration of discrete neuronal populations and progressive accumulation of α-synuclein–containing intracytoplasmic inclusions called Lewy bodies and dystrophic Lewy neuritis. There is currently no therapy to terminate or delay the neurodegenerative process as the exact mechanisms underlying the pathogenesis of PD require further investigation. The identification and validation of novel biomarkers for the diagnosis of PD is a great challenge using contemporary approaches and optimizing sampling handling as well as interpretation using bioinformatics analysis. In this review, recent evidences associated with multi-omic data-sets and molecular mechanisms underlying PD are examined. A combined mapping of several transcriptional evidences could establish a patient-specific signature for early diagnose of PD though eligible systems biology tools, which can also help develop effective drug-based therapeutic approaches.

    Citation: Marios G. Krokidis. Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis[J]. AIMS Neuroscience, 2019, 6(4): 333-345. doi: 10.3934/Neuroscience.2019.4.333

    Related Papers:

    [1] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [2] Kang Wu, Yibin Lu . Numerical computation of preimage domains for spiral slit regions and simulation of flow around bodies. Mathematical Biosciences and Engineering, 2023, 20(1): 720-736. doi: 10.3934/mbe.2023033
    [3] Bing Hu, Minbo Xu, Zhizhi Wang, Jiahui Lin, Luyao Zhu, Dingjiang Wang . Existence of solutions of an impulsive integro-differential equation with a general boundary value condition. Mathematical Biosciences and Engineering, 2022, 19(4): 4166-4177. doi: 10.3934/mbe.2022192
    [4] Meng Zhao, Wan-Tong Li, Yang Zhang . Dynamics of an epidemic model with advection and free boundaries. Mathematical Biosciences and Engineering, 2019, 16(5): 5991-6014. doi: 10.3934/mbe.2019300
    [5] Huy Tuan Nguyen, Nguyen Van Tien, Chao Yang . On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative. Mathematical Biosciences and Engineering, 2022, 19(11): 11232-11259. doi: 10.3934/mbe.2022524
    [6] Sai Zhang, Li Tang, Yan-Jun Liu . Formation deployment control of multi-agent systems modeled with PDE. Mathematical Biosciences and Engineering, 2022, 19(12): 13541-13559. doi: 10.3934/mbe.2022632
    [7] P. Vafeas, A. Skarlatos, P. K. Papadopoulos, P. Svarnas, N. Sarmas . A boundary value problem of heat transfer within DBD-based plasma jet setups. Mathematical Biosciences and Engineering, 2023, 20(10): 18345-18367. doi: 10.3934/mbe.2023815
    [8] Zhenwu Xiang, Qi Mao, Jintao Wang, Yi Tian, Yan Zhang, Wenfeng Wang . Dmbg-Net: Dilated multiresidual boundary guidance network for COVID-19 infection segmentation. Mathematical Biosciences and Engineering, 2023, 20(11): 20135-20154. doi: 10.3934/mbe.2023892
    [9] Fugeng Zeng, Yao Huang, Peng Shi . Initial boundary value problem for a class of $ p $-Laplacian equations with logarithmic nonlinearity. Mathematical Biosciences and Engineering, 2021, 18(4): 3957-3976. doi: 10.3934/mbe.2021198
    [10] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
  • Parkinson’s disease (PD) is associated with a selective loss of the neurons in the midbrain area called the substantia nigra pars compacta and the loss of projecting nerve fibers in the striatum. Predominant pathological hallmarks of PD are the degeneration of discrete neuronal populations and progressive accumulation of α-synuclein–containing intracytoplasmic inclusions called Lewy bodies and dystrophic Lewy neuritis. There is currently no therapy to terminate or delay the neurodegenerative process as the exact mechanisms underlying the pathogenesis of PD require further investigation. The identification and validation of novel biomarkers for the diagnosis of PD is a great challenge using contemporary approaches and optimizing sampling handling as well as interpretation using bioinformatics analysis. In this review, recent evidences associated with multi-omic data-sets and molecular mechanisms underlying PD are examined. A combined mapping of several transcriptional evidences could establish a patient-specific signature for early diagnose of PD though eligible systems biology tools, which can also help develop effective drug-based therapeutic approaches.


    Five basic quantities (voltage, charge, current, capacitance, and resistance) in electrostatics are involved in almost all applications. Electrostatics generally plays an important role in improving the performance of microelectro/mechanical systems (MEMS) and electron devices in the design stage. Many numerical methods (e.g., the finite difference method, the variational method, the moment method, the finite element method, and the boundary element method) were popularly used for engineering problems. Among diverse numerical techniques, the finite element method (FEM) and the boundary integral equation method (BIEM), as well as the boundary element method (BEM) become acceptable tools for engineers due to the increasing development of digital computing power. Here, we may focus on the mathematical study of the BIEM for electrostatics of two identical cylinders. Researchers have paid attention to the dual BEM paper of IEEE in 2003 [1], which has received nearly 5000 views in the Research Gate.

    For a pair of two conducting cylinders, there is a large amount of literature on charged cylinders [2,3,4]. Different solutions existed to the electrostatic problem of two identical parallel cylinders held at the same (symmetric) potential [2,3]. A note was given to show their equivalence, and the identities were confirmed [4]. Four distinct solutions for the potential distribution around two equal circular parallel conducting cylinders by [2,3,5,6] were demonstrated to be equivalent by Lekner [7] by ways of several identities. Here, we may try an alternative way of BIEM using degenerate kernels to revisit this problem. A degenerate kernel is based on the method of separation variables, but it separates the variables in the two-point kernel function. Although the BIE in conjunction with the available degenerate kernel can only solve simple geometries and the results may be obtained more directly by using the method of separation variables for the solution instead of the fundamental solution, the tool can explain the rank-deficiency mechanism in the BIE/BEM such as degenerate scale, degenerate boundary, spurious eigenvalues and fictitious frequency, which is meaningful to the BEM community. Besides, symmetric and anti-symmetric cases are both considered. Regarding the anti-symmetric electrostatic potential, Lebedev et al. [8] have provided a closed-form solution by using the bipolar coordinates. The solution is interestingly found to be the simplest method of fundamental solution (MFS) of two opposite strengths of sources at the two foci. It is not trivial to check the asymptotic behavior at infinity of the two cases, symmetric and anti-symmetric. Besides, whether the equilibrium of the boundary flux along the two cylinders is satisfied or not is also our main concern.

    Regarding the potential problem of a two-dimensional plane containing two circular boundaries, Chen and Shen [9] studied the multiply-connected Laplace problem. They found that a degenerate scale depends on the outer boundary. Chen et al. [10] solved the Laplace problem by using the BIEM in conjunction with the degenerate kernel to derive an analytical solution. It is found that a degenerate scale may occur due to the introduction of the logarithmic kernel for the two-dimensional case. Efficient techniques for the rank-deficiency of the BEM in electrostatic problems were proposed by Chyuan et al. [11]. Later, it was found that the special (degenerate) geometry happened to be the shape of unit logarithmic capacity. Kuo et al. [12] studied the degenerate scale for regular N-gon domains by using complex variables. Numerical implementation was also done by using the BEM. Kuo et al. [13] revisited the degenerate scale for an infinite plane problem containing two circular holes using the conformal mapping. Chen et al. [14] linked the logarithmic capacity in the potential theory and the degenerate scale in the BEM for two tangent discs. The logarithmic capacity of the line segment as well as the double degeneracy in the BIEM/BEM was studied by Chen et al. [15]. Due to the use of the two-dimensional fundamental solution in the BIEM, the solution space is expanded, and sometimes the corresponding matrix is rank deficient in the BEM. In other words, the integral operator of the logarithmic kernel is range deficient. A corresponding chart to show the rank deficiency and the null space of the integral operator of single, double layer potentials and their derivatives was given in [16,17,18], while the original one was provided in the face cover of the Strang book [19]. Fikioris et al. [20] solved rectangularly shielded lines by using the Carleman-Vekua method. In the mentioned paper [20], it is interesting to find that its formulation also needs a constraint [21] to ensure a unique solution. This outcome is similar to the paper of Chen et al. [22] using the Fichera's approach, where an additional constraint is also required.

    In this paper, we revisit two cylinders of electrostatics by using the BIE with the degenerate kernel of the bipolar coordinates. Both the symmetric and anti-symmetric specified potentials are considered. Besides, the logarithmic capacity is also discussed. The boundary potential and flux are expanded by using the Fourier series, while the fundamental solution is represented by using the degenerate kernel. The equilibrium of boundary flux and the asymptotic behavior at infinity are also examined. The solution space expanded using the BIEM is compared with the true solution space. After summarizing the single (circle and ellipse) and two cylinders, a conclusion for constructing the solution space can be made.

    First, we consider a conducting cylinder. The governing equation and the Dirichlet boundary condition are shown below:

    $ {\nabla }^{2}u\left(\mathbf{x}\right) = 0, \ \mathbf{x}\in D, \\ u\left(\mathbf{x}\right) = \stackrel{̄}{u}\left(\mathbf{x}\right), \ \mathbf{x}\in B, \\ u\left(\mathbf{x}\right) = \ \mathrm{ln} \ \left|\mathbf{x}\right|+O\left(1\right), \ \mathbf{x}\to \infty , $ (1)

    where $ {\nabla }^{2} $, D and B are the Laplace operator, the domain of interest and the boundary, respectively. Furthermore, x is the position vector of a field point and $ \stackrel{̄}{u}\left(\mathbf{x}\right) $ is the specified B.C. The integral formulation for the Laplace problem is derived from Green's third identity. The representation of the conventional integral equation for the domain point is written as

    $ 2\pi u\left(\mathbf{x}\right) = {\int }_{B}T(\mathbf{s}, \mathbf{x})\stackrel{̄}{u}\left(\mathbf{s}\right)dB\left(\mathbf{s}\right)-{\int }_{B}U(\mathbf{s}, \mathbf{x})t\left(\mathbf{s}\right)dB\left(\mathbf{s}\right), \mathbf{x}\in D, $ (2)

    where s is the position vector of a source point, $ U(\mathbf{s}, \mathbf{x}) = \ \mathrm{ln} \ \left|\mathbf{x}-\mathbf{s}\right| \ $ is the fundamental solution, $ T(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial {\boldsymbol{n}}_{\boldsymbol{s}}} $, and $ t\left(\mathbf{x}\right) $ is the unknown boundary flux. By moving the field point to the smooth boundary, Eq (2) becomes:

    $ \pi \stackrel{̄}{u}\left(\mathbf{x}\right) = C.P.V.{\int }_{B}T(\mathbf{s}, \mathbf{x})\stackrel{̄}{u}\left(\mathbf{s}\right)dB\left(\mathbf{s}\right)-{\int }_{B}U(\mathbf{s}, \mathbf{x})t\left(\mathbf{s}\right)dB\left(\mathbf{s}\right), \mathbf{x}\in B, $ (3)

    where the C.P.V. denotes the Cauchy principal value, and $ T(\mathbf{s}, \mathbf{x}) = \partial U(\mathbf{s}, \mathbf{x})/\partial {n}_{s} $ is the closed-form kernel. Once the field point x locates outside the domain, we obtain the null-field integral equation as shown below:

    $ 0 = {\int }_{B}T(\mathbf{s}, \mathbf{x})\stackrel{̄}{u}\left(\mathbf{s}\right)dB\left(\mathbf{s}\right)-{\int }_{B}U(\mathbf{s}, \mathbf{x})t\left(\mathbf{s}\right)dB\left(\mathbf{s}\right), \mathbf{x}\in {D}^{c} . $ (4)

    where $ {D}^{c} $ is the complementary domain. By employing the proper degenerate kernel ($ U(\mathbf{s}, \mathbf{x}) $) to represent the closed-form fundamental solution, the collocation point can be exactly located on the real boundary free of facing the singular integral. Equations (2) and (4) can be rewritten as:

    $ 2\pi u\left(\mathbf{x}\right) = {\int }_{B}{T}_{dk}(\mathbf{s}, \mathbf{x})\stackrel{̄}{u}\left(\mathbf{s}\right)dB\left(\mathbf{s}\right)-{\int }_{B}{U}_{dk}(\mathbf{s}, \mathbf{x})t\left(\mathbf{s}\right)dB\left(\mathbf{s}\right), \mathbf{x}\in D\cup B $ (5)

    and

    $ 0 = {\int }_{B}{T}_{dk}(\mathbf{s}, \mathbf{x})\stackrel{̄}{u}\left(\mathbf{s}\right)dB\left(\mathbf{s}\right)-{\int }_{B}{U}_{dk}(\mathbf{s}, \mathbf{x})t\left(\mathbf{s}\right)dB\left(\mathbf{s}\right), \mathbf{x}\in {D}^{c}\cup B . $ (6)

    where $ {T}_{dk}(\mathbf{s}, \mathbf{x}) $ and $ {U}_{dk}(\mathbf{s}, \mathbf{x}) $ are the corresponding degenerate kernels to represent $ T(\mathbf{s}, \mathbf{x}) $ and $ U(\mathbf{s}, \mathbf{x}) $, respectively. By setting the field point $ \mathbf{x} = \left(\rho , \phi \right) $ and the source point $ \mathbf{s} = \left(R, \theta \right) $ in the polar coordinates for a circular domain, the closed-form fundamental solution in Eqs (5) and (6) can be expressed by using the degenerate kernel form as shown below:

    $ {U}_{dk}(\mathbf{s}, \mathbf{x}) = \left\{Ui(R,θ;ρ,ϕ)= ln Rm=11m(ρR)m cos m(θϕ),  Rρ,          (a)Ue(R,θ;ρ,ϕ)= ln ρm=11m(Rρ)m cos m(θϕ),  ρ>R,          (b)
    \right. . $
    (7)

    and

    $ {T}_{dk}(\mathbf{s}, \mathbf{x}) = \left\{Ti(R,θ;ρ,ϕ)=(1R+m=1(ρmRm+1) cos m(θϕ)),  R>ρ,      (a)Te(R,θ;ρ,ϕ)=m=1(Rm1ρm) cos m(θϕ),  ρ>R.                 (b)
    \right. . $
    (8)

    The unknown boundary flux $ t\left(\boldsymbol{s}\right) $ is expanded in terms of Fourier series as shown below:

    $ t\left(\mathbf{s}\right) = \frac{1}{{J}_{\boldsymbol{s}}}\left({a}_{0}+{\sum }_{n = 1}^{\infty }{a}_{n} \ \mathrm{cos} \ (n\theta )+{\sum }_{n = 1}^{\infty }{b}_{n} \ \mathrm{sin} \ (n\theta )\right), \ 0\le \theta \le 2\pi , $ (9)

    where $ {J}_{\boldsymbol{s}} = 1 $ is the Jacobian term, $ {a}_{0} $, $ {a}_{n} $ and $ {b}_{n} $ are unknown coefficients. The given boundary condition is

    $ \stackrel{̄}{u}\left(\mathbf{x}\right) = v . $ (10)

    where v is a constant. By considering $ R = a $ in Eqs (6)–(8), the coefficient of the Fourier constant base is

    $ -a \ \mathrm{ln} \ a \ {a}_{0} = v, $ (11)

    where $ a $ is the radius of the circular cylinder. Equation (11) indicates that the occurring mechanism of a degenerate scale is

    $ \ \mathrm{ln} \ a = 0 . $ (12)

    When $ a = 1 $, the coefficient of $ {a}_{0} $ cannot be determined. It results in a non-unique solution. This critical size is called a degenerate scale. In Rumely's book [23], the logarithmic capacity, $ {c}_{L} $, of a circle is equal to its radius. It is easily found that the special (degenerate) geometry happens to be the shape of unit logarithmic capacity. The discriminant $ {D}_{p}\left(a\right) $ of the degenerate scale in the BEM/BIEM for a circular boundary is written as

    $ {D}_{p}\left(a\right) = \ \mathrm{ln} \ a . $ (13)

    If $ {D}_{p}\left(a\right)\ne 0 $, this size is an ordinary scale and there exists a unique solution. Otherwise, according to the Fredholm alternative theorem, there is no solution or infinite solutions. For an ordinary scale, the boundary flux, of the electrostatic field along the boundary, is obtained as

    $ t\left(\mathbf{x}\right) = \frac{-v}{a \ \mathrm{ln} \ a}, \mathbf{x}\in B . $ (14)

    The unique solution of electrostatic potential is obtained by

    $ u\left(\mathbf{x}\right) = v\frac{ \ \mathrm{ln} \ \rho }{ \ \mathrm{ln} \ a} , $ (15)

    as shown in Figure 1(a). Even though the electrostatic field along the boundary in Eq (14) is not in equilibrium, i.e. $ {\int }_{B}t\left(\mathbf{x}\right)dB\left(\mathbf{x}\right)\ne 0 $, the electrostatic field at infinity, $ {\Gamma }^{\infty } $, would exist and satisfy the equilibrium condition together in total, $ {\int }_{B+{\Gamma }^{\infty }}t\left(\mathbf{x}\right)dB\left(\mathbf{x}\right) = 0 $. If we normalize the potential on the cylinder to the unity, and let λ be the dimensionless ratio, the potential becomes

    $ u\left(\mathbf{x}\right) = v+\lambda {u}_{d}\left(\mathbf{x}\right) , $ (16)
    Figure 1.  Analytical solution of the electrostatic potential subject to conducting cylinders derived by using the null-field BIEM.

    where

    $ {u}_{d}\left(\mathbf{x}\right) = \ \mathrm{ln} \ \rho - \ \mathrm{ln} \ a . $ (17)

    The solution by using the direct BIE of Eq (15) is the special case of Eq (16) by setting $ \lambda = \frac{v}{{D}_{p}\left(a\right)} $. When the size of the boundary is a degenerate scale, i.e., $ a = 1 $ and $ {D}_{p}\left(a\right) = \ \mathrm{ln} \ a = 0 $, it has no solution if $ v\ne 0 $. If $ v = 0 $, then the constant term in Eq (9), $ {a}_{0} $, is a free constant. The electrostatic potential yields

    $ u\left(\mathbf{x}\right) = {a}_{0} \ \mathrm{ln} \ \rho , $ (18)

    and Eq (16) would reduce to

    $ u\left(\mathbf{x}\right) = \lambda {u}_{d}\left(\mathbf{x}\right) , $ (19)

    and $ {u}_{d}\left(\mathbf{x}\right) $ in Eq (19) reduces to $ \ \mathrm{ln} \ \rho $ since $ \ \mathrm{ln} \ a = 0 $. It is easy to find that $ {a}_{0} $ and $ \lambda $ are equivalent.

    For an elliptical case, we naturally utilize the elliptic coordinates to solve the problem in the BIE. The relation between the Cartesian coordinates and the elliptic coordinates is given below:

    $ x = c \ \mathrm{cosh} \ \xi \ \mathrm{cos} \ \eta , y = c \ \mathrm{sinh} \ \xi \ \mathrm{sin} \ \eta . $ (20)

    where c is the focal length. By separating the source point and the field point in the elliptic coordinates [24] to represent the closed-form fundamental solution, we have

    $ {U}_{dk}(\mathbf{s}, \mathbf{x}) = \ \mathrm{ln} \ \left|\mathbf{x}-\mathbf{s}\right| =\\ \left\{Ui(ξs,ηs;ξx,ηx)=ξs+ ln c2m=12memξs cosh m ξx cos m ηx cos m ηs                       m=12memξs sinh m ξx sin m ηx sin m ηs,  ξsξx,  (a)Ue(ξs,ηs;ξx,ηx)=ξx+ ln c2m=12memξx cosh m ξs cos m ηx cos m ηs m=12memξx sinh m ξs sin m ηx sin m ηs,  ξs<ξx,   (b)
    \right. $
    (21)
    $ {T}_{dk}(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial {n}_{s}} = \\ \left\{Ti(ξs,ηs;ξx,ηx)=1Js(1+2m=1emξs cosh m ξx cos m ηx cos m ηs +2m=1emξs sinh m ξx sin m ηx sin m ηs),    ξs>ξx,  (a)Te(ξs,ηs;ξx,ηx)=1Js(2m=1emξx sinh m ξs cos m ηx cos m ξs+2m=1emξx cosh m ξs sin m ηx sin m ηs),    ξs<ξx. (b)
    \right. $
    (22)

    where $ {J}_{s} = c\sqrt{{ \ \mathrm{cosh} \ }^{2}{\xi }_{s}{ \ \mathrm{sin} \ }^{2}{\eta }_{s}+{ \ \mathrm{sinh} \ }^{2}{\xi }_{s}{ \ \mathrm{cos} \ }^{2}{\eta }_{s}} $. The unknown boundary flux $ t\left(\boldsymbol{s}\right) $ is expanded in terms of generalized Fourier series. We have

    $ t\left(\mathbf{s}\right) = \frac{1}{{J}_{\boldsymbol{s}}}\left({a}_{0}+{\sum }_{n = 1}^{\infty }{a}_{n} \ \mathrm{cos} \ (n{\eta }_{\boldsymbol{s}})+{\sum }_{n = 1}^{\infty }{b}_{n} \ \mathrm{sin} \ (n{\eta }_{\boldsymbol{s}})\right), \ 0\le {\eta }_{\boldsymbol{s}}\le 2\pi , $ (23)

    where $ {a_0} $, $ {a_n} $ and $ {b_n} $ are unknown coefficients. The given boundary condition is

    $ \stackrel{̄}{u}\left(\mathbf{x}\right) = v . $ (24)

    By substituting Eqs (21a), (22a), (23) and (24) into Eq (6), the coefficient of the Fourier constant base is

    $ -\left({\xi }_{0}+ \ \mathrm{ln} \ \frac{c}{2}\right){a}_{0} = v, $ (25)

    Equation (25) indicates that the occurring mechanism of a degenerate scale is

    $ {\xi }_{0}+ \ \mathrm{ln} \ \frac{c}{2} = 0. $ (26)

    Equation (26) yields the degenerate scale of $ \frac{a+b}{2} = 1 $, where a and b are the semi-major and semi-minor axes of an ellipse, respectively. According to Eq (25), the discriminant of a degenerate scale in the BEM/BIEM is obtained

    $ {D}_{e}(c, {\xi }_{0}) = {\xi }_{0}+ \ \mathrm{ln} \ \frac{c}{2} = \ \mathrm{ln} \ \left(\frac{a+b}{2}\right). $ (27)

    In Rumely's book [23], the logarithmic capacity of an ellipse is equal to $ \frac{a+b}{2} $. According to Eqs (13) and (27), the logarithmic capacity, $ {c}_{L} $, and the discriminant, $ {D}_{e}(\cdot ) $, satisfy the relation,

    $ {c}_{L} = {e}^{{D}_{e}(\cdot )} . $ (28)

    The relationship of the discriminant, logarithmic capacity, and degenerate scale are summarized in Table 1. If $ {D}_{e}(c, {\xi }_{0}) $ is not equal to zero, this size is an ordinary scale with a unique solution. Otherwise, according to the Fredholm alternative theorem, it has no solution or infinite solution. For an ordinary scale, the boundary flux is obtained by

    $ t\left(\mathbf{x}\right) = \frac{-v}{{D}_{e}(c, {\xi }_{0})}, \mathbf{x}\in B . $ (29)
    Table 1.  Relationship of the discriminant, logarithmic capacity and degenerate scale.

     | Show Table
    DownLoad: CSV

    The unique solution of electrostatic potential is

    $ u\left(\mathbf{x}\right) = ({\xi }_{\boldsymbol{x}}+ \ \mathrm{ln} \ \frac{c}{2})\left(\frac{v}{{D}_{e}(c, {\xi }_{0})}\right) , $ (30)

    as shown in Figure 1(b). Even though the boundary flux in Eq (29) is not in equilibrium, i.e., $ {\int }_{B}t\left(\mathbf{x}\right)dB\left(\mathbf{x}\right)\ne 0 $, the electrostatic field at infinity, $ {\Gamma }^{\infty } $, would exist and satisfy the equilibrium condition together in total, i.e., $ {\int }_{B+{\Gamma }^{\infty }}t\left(\mathbf{x}\right)dB\left(\mathbf{x}\right) = 0 $. If we normalize the potential on the cylinder to the unity, and let λ be the dimensionless ratio, the potential becomes

    $ u\left(\mathbf{x}\right) = v+\lambda {u}_{d}\left(\mathbf{x}\right) , $ (31)

    where

    $ {u}_{d}\left(\mathbf{x}\right) = \left({\xi }_{\boldsymbol{x}}+ \ \mathrm{ln} \ \frac{c}{2}\right)-\left({\xi }_{0}+ \ \mathrm{ln} \ \frac{c}{2}\right) = {\xi }_{x}-{\xi }_{0} . $ (32)

    A neat formula of $ {u}_{d}\left(\mathbf{x}\right) $ could be defined as $ {u}_{d}\left(\mathbf{x}\right) = {D}_{e}\left({\xi }_{\boldsymbol{x}}\right)-{D}_{e}\left({\xi }_{0}\right) $. The solution by using the direct BIE of Eq (30) is the special case of Eq (31), if $ \lambda = \frac{v}{{D}_{e}(c, {\xi }_{0})} $.

    When the size of the boundary is a degenerate scale, $ {D}_{e}(c, {\xi }_{0}) = {\xi }_{0}+ {ln}\frac{c}{2} = 0 $, it is no solution if $ v\ne 0 $. If $ v = 0 $, the constant term in Eq (23), $ {a}_{0} $, is a free constant. The electrostatic potential yields

    $ u\left(\mathbf{x}\right) = \left({\xi }_{x}+ \ \mathrm{ln} \ \frac{c}{2}\right){a}_{0} , $ (33)

    and Eq (16) reduces to

    $ u\left(\mathbf{x}\right) = \lambda {u}_{d}\left(\mathbf{x}\right) , $ (34)

    where $ {u}_{d}\left(\mathbf{x}\right) $ in Eq (32) reduces to $ {\xi }_{\boldsymbol{x}}+ \ \mathrm{ln} \ \frac{c}{2} $ since $ {D}_{e}\left({\xi }_{0}\right) $ is equal to zero. It is easy to find that $ {a}_{0} $ and $ \lambda $ are equivalent. In addition, the degenerate scale in the BEM/BIEM is due to the logarithmic kernel.

    For the single elliptical cylinder, the degenerate kernel is expanded in terms of the generalized form as

    $ {U}_{dk}(\mathbf{s}, \mathbf{x}) = \ \mathrm{ln} \ \left|\mathbf{x}-\mathbf{s}\right| =\\ \left\{Ui(ξs,ηs;ξx,ηx)=De(ξs)m=1αm(ξs,ηs;ξx,ηx),  ξsξx,  (a)Ue(ξs,ηs;ξx,ηx)=De(ξx)m=1αm(ξx,ηx;ξs,ηs),  ξs<ξx,   (b)
    \right. $
    (35)
    $ {T}_{dk}(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial {n}_{s}} = \\ \left\{Ti(ξs,ηs;ξx,ηx)=1Js(D'eξs)m=1βm(ξs,ηs;ξx,ηx)),  ξs>ξx,  (a)Te(ξs,ηs;ξx,ηx)=1Jsm=1βm(ξs,ηs;ξx,ηx),    ξs<ξx, (b)
    \right. $
    (36)

    where $ \xi $ and $ \eta $ are the radial and angular directions, respectively, $ {D}_{e}(\cdot ) $ is the constant function for $ {\eta }_{\boldsymbol{s}} $ and other term is $ \alpha (\cdot ) $. The unknown boundary flux $ t\left(\mathbf{s}\right) $ is expanded in terms of the generalized Fourier series as shown below:

    $ t\left(\mathbf{s}\right) = \frac{1}{{J}_{\boldsymbol{s}}}\left({a}_{0}+{\sum }_{n = 1}^{\infty }{a}_{n} \ \mathrm{cos} \ (n{\eta }_{\boldsymbol{s}})+{\sum }_{n = 1}^{\infty }{b}_{n} \ \mathrm{sin} \ (n{\eta }_{\boldsymbol{s}})\right), \ 0\le {\eta }_{\boldsymbol{s}}\le 2\pi , $ (37)

    where $ {a}_{0} $, $ {a}_{n} $ and $ {b}_{n} $ are unknown coefficients. By substituting Eqs (35a), (36a), (37) and the boundary condition (Eq (10)) into Eq (6), the coefficient of the Fourier constant base is

    $ {D}_{e}\left({\xi }_{0}\right){a}_{0} = -v{D}_{e}^{\text{'}}\left({\xi }_{0}\right), $ (38)

    If $ D({\xi _0}) \ne 0 $, then the unique solution of electrostatic potential is

    $ u\left(\mathbf{x}\right) = \frac{v}{{D}_{e}\left({\xi }_{0}\right)}{D}_{e}\left({\xi }_{x}\right) , $ (39)

    and

    $ {u}_{d}\left(\mathbf{x}\right) = {D}_{e}\left({\xi }_{x}\right)-{D}_{e}\left({\xi }_{0}\right) . $ (40)

    When the size of the boundary is a degenerate scale, $ {D}_{e}\left({\xi }_{0}\right) = 0 $, there is no solution if $ v\ne 0 $. If $ v = 0 $, the constant term in Eq (37), $ {a}_{0} $, is a free constant. The electrostatic potential yields

    $ u\left(\mathbf{x}\right) = \left({D}_{e}\left({\xi }_{x}\right)-{D}_{e}\left({\xi }_{0}\right)\right){a}_{0} , $ (41)

    and Eq (40) reduces to

    $ u\left(\mathbf{x}\right) = \lambda {u}_{d}\left(\mathbf{x}\right) , $ (42)

    where $ {u}_{d}\left(\mathbf{x}\right) $ in Eq (40) is reduced to $ {D}_{e}\left({\xi }_{x}\right) $, since $ {D}_{e}\left({\xi }_{0}\right) $ is equal to zero. By using the generalized form of Eqs (35) and (36), the analytical and neat form of $ {u}_{d}\left(\mathbf{x}\right) $ for the single elliptical cylinder is derived. It is easy to find that $ {a}_{0} $ and $ \lambda $ are equivalent. The generalized potential and the solution by using the BIEM are compared in Table 2.

    Table 2.  Comparison of the general solution and the BIE solution for single or double cylinders.

     | Show Table
    DownLoad: CSV

    In this section, we consider two circular cylinders of electrostatics. The Dirichlet boundary conditions of two circular cylinders are given by

    $ {u}^{l}\left(\mathbf{x}\right) = {v}_{1} \ \text{and} \ {u}^{r}\left(\mathbf{x}\right) = {v}_{2}, \mathbf{x}\in B, $ (43)

    where $ {u}^{l}\left(\mathbf{x}\right) \ \text{and} \ {u}^{r}\left(\mathbf{x}\right) $ are potentials of the left and right circular boundaries, respectively, x is the position vector of the field point, B is the boundary, and $ {v}_{1} \ \text{and} \ {v}_{2} $ are specified constant potentials. The original problem can be decomposed into a symmetric problem and an anti-symmetric problem as shown below:

    $ u^l(\mathbf{x})=u^r(\mathbf{x})=v, \mathbf{x} \in B, \text { symmetry } \mathrm{BC}, $ (44)

    and

    $u^l(\mathbf{x})=-u^r(\mathbf{x})=v, \mathbf{x} \in B . \text { anti-symmetry BC. } $ (45)

    Since the problem contains two circular boundaries, we naturally employ the bipolar coordinates to express the closed-form fundamental solution. The relation between the Cartesian coordinates and the bipolar coordinates is shown below:

    $ x = c\frac{ \ \mathrm{sinh} \ \eta }{ \ \mathrm{cosh} \ \eta - \ \mathrm{cos} \ \xi }, y = c\frac{ \ \mathrm{sin} \ \xi }{ \ \mathrm{cosh} \ \eta - \ \mathrm{cos} \ \xi } . $ (46)

    where $ \eta $ and $ \xi $ are the radial and angular coordinates, respectively, c is the half distance between the two foci of the bipolar coordinates. By separating the source point and the field point in the bipolar coordinates [9] for the closed-form fundamental solution, we have

    $ {U}_{dk}\left(\mathbf{s}, \mathbf{x}\right) = \ \mathrm{ln} \ \left|\mathbf{x}-\mathbf{s}\right| = $
    $ \left\{ ln (2c)+ηsm=11m{em(ηsηx) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},0>ηsηx ln (2c)+ηxm=11m{em(ηxηs) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},0>ηx>ηs ln (2c)m=11m{em(ηxηs) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},ηx>0>ηs ln (2c)ηsm=11m{em(ηxηs) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},ηxηs>0 ln (2c)ηxm=11m{em(ηsηx) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},ηs>ηx>0 ln (2c)m=11m{em(ηsηx) cos [m(ξxξs)]emηx cos (mξx)emηs cos (mξs)},ηs>0>ηx
    \right. $
    (47)
    $ {T}_{dk}\left(\mathbf{s}, \mathbf{x}\right) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial {\boldsymbol{n}}_{\boldsymbol{s}}} = $
    $ \left\{1Js{1+m=1[em(ηsηx) cos [m(ξxξs)]emηs cos (mξs)]},0>ηsηx1Jsm=1{em(ηxηs) cos [m(ξxξs)]emηs cos (mξs)},0>ηx>ηs1Jsm=1{em(ηxηs) cos [m(ξxξs)]emηs cos (mξs)},ηx>0>ηs1Js{1+m=1[em(ηxηs) cos [m(ξxξs)]emηs cos (mξs)]},ηxηs>01Jsm=1{em(ηsηx) cos [m(ξxξs)]emηs cos (mξs)},ηs>ηx>0 1Jsm=1{em(ηsηx) cos [m(ξxξs)]emηs cos (mξs)},ηs>0>ηx
    \right. $
    (48)

    where $ \mathbf{x} = ({\eta }_{x}, {\xi }_{x}) $, $ \mathbf{s} = ({\eta }_{s}, {\xi }_{s}) $ and $ {J}_{s} = c/\left[{cos}h({\eta }_{s})- {cos}({\xi }_{s})\right] $.

    The boundary condition of the symmetry problem is shown in Eq (44). The unknown boundary densities on the two circular cylinders can be expanded by using the generalized Fourier series as shown below:

    $ {t}^{M}\left(\mathbf{s}\right) = \left\{1Js(al0+n=1aln cos n ξs+n=1bln sin n ξs), ηs < 0,sBl,1Js(ar0+n=1arn cos n ξs+n=1brn sin n ξs), ηs0,sBr,
    \right. $
    (49)

    where $ {a}_{0}^{l}, {a}_{n}^{l}, {b}_{n}^{l}, {a}_{0}^{r}, {a}_{n}^{r} $ and $ {b}_{n}^{r} $ are unknown coefficients of the generalized Fourier series. By substituting Eqs (47a), (47f), (48a), (48f), (44) and (49) into Eq (6), and collocating the null-field point on the left boundary, $ {B}^{l} $, we have

    $ -2\pi v-\pi \left\{2\left( \ \mathrm{ln} \ (2c\right)-{\eta }_{0}){a}_{0}^{l}+{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}{a}_{n}^{l}-{\sum }_{n = 1}^{\infty }\frac{1}{n}(-2{e}^{-n{\eta }_{0}}{a}_{0}^{l}+{a}_{n}^{l}) \ \mathrm{cos} \ n \ {\xi }_{x}-\\ {\sum }_{n = 1}^{\infty }\frac{1}{n}{b}_{n}^{l} \ \mathrm{sin} \ n \ {\xi }_{x}\right\} -\pi \left\{2 \ \mathrm{ln} \ (2c){a}_{0}^{r}+{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}{a}_{n}^{r}+{\sum }_{n = 1}^{\infty }\frac{1}{n}\left[\right(2{e}^{-n{\eta }_{0}}{a}_{0}^{r}-\\ {e}^{-2n{\eta }_{0}}{a}_{n}^{r}) \ \mathrm{cos} \ n \ {\xi }_{x}-{e}^{-2n{\eta }_{0}}{b}_{n}^{r} \ \mathrm{sin} \ n \ {\xi }_{x}]\right\} = 0. $ (50)

    Similarly, substituting Eqs (47c), (47d), (48c), (48d), (44) and (49) into Eq (6), and collocating the null-field point on the right boundary, $ {B}^{r} $, we have

    $ -\pi \left\{2 \ \mathrm{ln} \ (2c){a}_{0}^{l}+{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}{a}_{n}^{l}+{\sum }_{n = 1}^{\infty }\frac{1}{n}\left[\right(-{e}^{-2n{\eta }_{0}}{a}_{n}^{l}+2{e}^{-n{\eta }_{0}}{a}_{0}^{l}) \ \mathrm{cos} \ n \ {\xi }_{x}-\\ {e}^{-2n{\eta }_{0}}{b}_{n}^{l} \ \mathrm{sin} \ n \ {\xi }_{x}]\right\} -2\pi v-\pi \left\{2\left( \ \mathrm{ln} \ (2c\right)-{\eta }_{0}){a}_{0}^{r}+{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}{a}_{n}^{r}+\\ {\sum }_{n = 1}^{\infty }\frac{1}{n}\left[\right(2{e}^{-n{\eta }_{0}}{a}_{0}^{r}-{a}_{n}^{r}) \ \mathrm{cos} \ n \ {\xi }_{x}-{b}_{n}^{r} \ \mathrm{sin} \ n \ {\xi }_{x}]\right\} = 0. $ (51)

    By adding Eqs (50) and (51) together, we obtain

    $ \left(4 \ \mathrm{ln} \ (2c\right)-2{\eta }_{0}\left)\right({a}_{0}^{l}+{a}_{0}^{r})+2{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}({a}_{n}^{l}+{a}_{n}^{r}) +{\sum }_{n = 1}^{\infty }\frac{1}{n}[-(1+{e}^{-2n{\eta }_{0}}\left)\right({a}_{n}^{l}+\\ {a}_{n}^{r})+4{e}^{-n{\eta }_{0}}({a}_{0}^{l}+{a}_{0}^{r}\left)\right] \ \mathrm{cos} \ n \ {\xi }_{x}-{\sum }_{n = 1}^{\infty }\frac{1}{n}\left[(1+{e}^{-2n{\eta }_{0}})({b}_{n}^{l}+{b}_{n}^{r})\right] \ \mathrm{sin} \ n \ {\xi }_{x} = -4v $ (52)

    After comparing the coefficient of generalized Fourier bases, we have

    $ \left\{(4ln(2c)2η0)(al0+ar0)+2n=11nenη0(aln+arn)=4v,n=1, 2, 3...1n(1+e2nη0)(aln+arn)+4enη0(al0+ar0)=0,n=1, 2, 3...1n(1+e2nη0)(bln+brn)=0,n=1, 2, 3...
    \right. $
    (53)

    By similarly subtracting Eq (50) from Eq (51), we have

    $ \pi \left\{-2{\eta }_{0}{a}_{0}^{l}+{\sum }_{n = 1}^{\infty }\frac{1}{n}\left[\right(-1+{e}^{-2n{\eta }_{0}}){a}_{n}^{l} \ \mathrm{cos} \ n \ {\xi }_{x}+(-1+{e}^{-2n{\eta }_{0}}\left){b}_{n}^{l} \ \mathrm{sin} \ n \ {\xi }_{x}\right]\right\} \\ +\pi \left\{2{\eta }_{0}{a}_{0}^{r}+{\sum }_{n = 1}^{\infty }\frac{1}{n}\left[\right(1-{e}^{-2n{\eta }_{0}}){a}_{n}^{r} \ \mathrm{cos} \ n \ {\xi }_{x}+(1-{e}^{-2n{\eta }_{0}}\left){b}_{n}^{r} \ \mathrm{sin} \ n \ {\xi }_{x}\right]\right\} = 0 $ (54)

    After comparing the coefficient of generalized Fourier bases, we have

    $ \left\{2η0(al0ar0)=0,n=1, 2, 3...1n(1+e2nη0)(alnarn)=0, n=1, 2, 3...1n(1+e2nη0)(blnbrn)=0, n=1, 2, 3...
    \right. $
    (55)

    In order to solve the coefficients $ {a}_{0}^{l} $ and $ {a}_{0}^{r} $, we need to define a discriminant as shown below:

    $ {D}_{b}(c, {\eta }_{0}) = 2 \ \mathrm{ln} \ (2c)-{\eta }_{0}+{\sum }_{n = 1}^{\infty }\frac{1}{n}\frac{4{e}^{-2n{\eta }_{0}}}{\left(1+{e}^{-2n{\eta }_{0}}\right)} . $ (56)

    For the case of two cylinders, Rumely [23] employed the complex variable to derive the logarithmic capacity, as shown in Table 1. Since the logarithmic capacity is not a closed-form or an exact formula, the postulate in Eq (28) for the case of two cylinders could not be analytically verified at present. If $ {D}_{b}\ne 0 $, the geometry of the problem is an ordinary scale, Eqs (53) and (55) yield the coefficients as shown below:

    $ {a}_{0}^{l} = {a}_{0}^{r} = \frac{v}{{D}_{b}(c, {\eta }_{0})} {a}_{n}^{l} = {a}_{n}^{r} = \frac{2{e}^{-n{\eta }_{0}}}{\left(1+{e}^{-2n{\eta }_{0}}\right)}{a}_{0}^{l}, n = \mathrm{1, 2}, 3... {b}_{n}^{l} = {b}_{n}^{r} = 0, n = \mathrm{1, 2}, 3... $ (57)

    Substituting Eqs (47b), (47f), (48b), (48f), (44) and the obtained unknown boundary densities into Eq (5) for the field solution of $ {\eta }_{x} < 0 $, we have the unique solution

    $ u\left(\mathbf{x}\right) = \frac{v}{{D}_{b}(c, {\eta }_{0})}\left(\left(2 \ \mathrm{ln} \ (2c)+{\eta }_{x}+{\sum }_{n = 1}^{\infty }\frac{4}{n}\frac{{e}^{-2n{\eta }_{0}}}{1+{e}^{-2n{\eta }_{0}}}\right)-{\sum }_{n = 1}^{\infty }\frac{2}{n}\left({e}^{-n{\eta }_{0}}\frac{{e}^{n{\eta }_{x}}+{e}^{-n{\eta }_{x}}}{{e}^{n{\eta }_{0}}+{e}^{-n{\eta }_{0}}}-\\ {e}^{n{\eta }_{x}}\right) \ \mathrm{cos} \ (n{\xi }_{x})\right), -{\eta }_{0}\le {\eta }_{x} < 0. $ (58)

    Similar substitution of Eqs (47c), (47e), (48c), (48e), (44) and the obtained unknown densities into Eq (5), the field solution for $ {\eta }_{x}\ge 0 $ yields

    $ u\left(\mathbf{x}\right) = \frac{v}{{D}_{b}(c, {\eta }_{0})}\left(\left(2 \ \mathrm{ln} \ (2c)-{\eta }_{x}+{\sum }_{n = 1}^{\infty }\frac{4}{n}\frac{{e}^{-2n{\eta }_{0}}}{1+{e}^{-2n{\eta }_{0}}}\right)-{\sum }_{n = 1}^{\infty }\frac{2}{n}\left({e}^{-n{\eta }_{0}}\frac{{e}^{n{\eta }_{x}}+{e}^{-n{\eta }_{x}}}{{e}^{n{\eta }_{0}}+{e}^{-n{\eta }_{0}}}-\\ {e}^{-n{\eta }_{x}}\right) \ \mathrm{cos} \ (n{\xi }_{x})\right), {\eta }_{0}\ge {\eta }_{x}\ge 0. $ (59)

    It is found that Eqs (58) and (59) show the symmetry solution. All potentials are shown in Figure 1(c). This solution will be compared and discussed with that of Darevski [2] later.

    If $ {D}_{b}(c, {\eta }_{0}) = 0 $, a degenerate scale occurs. When the constant potential $ v\ne 0 $, it yields no solution. When the constant potential $ v = 0 $, it yields infinite solutions. Equations (53) and (55) yield the coefficients as shown below:

    $ {a}_{0}^{r} = {a}_{0}^{l} = k, {a}_{n}^{l} = {a}_{n}^{r} = \frac{4{e}^{-n{\eta }_{0}}}{(1+{e}^{-2n{\eta }_{0}})}k, n = \mathrm{1, 2}, 3... {b}_{n}^{l} = {b}_{n}^{r} = 0, n = \mathrm{1, 2}, 3... $ (60)

    where k is an arbitrary constant. In case of a degenerate scale, $ {\eta }_{0} $ becomes

    $ {\eta }_{0} = 2 \ \mathrm{ln} \ (2c)+ \sum \limits _{n = 1}^{\infty }\frac{1}{n}\frac{4{e}^{-2n{\eta }_{0}}}{\left(1+{e}^{-2n{\eta }_{0}}\right)} $ (61)

    Substituting Eqs (47b), (47f), (48b), (48f), (44) and the obtained boundary unknown densities into Eq (5) for the field solution of $ {\eta }_{x} < 0 $, we have the infinite solution,

    $ u\left(\mathbf{x}\right) = \left(\left({\eta }_{0}+ \ {\eta }_{x}\right)-\sum \limits _{n = 1}^{\infty }\frac{2}{n}\left({e}^{-n{\eta }_{0}}\frac{{e}^{n{\eta }_{x}}+{e}^{-n{\eta }_{x}}}{{e}^{n{\eta }_{0}}+{e}^{-n{\eta }_{0}}}-{e}^{n{\eta }_{x}}\right) \ \mathrm{cos} \ (n{\xi }_{x})\right)k, \ -{\eta }_{0}\le {\eta }_{x} < 0. $ (62)

    Similar substitution of Eqs (47c), (47e), (48c), (48e), (44) and the obtained boundary unknown densities into Eq (5), the field solution for $ {\eta }_{x}\ge 0 $ yields the infinite solution,

    $ u\left(\mathbf{x}\right) = \left(\left({\eta }_{0}-{\eta }_{x}\right)-\sum \limits _{n = 1}^{\infty }\frac{2}{n}\left({e}^{-n{\eta }_{0}}\frac{{e}^{n{\eta }_{x}}+{e}^{-n{\eta }_{x}}}{{e}^{n{\eta }_{0}}+{e}^{-n{\eta }_{0}}}-{e}^{-n{\eta }_{x}}\right) \ \mathrm{cos} \ (n{\xi }_{x})\right)k, \ {\eta }_{0}\ge {\eta }_{x}\ge 0. $ (63)

    Equations (62) and (63) also indicate symmetry.

    Similarly, we consider the anti-symmetry problem. The coefficient of generalized Fourier bases in Eqs (45) and (49) satisfy

    $ \left\{(2 ln (2c)η0+4n=1e2nη0n(1+e2nη0))(al0+ar0)=0,1n(1+e2nη0)(aln+arn)+4enη0(al0+ar0)=0, n=1, 2, 3...1n(1+e2nη0)(bln+brn)=0, n=1, 2, 3...
    \right. $
    (64)

    and

    $ \left\{2η0(al0ar0)=4v,1n(1+e2nη0)(alnarn)=0, n=1, 2, 3...,1n(1+e2nη0)(blnbrn)=0, n=1, 2, 3...
    \right. $
    (65)

    We also find the discriminant, $ {D}_{b}(c, {\eta }_{0}) $ in Eq (64). If $ {D}_{b}(c, {\eta }_{0})\ne 0 $, the geometry of the problem is an ordinary scale. Equations (64) and (65) yield the coefficients as shown below:

    $ {a}_{0}^{l} = -{a}_{0}^{r} = \frac{v}{{\eta }_{0}} {a}_{n}^{l} = {a}_{n}^{r} = 0, n = \mathrm{1, 2}, 3... {b}_{n}^{l} = {b}_{n}^{r} = 0, n = \mathrm{1, 2}, 3... $ (66)

    Substituting Eqs (47b), (47f), (48b), (48f), (45) and the obtained boundary unknown densities into Eq (5) for the field solution of $ {\eta }_{x} < 0 $, we have

    $ u\left(\mathbf{x}\right) = v\frac{{\eta }_{x}}{{\eta }_{0}}, \ {\eta }_{x}\text{ < 0}. $ (67)

    Substituting Eqs (47c), (47e), (48c), (48e), (45) and the obtained unknown densities into Eq (5) for the field solution of $ {\eta }_{x}\ge 0 $, we also have

    $ u\left(\mathbf{x}\right) = v\frac{{\eta }_{x}}{{\eta }_{0}}, \ {\eta }_{x}\ge 0. $ (68)

    All potentials are shown in Figure 1(d). The solution in Eq (68) matches well with that of Lebedev et al. [8]. From the viewpoint of the MFS, this solution is the simplest one since only two sources with opposite strengths are required to locate the two foci.

    If $ {D}_{b}(c, {\eta }_{0}) = 0 $, a degenerate scale occurs. Fortunately, it doesn't result in no solution whether v is equal to zero or not as shown in the boundary condition of Eq (45). Equations (64) and (65) yield the coefficients as shown below:

    $ {a}_{0}^{l}+{a}_{0}^{r} = 2k, {a}_{n}^{l} = {a}_{n}^{r} = \frac{4{e}^{-n{\eta }_{0}}}{(1+{e}^{-2n{\eta }_{0}})}k, n = \mathrm{1, 2}, 3... {b}_{n}^{l} = {b}_{n}^{r} = 0, n = \mathrm{1, 2}, 3... $ (69)

    where k is an arbitrary constant. For a degenerate scale case, $ {\eta }_{0} $ satisfies $ {D}_{b}(c, {\eta }_{0}) = 0 $, i.e.

    $ {\eta }_{0} = 2 \ \mathrm{ln} \ (2c)+{\sum }_{n = 1}^{\infty }\frac{1}{n}\frac{4{e}^{-2n{\eta }_{0}}}{\left(1+{e}^{-2n{\eta }_{0}}\right)} $ (70)

    Substituting Eqs (47b), (47f), (48b), (48f), (45) and the obtained boundary unknown densities into Eq (5) for the field solution of $ {\eta }_{x} < 0 $, we have

    $ u\left(\mathbf{x}\right) = \frac{v}{{\eta }_{0}}{\eta }_{x}+k\left( \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ \mathrm{cos} \ {\xi }_{x}\right)-{\eta }_{0}+\\ 2{\sum }_{n = 1}^{\infty }\frac{1}{n}{e}^{-n{\eta }_{0}}\frac{ \ \mathrm{cosh} \ (n{\eta }_{x})}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cos} \ (n{\xi }_{x})\right), \ -{\eta }_{0}\le {\eta }_{x}\le 0. $ (71)

    Similarly substituting Eqs (47c), (47e), (48c), (48e), (45) and the obtained unknown densities into Eq (5), we obtain the field solution

    $ u\left(\mathbf{x}\right) = \frac{v}{{\eta }_{0}}{\eta }_{x}+k\left( {ln}\left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ \mathrm{cos} \ {\xi }_{x}\right)-{\eta }_{0}+\\ 2{\sum }_{n = 1}^{\infty }\frac{1}{n}\frac{{e}^{-n{\eta }_{0}}}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cosh} \ (n{\eta }_{x}\left) \ \mathrm{cos} \ (n{\xi }_{x}\right)\right), \ {\eta }_{0}\ge {\eta }_{x}\text{ > 0}. $ (72)

    Equations (71) and (72) destroy the anti-symmetry due to the second part of k. To obey the anti-symmetry solution, k should be zero. In other words, this k part in the solution of Eqs (71) and (72) also disobey the bounded potential at infinity. This solution for a free constant, k, will be compared with that of Lekner [4] later.

    According to the solution of Lekner [4], the general solution space of the symmetry problem in Eq (44) is expressed as follows:

    $ u\left(\mathbf{x}\right) = v+\lambda {u}_{d}\left(\mathbf{x}\right) $ (73)

    where

    $ {u}_{d}\left(\mathbf{x}\right) = \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ {cos} \ {\xi }_{x}\right)-{\eta }_{0}+{\sum }_{n = 1}^{\infty }\frac{2}{n}{e}^{-n{\eta }_{0}}\frac{ \ \mathrm{cosh} \ (n{\eta }_{x})}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cos} \ (n{\xi }_{x}) . $ (74)

    By using the identity equation,

    $ \ \mathrm{ln} \ \left( \ \mathrm{cosh} \ {\eta }_{x}- \ \mathrm{cos} \ {\xi }_{x}\right) = {\eta }_{x}-{\sum }_{m = 1}^{\infty }\frac{2}{m}{e}^{-m{\eta }_{x}} \ \mathrm{cos} \ m \ {\xi }_{x}- \ \mathrm{ln} \ 2 , $ (75)

    the solution by using the direct BIE of Eq (59) is rewritten as

    $ u\left(\mathbf{x}\right) = \frac{v}{{D}_{b}\left(c, {\eta }_{0}\right)}\left( \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{\boldsymbol{x}}-2 \ \mathrm{cos} \ {\xi }_{\boldsymbol{x}}\right)+{\sum }_{n = 1}^{\infty }\frac{2}{n}{e}^{-n{\eta }_{0}}\frac{ \ \mathrm{cosh} \ (n{\eta }_{x})}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cos} \ (n{\xi }_{x})-\\ \left(2 \ \mathrm{ln} \ (2c)+{\sum }_{n = 1}^{\infty }\frac{1}{n}\frac{4{e}^{-2n{\eta }_{0}}}{1+{e}^{-2n{\eta }_{0}}}\right)\right), {\eta }_{0}\ge {\eta }_{x}\text{ > 0}. $ (76)

    Equation (59) is the special case of Eq (73), if $ \lambda = \frac{-v}{{D}_{b}(c, {\eta }_{0})} $. When the size of the boundary is a degenerate scale, i.e., $ {D}_{b}(c, {\eta }_{0}) = 0 $, the BIE solution does not exist if $ v\ne 0 $. If $ v = 0 $, the constant term in Eq (57), $ {a}_{0}^{r} $, is a free constant. The electrostatic potential is obtained by

    $ u\left(\mathbf{x}\right) \ = -\left( \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ \mathrm{cos} \ {\xi }_{x}\right)-{\eta }_{0}+{\sum }_{n = 1}^{\infty }\frac{2}{n}{e}^{-n{\eta }_{0}}\frac{ \ \mathrm{cosh} \ (n{\eta }_{x})}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cos} \ (n{\xi }_{x})\right){a}_{0}^{r}, \ {\eta }_{0}\ge\\ {\eta }_{x}\text{ > 0} , $ (77)

    and Eq (73) can be reduced to

    $ u\left(\mathbf{x}\right) = \lambda {u}_{d}\left(\mathbf{x}\right) , $ (78)

    since v is zero. It is easy to find that $ {a}_{0}^{r} $ and $ \lambda $ are equivalent.

    Similarly, the general solution space of the anti-symmetry problem in Eq (45) is expressed as follows:

    $ u\left(\mathbf{x}\right) = v\frac{{\eta }_{x}}{{\eta }_{0}}+\lambda {u}_{d}\left(\mathbf{x}\right) $ (79)

    where

    $ {u}_{d}\left(\mathbf{x}\right) = \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ \mathrm{cos} \ {\xi }_{x}\right)-{\eta }_{0}+{\sum }_{n = 1}^{\infty }\frac{2}{n}{e}^{-n{\eta }_{0}}\frac{ \ \mathrm{cosh} \ (n{\eta }_{x})}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cos} \ (n{\xi }_{x}) . $ (80)

    Lebedev et al. [8] considered the condition at the infinity, $ u\left(\boldsymbol{x}\right) = 0, \boldsymbol{x}\to \infty $, the solution of Eq (79) would reduce to only

    $ u\left(\mathbf{x}\right) = v\frac{{\eta }_{x}}{{\eta }_{0}} . $ (81)

    It is the reason why the solution of Eq (68) by using the BIEM is a special case of Eq (79) for $ \lambda = 0 $. When the size of the boundary is a degenerate scale, i.e., $ {D}_{b}(c, {\eta }_{0}) = 0 $, it yields infinite solutions. Since the sum of constant terms, $ {a}_{0}^{r} $ and $ {a}_{0}^{l} $, in Eq (69) is a free constant, $ k $, the electrostatic potential yields

    $ u\left(\mathbf{x}\right) = v\frac{{\eta }_{x}}{{\eta }_{0}}-\left( \ \mathrm{ln} \ \left(2 \ \mathrm{cosh} \ {\eta }_{x}-2 \ \mathrm{cos} \ {\xi }_{x}\right)-{\eta }_{0}+\\ 2{\sum }_{n = 1}^{\infty }\frac{1}{n}\frac{{e}^{-n{\eta }_{0}}}{ \ \mathrm{cosh} \ (n{\eta }_{0})} \ \mathrm{cosh} \ (n{\eta }_{x}\left) \ \mathrm{cos} \ (n{\xi }_{x}\right)\right)k, \ {\eta }_{0}\ge {\eta }_{x}\text{ > 0}. $ (82)

    It is easy to find that $ k $ and $ \lambda $ are equivalent. To sum up, the free constant, $ \lambda $ and $ {u}_{d}\left(\mathbf{x}\right) $ in the general solution by Lekner [4] are similar to the constant term in the boundary potential and the obtained BIE solution for the degenerate scale by Chen et al. [9], respectively. The obtained BIE solution for the degenerate case yields nontrivial boundary flux even though the boundary potential is trivial. The generalized potential and the available solutions by using the BIEM for the problem containing two cylinders are compared with each other in Table 3.

    Table 3.  Comparison of the general solution and the BIE solution for the double cylinder subject to the symmetrical or anti-symmetrical condition.

     | Show Table
    DownLoad: CSV

    This paper investigates the solution space for the electrostatics of two cylinders using the BIEM. Both the symmetric and anti-symmetric cases are considered. Flux equilibrium on the cylindrical boundaries and the asymptotic behavior at infinity is also examined. Moreover, on the base of the Fredholm alternative theorem, the relation of unique solution and the degenerate scale in the BIEM is linked. The logarithmic capacity and the discriminant are also linked by using an exponential relation. Besides, the degenerate scale is also related. Not only two cylinders but also a single one (circle or ellipse) are considered. Finally, the results are compared with those derived by other researchers. Linkage and agreement are made.

    The authors wish to thank the financial supports from the National Science and Technology Council, Taiwan under Grant No. MOST 111-2221-E-019-009-MY3 for National Taiwan Ocean University.

    The authors declare there is no conflict of interest.


    Acknowledgments



    This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-05029).

    Conflict of interest



    The author declares no conflicts of interest.

    [1] Obeso J, Rodriguez-Oroz M, Goetz C, et al. (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16: 653–661. doi: 10.1038/nm.2165
    [2] Musgrove R, Helwig M, Bae E, et al. (2019) Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 130: 3738–3753.
    [3] Lill C (2016) Genetics of Parkinson's disease. Mol Cell Probes 30: 386–396. doi: 10.1016/j.mcp.2016.11.001
    [4] Reale M, Iarlori C, Thomas A, et al. (2009) Peripheral cytokines profile in Parkinson's disease. Brain Behav Immun 23: 55–63. doi: 10.1016/j.bbi.2008.07.003
    [5] Dias V, Junn E, Mouradian M (2013) The role of oxidative stress in Parkinson's disease. J Parkinsons Dis 3: 461–491. doi: 10.3233/JPD-130230
    [6] Taylor J, Main B, Crack P (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int 62: 803–819. doi: 10.1016/j.neuint.2012.12.016
    [7] Kalia L, Lang A (2015) Parkinson's disease. Lancet 386 :896–912.
    [8] Valdes P, Schneider B (2016) Gene therapy: A promising approach for neuroprotection in Parkinson's disease? Front Neuroanat 10: 123.
    [9] Ferrer I, Lopez-Gonzalez I, Carmona M, et al. (2012) Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 46: 508–526. doi: 10.1016/j.nbd.2011.10.019
    [10] Scherzer C, Grass J, Liao Z, et al. (2008) GATA transcription factors directly regulate the Parkinson's disease-linked gene α-synuclein. Proc Natl Acad Sci USA 105: 10907–10912. doi: 10.1073/pnas.0802437105
    [11] Miller D, O'Callaghan J (2015) Biomarkers of Parkinson's disease: Present and future. Metabolism 64: S40–S46. doi: 10.1016/j.metabol.2014.10.030
    [12] Harraz M, Dawson T, Dawson V (2011) MicroRNAs in Parkinson's disease. J Chem Neuroanat 42: 127–130. doi: 10.1016/j.jchemneu.2011.01.005
    [13] Gasser T (2009) Genomic and proteomic biomarkers for Parkinson disease. Neurology 72: 27–31.
    [14] Haque M, Thomas K, D'Souza C, et al. (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105: 1716–1721. doi: 10.1073/pnas.0705363105
    [15] Valente E, Bentivoglio A, Dixon P, et al. (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35–p36. Am J Hum Genet 68: 895–900. doi: 10.1086/319522
    [16] Kitada T, Asakawa S, Hattori N, et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608. doi: 10.1038/33416
    [17] McKeith I (2004) Dementia with Lewy bodies. Dialogues Clin Neurosci 3: 333–341.
    [18] Farrer M (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306–318.
    [19] Funayama M, Hasegawa K, Kowa H, et al. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann Neurol 51: 296–301. doi: 10.1002/ana.10113
    [20] Mencacci N, Isaias I, Reich M, et al. (2014) Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain 137: 2480–2492. doi: 10.1093/brain/awu179
    [21] Olgiati S, Quadri M, Fang M, et al. (2016) DNAJC6 mutations associated with early-onset Parkinson's disease. Ann Neurol 79: 244–256. doi: 10.1002/ana.24553
    [22] Jiang F, Wu Q, Sun S, et al. (2019) Identification of potential diagnostic biomarkers for Parkinson's disease. FEBS Open Bio 9: 1460–1468. doi: 10.1002/2211-5463.12687
    [23] Wang Q, Zhang Y, Wang M, et al. (2019) The landscape of multiscale transcriptomic networks and key regulators in Parkinson's disease. Nat Commun 10: 5234. doi: 10.1038/s41467-019-13144-y
    [24] Chi J, Xie Q, Jia J, et al. (2018) Integrated analysis and identification of novel biomarkers in Parkinson's disease. Front Aging Neurosci 10: 178. doi: 10.3389/fnagi.2018.00178
    [25] Kong P, Lei P, Zhang S, et al. (2018) Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson's disease. Neurosci Lett 662: 51–58. doi: 10.1016/j.neulet.2017.09.051
    [26] Wang C, Chen L, Yang Y, et al. (2019) Identification of potential blood biomarkers for Parkinson's disease by gene expression and DNA methylation data integration analysis. Clin Epigenetics 11: 24. doi: 10.1186/s13148-019-0621-5
    [27] George G, Singh S, Lokappa S, et al. (2019). Gene co-expression network analysis for identifying genetic markers in Parkinson's disease-a three-way comparative approach. Genomics 111: 819–830. doi: 10.1016/j.ygeno.2018.05.005
    [28] Kim J, Inoue K, Ishii J, et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317: 1220–1224. doi: 10.1126/science.1140481
    [29] Wang G, van der Walt J, Mayhew G, et al. (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82: 283–289. doi: 10.1016/j.ajhg.2007.09.021
    [30] Mouradian M (2012) MicroRNAs in Parkinson's disease. Neurobiol Dis 46: 279–284. doi: 10.1016/j.nbd.2011.12.046
    [31] Junn E, Lee K, Jeong B, et al. (2009) Mouradian Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106: 13052–13057. doi: 10.1073/pnas.0906277106
    [32] Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. Biol Chem 285: 12726–12734. doi: 10.1074/jbc.M109.086827
    [33] van der Walt J, Noureddine M, Kittappa R, et al. (2004) Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 74: 1121–1127. doi: 10.1086/421052
    [34] Schulz J, Takousis P, Wohlers I, et al. (2019) Meta‐analyses identify differentially expressed microRNAs in Parkinson's disease. Ann Neurol 85: 835–851. doi: 10.1002/ana.25490
    [35] Uwatoko H, Hama Y, Iwata I, et al. (2019) Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson's disease. Mol Brain 12: 49. doi: 10.1186/s13041-019-0471-2
    [36] Chen L, Yang J, Lü J, et al. (2018) Identification of aberrant circulating miRNAs in Parkinson's disease plasma samples. Brain Behav 8: e00941. doi: 10.1002/brb3.941
    [37] Goh S, Chao Y, Dheen S, et al. (2019) Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 20: pii: E5649.
    [38] Peeraully T, Tan E (2012) Genetic variants in sporadic Parkinson's disease: East vs West. Parkinsonism Relat Disord 18: S63–S65.
    [39] Chikina M, Gerald C, Li X, et al. (2015) Low-variance RNAs identify Parkinson's disease molecular signature in blood. Mov Disord 30: 813–821. doi: 10.1002/mds.26205
    [40] Qian Y, Yang X, Xu S, et al. (2018) Detection of microbial 16S rRNA gene in the blood of patients with Parkinson's disease. Front Aging Neurosci 10: 156. doi: 10.3389/fnagi.2018.00156
    [41] Li Y, Wong G, Humphrey J, et al. (2019) Prioritizing Parkinson's disease genes using population-scale transcriptomic data. Nat Commun 10: 994. doi: 10.1038/s41467-019-08912-9
    [42] Chang D, Nalls M, Hallgrímsdóttir I, et al. (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet 49: 1511–1516. doi: 10.1038/ng.3955
    [43] Garnier S, Truong V, Brocheton J, et al. (2013) Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes. PLoS Genet 9: e1003240. doi: 10.1371/journal.pgen.1003240
    [44] Sekiyama K, Takamatsu Y, Waragai M, et al. (2014) Role of genomics in translational research for Parkinson's disease. Biochem Biophys Res Commun 452: 226–235. doi: 10.1016/j.bbrc.2014.06.028
    [45] Servant N, Roméjon J, Gestraud P, et al. (2014) Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet 5: 152.
    [46] Dong N, Zhang X, Liu Q (2017) Identification of therapeutic targets for Parkinson's disease via bioinformatics analysis. Mol Med Rep 15: 731–735. doi: 10.3892/mmr.2016.6044
    [47] Al-Ouran R, Wan Y, Mangleburg C, et al. (2019) A portal to visualize transcriptome profiles in mouse models of neurological disorders. Genes (Basel)10: pii: E759.
    [48] Fu L, Fu K (2015) Analysis of Parkinson's disease pathophysiology using an integrated genomics-bioinformatics approach. Pathophysiology 22: 15–29. doi: 10.1016/j.pathophys.2014.10.002
    [49] Mariani E, Frabetti F, Tarozzi A, et al. (2016) Meta-Analysis of Parkinson's Disease transcriptome data using TRAM software: Whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One 11: e0161567. doi: 10.1371/journal.pone.0161567
    [50] Glaab E (2018) Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 373: 91–109. doi: 10.1007/s00441-017-2734-5
    [51] Lottaz C, Toedling J, Spang R (2007) Annotation-based distance measures for patient subgroup discovery in clinical microarray studies. Bioinformatics 23: 2256–2264. doi: 10.1093/bioinformatics/btm322
    [52] Hu Y, Pan Z, Hu Y, et al. (2017) Network and pathway-based analyses of genes associated with Parkinson's disease. Mol Neurobiol 54: 4452–4465. doi: 10.1007/s12035-016-9998-8
    [53] Cheng HC, Ulane C, Burke R (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67: 715–725. doi: 10.1002/ana.21995
    [54] Palfi S, Gurruchaga J, Ralph G, et al. (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: A dose escalation, open-label, phase 1/2 trial. Lancet 383: 1138–1146. doi: 10.1016/S0140-6736(13)61939-X
    [55] Diao H, Li X, Hu S, et al. (2012) Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease. PLoS One 7: e52319. doi: 10.1371/journal.pone.0052319
    [56] Xu C, Chen J, Xu X, et al. (2018) Potential therapeutic drugs for Parkinson's disease based on data mining and bioinformatics analysis. Parkinsons Dis 2018: 3464578.
    [57] Airavaara M, Voutilainen MH, Wang Y, et al. (2012) Neurorestoration. Parkinsonism Relat Disord 18: S143–146.
    [58] Francardo V, Schmitz Y, Sulzer D, et al. (2017) Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 298: 137–147. doi: 10.1016/j.expneurol.2017.10.001
    [59] Nayak L, Henchcliffe C (2008) Rasagiline in treatment of Parkinson's disease. Neuropsychiatr Dis Treat 4: 23–32.
    [60] Marsili L, Marconi R, Colosimo C (2017) Treatment strategies in early Parkinson's disease. Int Rev Neurobiol 132: 345–360. doi: 10.1016/bs.irn.2017.01.002
    [61] Magyar K, Stocchi F, Fossati C, et al. (2015) Rasagiline for the treatment of Parkinson's disease: an update. Expert Opin Pharmacother 16: 2231–2241. doi: 10.1517/14656566.2015.1086748
    [62] McCormack P (2014) Rasagiline: A review of its use in the treatment of idiopathic Parkinson's disease. CNS Drugs 28: 1083–1097. doi: 10.1007/s40263-014-0206-y
    [63] Alborghetti M, Nicoletti F (2019) Different generations of Type-B monoamine oxidase inhibitors in Parkinson's disease: From bench to bedside. Curr Neuropharmacol 17: 861–873. doi: 10.2174/1570159X16666180830100754
    [64] Bette S, Shpiner D, Singer C, et al. (2018) Safinamide in the management of patients with Parkinson's disease not stabilized on levodopa: A review of the current clinical evidence. Ther Clin Risk Manag 14: 1737–1745. doi: 10.2147/TCRM.S139545
    [65] Leegwater-Kim J, Waters C (2006) Tolcapone in the management of Parkinson's disease. Expert Opin Pharmacother 7: 2263–2270. doi: 10.1517/14656566.7.16.2263
    [66] Jiang D, Wang H, Wang Y, et al. (2019) Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with Parkinson's disease: A systematic review. Neurol Sci, 1–9.
    [67] Avila A, Caballol N, Martín-Baranera M, et al. (2019) Rasagiline and safinamide as a dopamine-sparing therapy for Parkinson's disease. Acta Neurol Scand 140: 23–31. doi: 10.1111/ane.13096
  • This article has been cited by:

    1. Jeng-Tzong Chen, Wei-Chen Tai, Ying-Te Lee, Shing-Kai Kao, An analytical Green’s function for Laplace operator in an infinite plane with two circular holes using degenerate kernels, 2023, 146, 08939659, 108774, 10.1016/j.aml.2023.108774
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6617) PDF downloads(741) Cited by(18)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog