
In this paper, we consider a system of reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with thickness of order $ε$ and a periodic heterogeneous structure. The equations inside the layer depend on $ε$ and the diffusivity inside the layer on an additional parameter $γ ∈ [-1, 1]$. On the bulk-layer interface, we assume a nonlinear Neumann-transmission condition depending on the solutions on both sides of the interface. For $\epsilon \to0 $, when the thin layer reduces to an interface $Σ$ between two bulk domains, we rigorously derive macroscopic models with effective conditions across the interface $Σ$. The crucial part is to pass to the limit in the nonlinear terms, especially for the traces on the interface between the different compartments. For this purpose, we use the method of two-scale convergence for thin heterogeneous layers, and a Kolmogorov-type compactness result for Banach valued functions, applied to the unfolded sequence in the thin layer.
Citation: Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface[J]. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
[1] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[2] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[3] | Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35 |
[4] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[5] | Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017 |
[6] | Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009 |
[7] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[8] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[9] | F. R. Guarguaglini, R. Natalini . Nonlinear transmission problems for quasilinear diffusion systems. Networks and Heterogeneous Media, 2007, 2(2): 359-381. doi: 10.3934/nhm.2007.2.359 |
[10] | Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787 |
In this paper, we consider a system of reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with thickness of order $ε$ and a periodic heterogeneous structure. The equations inside the layer depend on $ε$ and the diffusivity inside the layer on an additional parameter $γ ∈ [-1, 1]$. On the bulk-layer interface, we assume a nonlinear Neumann-transmission condition depending on the solutions on both sides of the interface. For $\epsilon \to0 $, when the thin layer reduces to an interface $Σ$ between two bulk domains, we rigorously derive macroscopic models with effective conditions across the interface $Σ$. The crucial part is to pass to the limit in the nonlinear terms, especially for the traces on the interface between the different compartments. For this purpose, we use the method of two-scale convergence for thin heterogeneous layers, and a Kolmogorov-type compactness result for Banach valued functions, applied to the unfolded sequence in the thin layer.
We consider a system of reaction-diffusion equations in a domain
In the limit, the thin layer reduces to an interface
The rigorous derivation of interface conditions for multi-scale and multi-physics problems is a field that is just at the beginning. More and better analytical multi-scale tools are required to treat the arising nonlinear systems in many applications (e.g. biology, material sciences or geosciences, to mention just few of them). Our paper is one of the first steps in this process. The effective model derived here is a non-standard micro-macro strongly coupled system of nonlinear equations, involving the bulk-regions, the separating interface and the so called cell problem which takes care of the microscopic processes in the thin layer.
The derivation of effective interface conditions is based on two-scale convergence for thin heterogeneous layers, and a Kolmogorov-type compactness result for Banach valued functions, applied to the unfolded sequence in the layer. Compared to previous contributions (see [14,15] for
The investigation of processes in domains separated by thin layers with periodic microstructure can also be found in elasticity problems, see e.g., [11,13] where the heterogeneous structure is described by periodically varying constitutive properties, or [12], where two domains separated by a thin layer made of periodic vertical beams are considered. Further applications can be encountered in fluid flow through thin filters, built up by an array of obstacles, see e.g., [3]. In [17], a reactive transport model with an additional convective contribution in the thin layer and a nonlinear transmission condition of Dirichlet type at the bulk-layer interface was considered. In the latter, however, a thin homogeneous layer was considered. In [4], long and horizontally arranged inclusions, only connected in one direction, were considered for a linear reaction-diffusion problem, and a concept of two-scale convergence adapted to this special structure was introduced.
This paper is organized as follows: In Section 2, we introduce the microscopic model, and establish existence and uniqueness of a weak solution. In Section 4, we derive estimates for the microscopic solutions necessary for the derivation of strong compactness results. The averaged function is defined in Section 5 and some basic properties are established. In Section 6 the averaging operator for thin domains is defined and the commuting property of the generalized time derivative and the unfolding operator is proved. Section 7 contains our main results. First, we prove compactness results for the microscopic solutions, especially the strong convergences in the thin layer. These are then used for the derivation of macroscopic models, including the effective interface conditions. In the A, we briefly recapitulate the concepts of two-scale convergence and unfolding operator for thin domains, together with related basic results.
We consider the domain
$Ω+ϵ:=Σ×(ϵ,H),ΩMϵ:=Σ×(−ϵ,ϵ),Ω−ϵ:=Σ×(−H,−ϵ),$ |
see Figure 1. The domains
$S+ϵ:=Σ×{ϵ} and S−ϵ:=Σ×{−ϵ},$ |
hence, we have
$Ω+:=Σ×(0,H) and Ω−:=Σ×(−H,0).$ |
To describe the microscopic structure of
$Z:=Y×(−1,1) with Y:=(0,1)n−1,$ |
and denote the upper and lower boundary of
$S+:=Y×{1}=(0,1)n−1×{1} and S−:=Y×{−1}=(0,1)n−1×{−1}.$ |
The vector valued functions
$ ∂tu±i,ϵ−D±iΔu±i,ϵ=f+i(u±ϵ) in (0,T)×Ω±ϵ, $ | (1a) |
$ −D±i∇u±i,ϵ⋅ν=−h±i(u±ϵ,uMϵ) on (0,T)×S±ϵ, $ | (1b) |
$ −D±i∇u±i,ϵ⋅ν=0 on (0,T)×∂Ω±ϵ∖S±ϵ, $ | (1c) |
$ u±ϵ(0)=U±0 in Ω±ϵ, $ | (1d) |
for
$ 1ϵ∂tuMi,ϵ−ϵγ∇⋅(DMi(xϵ)∇uMi,ϵ)=1ϵgi(xϵ,uMϵ) in (0,T)×ΩMϵ, $ | (1e) |
$ −ϵγDMi(⋅ϵ)∇uMi,ϵ⋅ν=−hM,±i(ˉxϵ,uMϵ,u±ϵ) on (0,T)×S±ϵ, $ | (1f) |
$ −ϵγDMi(⋅ϵ)∇uMi,ϵ⋅ν=0 on (0,T)×∂ΩMϵ∖S±ϵ, $ | (1g) |
$ uMϵ(0)=UM0(ˉ⋅,⋅xnϵ) in ΩMϵ, $ | (1h) |
for
Thin heterogeneous layers occur in many applications, e.g., biology and engineering, and for every specific situation appropriate transmission conditions between the layer domain and the bulk regions are required. In previous contributions (see [14,15] for
Assumptions on the data:
A1) For
A2) The function
$|f±i(z)|≤C(1+|z|) for all z∈Rm.$ |
A3) The function
$|gi(ˉy,yn,z)|≤C(1+|z|)for all (ˉy,yn,z)∈¯Y×[−1,1]×Rm.$ |
We shortly write
A4) The function
$|h±(z±,zM)|≤C(1+|z±|+|zM|)∀ (z±,zM)∈Rm×Rm.$ |
A5) The function
$|hM,±(ˉy,zM,z±)|≤C(1+|z±|+|zM|)∀ (ˉy,zM,z±)∈¯Y×Rm×Rm.$ |
A6) For the initial functions we assume
In the following, we denote for an arbitrary open set
Definition 2.1. We call
$u±ϵ∈L2((0,T),H1(Ω±ϵ))m∩H1((0,T),H1(Ω±ϵ)′)m,uMϵ∈L2((0,T),H1(ΩMϵ))m∩H1((0,T),H1(ΩMϵ)′)m,$ |
and for all test-functions
$ ⟨∂tu±i,ϵ,ϕ±⟩Ω±ϵ+D±i(∇u±i,ϵ,∇ϕ±)Ω±ϵ=(f±i(u±ϵ),ϕ±)Ω±ϵ+(h±i(u±ϵ,uMϵ),ϕ±)S±ϵ,1ϵ⟨∂tuMi,ϵ,ϕM⟩ΩMϵ+ϵγ(DMi(⋅ϵ)∇uMi,ϵ,∇ϕM)ΩMϵ=1ϵ(gi(⋅ϵ,uMϵ),ϕM)ΩMϵ+(hM,+i(⋅ˉxϵ,uMϵ,u+ϵ),ϕM)S+ϵ+(hM,−i(⋅ˉxϵ,uMϵ,u−ϵ),ϕM)S−ϵ, $ | (2) |
together with the initial conditions (1d) and (1h).
First of all, we establish the existence of a unique solution using a fix-point argument. The idea is standard, therefore we only give a short sketch of the proof.
Proposition 1. For every
Proof. Uniqueness follows by standard energy estimates. For the existence, we use Schäfer's fixed point theorem on the space
$X:=X+×XM×X−$ |
with
$L2((0,T),H1(Ω∗ϵ))∩H1((0,T),H1(Ω∗ϵ)′)↪L2((0,T),Hβ(Ω∗ϵ))$ |
and similar estimates as in Lemma 4.2 below.
Our aim is to derive macroscopic approximations for the microscopic solutions
In this section, we point out main steps in this process, and indicate the challenging aspects together with our original contributions. Eventually, we present the macroscopic models (which differ for different values of the parameter
To pass to the asymptotic limit for
$ \|v_\epsilon\|_{H_{\epsilon, \gamma}}^2: = \frac{1}{\epsilon}\|v_\epsilon\|^2_{L^2(\Omega_\epsilon^M)} + \epsilon^{\gamma} \big\|\nabla v_\epsilon\big\|^2_{L^2(\Omega_\epsilon^M)}. $ | (3) |
on
Our next step is to prove compactness results for the microscopic solutions, especially in the thin layer. We treat differently the cases
$ˉuϵ(t,ˉx):=12ϵ∫ϵ−ϵuϵ(t,ˉx,xn)dxn.$ |
In Section 5, we provide estimates for the averaged function in thin domains and estimate the difference between the averaged function and the microscopic solution
In the critical case
Using the results from the previous sections, in Section 7 we give the proofs for our main results: The convergences of the microscopic solutions, see Theorem 7.1, 7.3, and 7.5, as well as the macroscopic models. The latter consist of equations in the bulk regions
Theorem 3.1. Let
$u±0∈L2((0,T),H1(Ω±))m∩H1((0,T),H1(Ω±)′)m,uM0∈L2((0,T),H1(Σ))m∩H1((0,T),H1(Σ)′)m,$ |
and
$∂tu±i,0−D±iΔu±i,0=f±i(u±0)in(0,T)×Ω±,−D±i∇u±i,0⋅ν=0on(0,T)×∂Ω±∖Σ,−D±i∇u±i,0⋅ν=−h±i(u±0,uM0)on(0,T)×Σ,u±0(t)=U±0inΩ±,$ |
for
$|Z|∂tuMi,0−∇ˉx⋅(DM,∗i∇ˉxuMi,0)=∫Zgi(y,uM0(⋅t,⋅ˉx))dy+∑α∈{±}∫YhM,αi(ˉy,uM0(⋅t,⋅ˉx),uα0(⋅t,⋅ˉx,0))dˉyin(0,T)×Σ,−DMi∇yuMi,0⋅ν=0on(0,T)×∂Σ,uM0(0,⋅ˉx)=∫ZUM0(⋅ˉx,yn)dyinΣ,$ |
where the homogenized diffusion matrix
$(DM,∗i)kl=∫ZDMi(y)(∇wi,k+ek)⋅(∇wi,l+el)dy,$ |
and the
$ \label{Zellproblem} −∇⋅(DMi(∇wi,j+ej))=0inZ,−DMi(∇wi,j+ej)⋅ν=0onS+∪S−,wi,jisY−periodicwith∫Zwi,jdy=0. $ | (4) |
Theorem 3.2. For
$u±0∈L2((0,T),H1(Ω±))m∩H1((0,T),H1(Ω±)′)m,uM0∈H1((0,T),L2(Σ))m,$ |
and
$∂tu±i,0−D±iΔu±i,0=f±i(u±0)in(0,T)×Ω±,−D±i∇u±i,0⋅ν=0on(0,T)×∂Ω±∖Σ,−D±i∇u±i,0⋅ν=−h±i(u±0,uM0)on(0,T)×Σ,u±0(0)=U±0inΩ±,$ |
for
$|Z|∂tuMi,0=∫Zgi(y,uM0(⋅t,⋅ˉx))dy+∑α∈{±}∫YhM,αi(ˉy,uM0(⋅t,⋅ˉx),uα0(⋅t,⋅ˉx,0))dˉyin(0,T)×Σ,uM0(0,⋅ˉx)=∫1−1UM0(⋅ˉx,yn)dyninΣ.$ |
Theorem 3.3. Let
$u±0∈L2((0,T),H1(Ω±))m∩H1((0,T),H1(Ω±)′)m,uM0∈L2((0,T),L2(Σ,Hper))m∩H1((0,T),L2(Σ,Hper)′)m,$ |
and
$∂tu±i,0−D±iΔu±i,0=f±i(u±0)in(0,T)×Ω±,−D±i∇u±i,0⋅ν=0on(0,T)×∂Ω±∖Σ,−D±i∇u±i,0⋅ν=−∫Yh±i(u±0,uM0(⋅t,⋅ˉx,⋅ˉy,±1)dˉyon(0,T)×Σ,u±0(t)=U±0inΩ±,$ |
for
$∂tuMi,0−∇y⋅(DMi∇yuMi,0)=gi(⋅y,uM0)in(0,T)×Σ×Z,−DMi∇yuMi,0⋅ν=−hM,±i(⋅ˉy,uM0(⋅t,⋅ˉx,⋅ˉy,±1),u±0(⋅t,⋅ˉx,0))on(0,T)×Σ×S±,−DMi∇yuMi,0⋅ν=0on(0,T)×Σ×∂±Z,uM0(0,⋅ˉx,⋅y)=UM0(⋅ˉx,⋅yn)inΣ×Z,uM0isY−periodicwithrespecttothelastvariable.$ |
Our aim is to derive macroscopic approximations for the microscopic solutions
Throughout this paper, we will frequently use the following trace estimate for thin domains.
Lemma 4.1. For
$‖uϵ‖L2(S±ϵ)≤C(θ)√ϵ‖uϵ‖L2(ΩMϵ)+θ√ϵ‖∇uϵ‖L2(ΩMϵ),$ |
with a constant
Proof. There exists an extension
$‖˜uϵ‖L2(Rn−1×(−ϵ,ϵ))≤C∗‖uϵ‖L2(ΩMϵ),‖˜uϵ‖H1(Rn−1×(−ϵ,ϵ))≤C∗‖uϵ‖H1(ΩMϵ),$ |
with a constant
$‖uϵ‖L2(S±ϵ)≤‖˜uϵ‖L2(R×{±ϵ})≤C(θ)√ϵ‖˜uϵ‖L2(Rϵ)+θ√ϵ‖∇˜uϵ‖L2(Rϵ)≤C(θ)√ϵ‖uϵ‖L2(ΩMϵ)+θC∗√ϵ‖∇uϵ‖L2(ΩMϵ).$ |
In a first step, we obtain the following estimates:
Lemma 4.2. The solution
$ ‖u±i,ϵ‖L∞((0,T),L2(Ω±ϵ))+‖∇u±i,ϵ‖L2((0,T),L2(Ω±ϵ))≤C, $ | (5a) |
$ 1√ϵ‖uMi,ϵ‖L∞((0,T),L2(ΩMϵ))+ϵγ2‖∇uMi,ϵ‖L2((0,T),L2(ΩMϵ))≤C, $ | (5b) |
$ 1√ϵ‖∂tuMi,ϵ‖L2((0,T),H1(ΩMϵ)′)+‖∂tu±i,ϵ‖L2((0,T),H1(Ω±ϵ)′)≤C, $ | (5c) |
for
Proof. Test the variational equation (2) for
$⟨∂tu±i,ϵ,u±i,ϵ⟩Ω±ϵ+D±i‖∇u±i,ϵ‖2L2(Ω±ϵ)=(f±i(u±ϵ),u±i,ϵ)Ω±ϵ+(h±i(u±ϵ,uMϵ),u±i,ϵ)S±ϵ≤C(1+‖u±i,ϵ‖2L2(Ω±ϵ)+‖u±i,ϵ‖2L2(S±ϵ)+‖uMϵ‖2L2(S±ϵ))≤C(1+‖u±ϵ‖2L2(Ω±ϵ)+1ϵ‖uMϵ‖2L2(ΩMϵ))+δϵ‖∇uMi,ϵ‖2L2(ΩMϵ)+δ‖∇u±ϵ‖2L2(Ω±ϵ)),$ |
for an arbitrary
$1ϵ⟨∂tuMi,ϵ,uMi,ϵ⟩ΩMϵ+ϵγ(DMi(⋅ϵ)∇uMi,ϵ,∇uMi,ϵ)ΩMϵ=1ϵ(gi(⋅ϵ,uMϵ),uMi,ϵ)ΩMϵ+(hM,+i(⋅ˉxϵ,uMϵ,u+ϵ),uMi,ϵ)S+ϵ+(hM,−i(⋅ˉxϵ,uMϵ,u−ϵ),uMi,ϵ)S−ϵ≤C(1+1ϵ‖uMϵ‖2L2(ΩMϵ)+‖uMϵ‖2L2(S+ϵ∪S−ϵ)+‖u+ϵ‖2L2(S+ϵ)+‖u−ϵ‖2L2(S−ϵ))≤C(1+1ϵ‖uMϵ‖2L2(ΩMϵ)+‖u+ϵ‖2L2(Ω+ϵ)+‖u−ϵ‖2L2(Ω−ϵ))+δ(ϵ‖∇uMϵ‖2L2(ΩMϵ)+‖∇u+ϵ‖2L2(Ω+ϵ)+‖∇u−ϵ‖2L2(Ω−ϵ))$ |
for an arbitrary
$ddt(1ϵ‖uMϵ(t)‖2L2(ΩMϵ)+‖u+ϵ(t)‖2L2(Ω+ϵ)+‖u−ϵ(t)‖2L2(Ω−ϵ))+ϵγ‖∇uMϵ(t)‖2L2(ΩMϵ)+‖∇u+ϵ(t)‖2L2(Ω+ϵ)+‖∇u−ϵ(t)‖2L2(Ω−ϵ)≤C(1+1ϵ‖uMϵ(t)‖2L2(ΩMϵ)+‖u+ϵ(t)‖2L2(Ω+ϵ)+‖u−ϵ(t)‖2L2(Ω−ϵ)).$ |
Integrating with respect to time from
$1ϵ‖uMϵ(t)‖2L2(ΩMϵ)+‖u+ϵ(t)‖2L2(Ω+ϵ)+‖u−ϵ(t)‖2L2(Ω−ϵ)+ϵγ‖∇uMϵ‖2L2((0,t)×ΩMϵ)+‖∇u+ϵ‖2L2((0,t)×Ω+ϵ)+‖∇u−ϵ‖2L2((0,t)×Ω−ϵ)≤C(1+1ϵ‖uMϵ‖2L2((0,t)×ΩMϵ)+‖u+ϵ‖2L2((0,t)×Ω+ϵ)+‖u−ϵ‖2L2((0,t)×Ω−ϵ))+1ϵ‖UM0(⋅ˉx,⋅xnϵ)‖2L2(ΩMϵ)+‖U+0‖2L2(Ω+ϵ)+‖U−0‖2L2(Ω−ϵ).$ |
The assumptions for the initial conditions and Gronwall's inequality imply
$1ϵ‖uMϵ‖2L∞((0,T),L2(ΩMϵ))+‖u+ϵ‖2L∞((0,T),L2(Ω+ϵ))+‖u−ϵ‖2L∞((0,T),L2(Ω−ϵ))≤C,$ |
and together with the inequality above, we obtain the estimates for the gradients in (5a) and (5b). It remains to prove the estimates for the time derivative. Therefore we test the variational equation (2) for
$⟨∂tu±i,ϵ,v±⟩Ω±ϵ=−D±i(∇u±i,ϵ,∇v±)Ω±ϵ+(f±i(u±ϵ),v±)Ω±ϵ+(h±i(u±ϵ,uMϵ),v±)S±ϵ≤C(‖∇u±i,ϵ‖L2(Ω±ϵ)‖∇v±‖L2(Ω±ϵ)+‖v±‖L2(Ω±ϵ)+‖u±ϵ‖L2(Ω±ϵ)‖v±‖L2(Ω±ϵ)+‖v±‖L2(S±ϵ)+‖u±ϵ‖L2(S±ϵ)‖v±‖L2(S±ϵ)+‖uMϵ‖L2(S±ϵ)‖v±‖L2(S±ϵ)).$ |
Using again the trace estimate from Lemma 4.1, the boundedness of
$‖∂tu±i,ϵ(t)‖H1(Ω±ϵ)′≤C(1+‖u±ϵ‖H1(Ω±ϵ)+1√ϵ‖uMϵ‖L2(ΩMϵ)+√ϵ‖∇uMϵ‖L2(ΩMϵ)).$ |
Integration with respect to time and the inequalities (5a) and (5b) imply the second inequality in (5c). For the first inequality, we choose
$ \label{HilfsungleichungAprioriZeitableitung} 1ϵ⟨∂tuMi,ϵ,vϵ⟩ΩMϵ=−ϵγ(DMi(⋅ϵ)∇uMi,ϵ,∇vϵ)ΩMϵ+1ϵ(gi(⋅ϵ,uMϵ),vϵ)ΩMϵ+(hM,+i(⋅ˉxϵ,uMϵ,u+ϵ),vϵ)S+ϵ+(hM,−i(⋅ˉxϵ,uMϵ,u−ϵ),vϵ)S−ϵ≤C(ϵγ‖∇uMi,ϵ‖L2(ΩMϵ)‖∇vϵ‖L2(ΩMϵ)+1√ϵ‖vϵ‖L2(ΩMϵ)+1ϵ‖uMϵ‖L2(ΩMϵ)‖vϵ‖L2(ΩMϵ)+‖vϵ‖L2(S+ϵ)+‖uMϵ‖L2(S+ϵ)‖vϵ‖L2(S+ϵ)+‖u+ϵ‖L2(S+ϵ)‖vϵ‖L2(S+ϵ)+‖vϵ‖L2(S−ϵ)+‖uMϵ‖L2(S−ϵ)‖vϵ‖L2(S−ϵ)+‖u−ϵ‖L2(S−ϵ)‖vϵ‖L2(S−ϵ)). $ | (6) |
Then, using the trace inequality and the boundedness of
$‖∂tuMi,ϵ‖2H1(ΩMϵ)′≤C(ϵ+ϵ2+2γ‖∇uMi,ϵ‖2L2(ΩMϵ)+‖uMϵ‖2L2(ΩMϵ)+ϵ‖u+ϵ‖2L2(Ω+ϵ)+ϵ‖u−ϵ‖2L2(Ω−ϵ)).$ |
Integration with respect to time and the a priori estimates (5a) and (5b) give
$‖∂tuMi,ϵ‖2L2((0,T),H1(ΩMϵ)′)≤C(ϵ+ϵ2+2γ‖∇uMi,ϵ‖2L2((0,T)×ΩMϵ))≤C(ϵ+ϵ2+γ)≤Cϵ.$ |
This gives us the last inequality and the proof is complete.
The above estimates are not sufficient for the derivation of appropriate strong convergence results for the solution
Since we are operating in bounded domains, we have to make sure that the shifts are well-defined. For an arbitrary domain
$ U_h: = \{x \in U\, : \, {\rm{dist}}(\partial U , x) > h \}. $ | (7) |
Further, we write
$ \Omega_\epsilon^Mh: = \Sigma_h \times (-\epsilon, \epsilon), \;\; \Omega_\epsilon^+h: = \Sigma_h \times (\epsilon, H), \;\; \Omega_\epsilon^-h: = \Sigma_h \times (-H, -\epsilon). $ | (8) |
In the same way as in (21) (see Appendix A), we define the sets
$ δlv(x):=v(x+ϵ(l,0))−v(x). $ | (9) |
In the following, we suppress the index
Lemma 4.3. Let
$1ϵ‖δuMϵ(t)‖2L2(ΩMϵth)+ϵγ‖∇δuMi,ϵ‖2L2((0,T)×ΩMϵth)≤C(‖δu+ϵ‖2L2(0,T)×Ω+ϵh)+‖δu−ϵ‖2L2((0,T)×Ω−ϵh)+ϵγ+1+1ϵ‖δuMϵ(0)‖2L2(ΩMϵh)+‖δu+ϵ(0)‖2L2(Ω+ϵh)+‖δu−ϵ(0)‖2L2(Ω−ϵh)).$ |
Proof. Let
$1ϵ⟨∂tδuMi,ϵ,η2ϕ⟩ΩMϵ+ϵγ∫ΩMϵDMi(xϵ)∇δuMi,ϵ⋅∇(η2ϕ)dx=1ϵ∫ΩMϵδgi(xϵ,uMϵ)η2ϕdx+∑α∈±∫SαϵδhM,αi(ˉxϵ,uMϵ,uαϵ)η2ϕdσ,$ |
with
$δgi(xϵ,uMϵ):=gi(xϵ,uMϵl)−gi(xϵ,uMϵ),δhM,±i(ˉxϵ,uMϵ,u±ϵ):=hM,±i(ˉxϵ,uMϵl,u±ϵl)−hM,±i(ˉxϵ,uMϵ,u±ϵ),$ |
where
$12ϵddt‖ηδuMi,ϵ‖2L2(ΩMϵ)+c0ϵγ‖η∇δuMi,ϵ‖2L2(ΩMϵ)≤1ϵ∫ΩMϵδgi(xϵ,uMϵ)η2δuMi,ϵdx−2ϵγ∫ΩMϵηδuMi,ϵDMi(xϵ)∇δuMi,ϵ⋅∇ηdx+∑α∈±∫SαϵδhM,αi(ˉxϵ,uMϵ,uαϵ)η2δuMi,ϵdσ=:I1ϵ+I2ϵ+I+ϵ+I−ϵ.$ |
Now, we integrate with respect to time and estimate the terms on the right-hand side. From the Lipschitz continuity of
$∫t0I1ϵdt≤Cϵ‖ηδuMϵ‖2L2((0,t)×ΩMϵ).$ |
For the second term, our a priori estimates imply
$∫t0I2ϵdt≤Cϵγ‖ηδuMi,ϵ‖L2((0,t)×ΩMϵ)‖∇δuMi,ϵ‖L2((0,t)×ΩMϵh)≤C(1ϵ‖ηδuMi,ϵ‖2L2((0,t)×ΩMϵ)+ϵγ+1).$ |
Using the Lipschitz continuity of
$∫t0I±ϵdt≤C∫t0∫S±ϵ|ηδu+ϵm|2+|ηδuMϵ|2dσdt≤C(‖ηδu+ϵm‖2L2((0,t)×Ω±ϵ)+1ϵ‖ηδuMϵ‖2L2((0,t)×ΩMϵ)+‖δu+ϵm‖2L2((0,t)×Ω±ϵ,h)+ϵ2)+θ(‖η∇δu+ϵm‖2L2((0,t)×Ω±ϵ)+ϵ‖η∇δuMϵ‖2L2((0,t)×ΩMϵ)).$ |
Altogether, we obtain for arbitrary
$1ϵ‖ηδuMi,ϵ(t)‖2L2(ΩMϵ)−1ϵ‖ηδuMi,ϵ(0)‖2L2(ΩMϵ)+ϵγ‖η∇δuMi,ϵ‖2L2((0,t)×ΩMϵ)≤C(∑α∈±‖ηδu+ϵm‖2L2((0,t)×Ω±ϵ)+1ϵ‖ηδuMϵ‖2L2((0,t)×ΩMϵ)+‖δu+ϵm‖2L2((0,t)×Ω±ϵ,h)+ϵγ+1)+θ(∑α∈±‖η∇δu+ϵm‖2L2((0,t)×Ω±ϵ)+ϵ‖η∇δuMϵ‖2L2((0,t)×ΩMϵ))=:Δ.$ |
In a similar way, we get
$‖ηδu±i,ϵ(t)‖2L2(Ω±ϵ)−‖ηδu±i,ϵ(0)‖2L2(Ω±ϵ)+‖η∇δu±i,ϵ‖2L2((0,t)×Ω±ϵ)≤Δ.$ |
Adding up all these inequalities, choosing
Finally, we give further estimates for the solution in the thin layer and its time derivative with respect to equivalent norms, which are introduced on
$Hϵ,γ:={vϵ∈L2(ΩMϵ):∇vϵ∈L2(ΩMϵ)n},$ |
together with the inner product
$(vϵ,wϵ)Hϵ,γ:=1ϵ(vϵ,wϵ)ΩMϵ+ϵγ(∇vϵ,∇wϵ)ΩMϵ,$ |
i.e., the norm
Remark 1. We consider the Gelfand-triple
For the solution
Lemma 4.4. Let
$ ‖uMϵ‖L2((0,T),Hϵ,γ)≤C, $ | (10a) |
$ ‖∂tuMi,ϵ‖L2((0,T),H′ϵ,γ)≤Cϵ. $ | (10b) |
Proof. The first inequality follows directly from Lemma 4.2. For the second inequality, we choose
$‖vϵ‖L2(ΩMϵ)≤√ϵ,‖∇vϵ‖L2(ΩMϵ)≤ϵ−γ2,‖vϵ‖L2(S±ϵ)≤C.$ |
Inequality (6) from the proof of Lemma 4.2 is still valid for this
$|⟨∂tuMi,ϵ,vϵ⟩H′ϵ,γ,Hϵ,γ|≤C(ϵ1+γ2‖∇uMϵ‖L2(ΩMϵ)+√ϵ‖uMϵ‖L2(ΩMϵ)+ϵ‖u±ϵ‖H1(Ω±ϵ)+ϵ).$ |
Squaring, integration with respect to time, and Lemma 4.2 give us the desired result.
The aim of this section is to provide general results for the averaged function in thin domains, obtained by taking the average over the
$ˉuϵ(t,ˉx):=12ϵ∫ϵ−ϵuϵ(t,ˉx,xn)dxn.$ |
Here, we consider a sequence
$ 1√ϵ‖uϵ‖L2((0,T)×ΩMϵ)+ϵγ2‖∇uϵ‖L2((0,T)×ΩMϵ)+1√ϵ‖∂tuϵ‖L2((0,T),H1(ΩMϵ)′)≤C. $ | (11) |
The following estimates hold for the averaged sequence
Lemma 5.1. It holds that
$ ‖ˉuϵ‖L2((0,T)×Σ)≤1√2ϵ‖uϵ‖L2((0,T)×ΩMϵ)≤C, $ | (12a) |
$ ‖∇ˉxˉuϵ‖L2((0,T)×Σ)≤1√2ϵ‖∇ˉxuϵ‖L2((0,T)×ΩMϵ)≤Cϵ−γ−12, $ | (12b) |
$ ‖∂tˉuϵ‖L2((0,T),H1(Σ)′)≤1√2ϵ‖∂tuϵ‖L2((0,T),H1(ΩMϵ)′)≤C. $ | (12c) |
Further, we have
$ 1√ϵ‖uϵ−ˉuϵ‖L2(ΩMϵ)≤2√ϵ‖∂nuϵ‖L2((0,T)×ΩMϵ)≤Cϵ1−γ2. $ | (12d) |
Proof. It is clear that
$‖ˉuϵ‖2L2((0,T)×Σ)=∫T0∫Σ|12ϵ∫ϵ−ϵuϵ(t,ˉx,xn)dxn|2dˉxdt=1(2ϵ)2∫T0∫Σ|∫ϵ−ϵuϵ(t,ˉx,xn)dxn|2dˉxdt≤12ϵ‖uϵ‖2L2((0,T)×ΩMϵ)(11)≤C.$ |
In a similar way, we obtain
$‖∇ˉxˉuϵ‖2L2(Σ)=1(2ϵ)2∫T0∫Σ|∫ϵ−ϵ∇ˉxuϵ(t,ˉx,xn)dxn|2dˉxdt≤12ϵ‖∇ˉxuϵ‖2L2((0,T)×ΩMϵ)(11)≤Cϵ−γ−1.$ |
Now, we consider the time derivative of
$∫T0∫Σˉuϵ(t,ˉx)ϕ(ˉx)ψ′(t)dˉxdt=12ϵ∫T0∫ΩMϵuϵ(t,x)ϕ(ˉx)ψ′(t)dxdt=−12ϵ∫T0⟨∂uϵ(t),ϕ⟩ΩMϵψ(t)dt,$ |
i.e., we have
$⟨∂tˉuϵ,ϕ⟩Σ=12ϵ⟨∂tuϵ,ϕ⟩ΩMϵ∀ϕ∈H1(Σ).$ |
Additionally, since
$|⟨∂tˉuϵ,ϕ⟩Σ|≤12ϵ‖∂tuϵ‖H1(ΩMϵ)′‖ϕ‖H1(ΩMϵ)≤1√2ϵ‖∂tuϵ‖H1(ΩMϵ)′‖ϕ‖H1(Σ).$ |
Squaring, integration with respect to time, and (11) gives inequality (12c).
It remains to prove estimate (12d). We obtain with the fundamental theorem of calculus
$‖uϵ−ˉuϵ‖2L2((0,T)×ΩMϵ)=1(2ϵ)2∫T0∫ΩMϵ|∫ϵ−ϵuϵ(t,ˉx,xn)−uϵ(t,ˉx,˜xn)d˜xn|2dxdt≤∫T0∫ΩMϵ(∫ϵ−ϵ|∂nuϵ(t,ˉx,s)|ds)2dxdt≤(2ϵ)2‖∂nuϵ‖2L2((0,T)×ΩMϵ)(11)≤Cϵ2−γ.$ |
In the following proposition, we compare the
Lemma 5.2. It holds that
$‖uϵ|S±ϵ−ˉuϵ‖L2(Σ)≤Cϵ1−γ2.$ |
Proof. We only consider the trace on
$‖uϵ|S+ϵ−ˉuϵ‖2L2((0,T)×Σ)=1(2ϵ)2∫T0∫Σ|∫ϵ−ϵuϵ(ˉx,ϵ)−uϵ(ˉx,xn)dxn|2dˉxdt≤Cϵ‖∂nuϵ‖2L2((0,T)×Σ)(11)≤Cϵ1−γ.$ |
Remark 2. From Lemma 5.1, we immediately obtain the existence of a function
$ˉuϵ⇀ˉuo weakly in L2((0,T)×Σ),∂tˉuϵ⇀∂tˉuo weakly in L2((0,T),H1(Σ)′).$ |
In Section 7, we will use the averaged function to prove convergence results for the solution
Let
Proposition 2. The following relation holds between the weak limit
$ ˉuo(t,ˉx)=1|Z|∫Zu0(t,ˉx,y)dy. $ | (13) |
Proof. For all
$∫T0∫Σ∫Zu0(t,ˉx,y)ϕ(ˉx)ψ(t)dydˉxdt=limϵ→01ϵ∫T0∫ΩMϵuϵ(t,x)ϕ(ˉx)ψ(t)dxdt=limϵ→0|Z|∫T0∫Σˉuϵ(t,ˉx)ϕ(ˉx)ψ(t)dˉxdt=|Z|∫T0∫Σˉuo(t,ˉx)ϕ(ˉx)ψ(t)dˉxdt.$ |
From
Proposition 3. We have
$⟨∂t(1|Z|∫Zu0(t,⋅ˉx,y)dy),ϕ⟩Σ=⟨∂tˉuo(t),ϕ⟩Σ∀ϕ∈H1(Σ),a.e.t∈(0,T).$ |
Proof. This follows easily from partial integration with respect to time. In fact, for all
$∫T0⟨∂tˉuo,ϕ⟩Σψ(t)dt=limϵ→0∫T0⟨∂tˉuϵ(t),ϕ⟩Σψ(t)dt=−limϵ→012ϵ∫T0∫ΩMϵuϵ(t,x)ϕ(ˉx)ψ′(t)dxdt=−1|Z|∫T0∫Σ∫Zu0(t,ˉx,y)ϕ(ˉx)ψ′(t)dydˉxdt.$ |
A straightforward consequence of Proposition 2 and Proposition 3 is given in the following
Corollary 1. If the two-scale limit
$ˉuo=u0,∂tˉuo=∂tu0.$ |
For
Proposition 4. Let
$‖uϵ‖L2((0,T)×ΩMϵ)+‖∇uϵ‖L2((0,T)×ΩMϵ)+‖∂tuϵ‖L2((0,T),H1(ΩMϵ)′)≤C√ϵ.$ |
Then, there exist
$uϵ→u0stronglyinthetwo−scalesense∇uϵ→∇ˉxu0+∇yu1inthetwo−scalesense,uϵ|S±ϵ→u0inL2((0,T)×Σ),∂tˉuϵ⇀∂tu0weaklyinL2((0,T),H1(Σ)′).$ |
Proof. Proposition 10 implies that, up to a subsequence,
Lemma A.2 shows that the unfolded sequence
For
$UMϵ:L2((0,T)×Σ×Z)→L2((0,T)×ΩMϵ),UMϵ(ϕ)(t,x)={∫Yϕ(t,ϵ(ˉz+[ˉxϵ]),({ˉxϵ},xnϵ))dˉz for x∈ˆΩMϵ,0 for x∈ΛMϵ.$ |
The following Lemma shows that
Proposition 5. Let
$∫T0∫Σ∫ZTMϵuϵ(t,ˉx,y)ϕ(t,ˉx,y)dydˉxdt=1ϵ∫T0∫ΩMϵuϵ(t,x)UMϵ(ϕ)(t,x)dxdt.$ |
Further, we have the identity
Proof. The proof uses the same arguments as in [6,Proposition 4.3] and is skipped here.
As a corollary we immediately obtain the following inequality:
Corollary 2. For
$‖UMϵ(ϕ)‖L2((0,T)×ΩMϵ)≤√ϵ‖ϕ‖L2((0,T)×Σ×Z).$ |
From the definition of the operator
$ H0:=¯C∞0(Y×[−1,1])‖⋅‖H1(Z), $ | (14) |
together with the usual
Proposition 6. It holds
$ϵ∇UMϵ(ϕ)(t,x)=UMϵ(∇yϕ)(t,x).$ |
Proof. Let
$∫T0∫ΩMϵUMϵ(ϕ)(t,x)∂xiuϵ(t,x)dxdt=∫T0∫Σ∫Zϕ(t,ˉx,y)∂yiTMϵuϵ(t,ˉx,y)dydˉxdt=−∫T0∫Σ∫Z∂yiϕ(t,ˉx,y)TMϵuϵ(t,ˉx,y)dydˉxdt+∫T0∫Σ∫∂Zϕ(t,ˉx,y)TMϵuϵ(t,ˉx,y)νidσydˉxdt.$ |
The last term is equal to
$∫T0∫ΩMϵUMϵ(ϕ)(t,x)∂xiuϵ(t,x)dxdt=−1ϵ∫T0∫ΩMϵUMϵ(∂yiϕ)(t,x)uϵ(t,x)dxdt,$ |
which gives us the desired result.
We are now able to state our regularity result with respect to time for the unfolding operator.
Proposition 7. Let
$TMϵuϵ∈L2((0,T),L2(Σ×Z))∩H1((0,T),L2(Σ,H0)′),$ |
and it holds that
$⟨∂tTMϵuϵ(t),ϕ⟩L2(Σ,H0)′,L2(Σ,H0)=1ϵ⟨∂tuϵ(t),UMϵ(ϕ)⟩ΩMϵ$ |
for almost every
Proof. Let
$∫T0∫Σ∫ZTMϵuϵ(t,ˉx,y)ϕ(ˉx,y)ψ′(t)dydˉxdt=1ϵ∫T0∫ΩMϵuϵ(t,x)UMϵ(ϕ)(x)ψ′(t)dxdt=−1ϵ∫T0⟨∂tuϵ(t),UMϵ(ϕ)⟩ΩMϵψ(t)dt,$ |
what gives us the claim.
Our aim now is to estimate the norm of
Lemma 6.1. Let
$‖UMϵ(ϕ)‖L2((0,T),Hϵ,1)≤‖ϕ‖L2((0,T)×Σ,H0).$ |
Proof. The claim follows immediately from Corollary 2 and Proposition 6.
As an easy consequence, we obtain the following estimate for the time derivative
Proposition 8. Let
$‖∂tTMϵuϵ‖L2((0,T),L2(Σ,H0)′)≤1ϵ‖∂tuϵ‖L2((0,T),H′ϵ,1).$ |
Proof. Due to Lemma 6.1, we have
$⟨∂tTMϵuϵ(t),ϕ⟩L2(Σ,H0)′,L2(Σ,H0)=1ϵ⟨∂tuϵ(t),UMϵ(ϕ)⟩H′ϵ,1,Hϵ,1≤1ϵ‖∂tuϵ(t)‖H′ϵ,1‖UMϵ(ϕ)‖Hϵ,1≤1ϵ‖∂tuϵ(t)‖H′ϵ,1,$ |
i.e.,
In this section, we derive convergence results for the sequences
For the derivation of the convergence results for
Let us start with the convergence results in the bulk domains. These are similar to those in [10,15], except for the time derivative, which is in this case only a functional pointwise in time. For the convergence of the time derivative, we transform the fixed domain
$Φ±ϵ:Ω±→Ω±ϵ,Φ±ϵ(x)=(ˉx,H−ϵHxn±ϵ),$ |
and define
$⟨∂t˜u±i,ϵ(t),ϕ⟩Ω±=⟨HH−ϵ∂tu±i,ϵ(t),ϕ∘(Φ±ϵ)−1⟩Ω±ϵ,$ |
and especially we obtain with our a priori estimates from Lemma 4.2
$‖∂t˜u±i,ϵ‖L2((0,T),H1(Ω±)′)≤C‖∂tu±i,ϵ‖L2((0,T),H1(Ω±ϵ)′)≤C.$ |
Proposition 9. Let
$χΩ±ϵu±i,ϵ→u±i,0stronglyinL2((0,T)×Ω±),χΩ±ϵ∇u±i,ϵ⇀∇u±i,0weaklyinL2((0,T)×Ω±),˜u±i,ϵ|Σ→u±i,0stronglyinL2((0,T)×Σ),∂t˜u±i,ϵ⇀∂tu±i,0weaklyinL2((0,T),H1(Ω±)′).$ |
Further, for all
$limϵ→0∫T0⟨∂tu±i,ϵ(t),ϕ|Ω±ϵ(t)⟩Ω±ϵdt=∫T0⟨∂tu±i,0(t),ϕ(t)⟩Ω±dt.$ |
Proof. The convergences of
After having established the convergence results for the sequences
Remark 3. In the following, we consider the traces
To prove the convergence results for the sequence
$ ˉuMϵ(t,ˉx):=12ϵ∫ϵ−ϵuMϵ(t,ˉx,xn)dxn, $ | (15) |
introduced in Section 5.
Theorem 7. For
$uMi,ϵ→uMi,0stronglyinthetwo−scalesense∇uMi,ϵ→∇ˉxuMi,0+∇yuMi,1inthetwo−scalesense,uMi,ϵ|S±ϵ→uMi,0inL2((0,T)×Σ),∂tˉuMi,ϵ⇀∂tuMi,0weaklyinL2((0,T),H1(Σ)′).$ |
Proof. This follows directly from Lemma 4.2 and Proposition 4.
From the strong convergences above, we immediately obtain the two-scale convergences of the nonlinear terms:
Corollary 3. For
$f±(χΩ±ϵu±ϵ)→f±(u±0)inL2((0,T)×Ω±),g(⋅ϵ,uMϵ)→g(⋅,uM0)inthetwo−scalesense,h±(u±ϵ|S±ϵ,uMϵ|S±ϵ)→h±(u±0|Σ,uM0)inthetwo−scalesenseonΣ,hM,±(⋅ϵ,uMϵ|S±ϵ,u±ϵ|S±ϵ)→hM,±(⋅,uM0,u±0|Σ)inthetwo−scalesenseonΣ.$ |
Proof. The first convergence follows from Proposition 9. To show the second convergence, we start from
$1ϵ∫T0∫ΩMϵg(xϵ,uMϵ)ϕ(t,ˉx,xϵ)dxdt=1ϵ∫T0∫ΩMϵ[g(xϵ,uMϵ)−g(xϵ,ˉuMϵ)]ϕ(t,ˉx,xϵ)dxdt+1ϵ∫T0∫ΩMϵ[g(xϵ,ˉuMϵ)−g(xϵ,uM0)]ϕ(t,ˉx,xϵ)dxdt+1ϵ∫T0∫ΩMϵg(xϵ,uM0)ϕ(t,ˉx,xϵ)dxdt=:Iϵ1+Iϵ2+Iϵ3,$ |
with
$ Iϵ2=1ϵ∫T0∫ΩMϵ[g(xϵ,ˉuMϵ)−g(xϵ,uM0)]ϕ(t,ˉx,xϵ)dxdt≤Cϵ∫T0∫ΩMϵ|g(xϵ,ˉuMϵ)−g(xϵ,uM0)|dxdt≤Cϵ∫ΩMϵ|ˉuMϵ−uM0|dxdt≤C||ˉuMϵ−uM0||L1((0,T)×Σ). $ | (16) |
Thus, the strong convergence of
Now, based on the above convergence results, we derive the macroscopic model from Theorem 3.1.
Proof of Theorem 3.1. To obtain the equations in the bulk domains, we test the variational equation (2) in the bulk with
Testing the variational equation (2) of
$1ϵ∫T0⟨∂tuMi,ϵ(t),ϕϵ(t)⟩ΩMϵdt+∫T0∫ΩMϵDMi(xϵ)∇uMi,ϵ(t,x)⋅[θ(xϵ)∇ˉxϕ(ˉx)+1ϵϕ(ˉx)∇yθ(xϵ)]ψ(t)dxdt=1ϵ∫T0∫ΩMϵgi(xϵ,uMϵ)ϕϵ(t,x)dxdt+∑α∈±∫T0∫SαϵhM,αi(ˉxϵ,uMϵ,uαϵ)ϕϵ(t,ˉx,α1)dˉxdt.$ |
Due to our a priori estimates, all the terms except the diffusion therm involving
$∫T0∫Σ∫ZDMi(y)[∇ˉxuMi,0(t,ˉx)+∇yuMi,1(t,ˉx,y)]⋅ψ(t)ϕ(ˉx)∇yθ(y)dydˉxdt=0.$ |
This implies almost everywhere in
$ uMi,1(t,ˉx,y)=n−1∑j=1∂juMi,0(t,ˉx)wi,j(y), $ | (17) |
where
Now, we choose as a test function
$ \label{SchwacheFormulierungBuepsM} ∫T0⟨∂tˉuMi,ϵ(t),ϕ⟩Σψ(t)dt+1ϵ∫T0∫ΩMϵDMi(xϵ)∇uMi,ϵ(t,x)⋅∇ˉxϕ(ˉx)ψ(t)dxdt=1ϵ∫T0∫ΩMϵgi(xϵ,uMϵ)ϕ(ˉx)ψ(t)dxdt+∑α∈±∫T0∫SαϵhM,αi(ˉxϵ,uMϵ,uαϵ)ϕ(ˉx)ψ(t)dˉxdt. $ | (18) |
From Theorem 7.1, Corollary 3, and the identity (17), we get for
$|Z|∫T0⟨∂tuMi,0(t),ϕ⟩Σψ(t)dt+∫T0∫ΣDM,∗i∇ˉxuMi,0(t,ˉx)⋅∇ˉxϕ(ˉx)ψ(t)dˉxdt.=∫T0∫Σ(∫Zgi(y,uM0)dy+∑α∈{±}∫YhM,αi(ˉy,uM0,uα0)dˉy)ϕ(ˉx)ψ(t)dˉxdt.$ |
Since
Again, we use the averaged function
Lemma 7.2. Let
$|(v(t+h)−v(t),ϕ)H|≤√|h|‖ϕ‖V‖∂tv‖L2((t,t+h),V′).$ |
Especially, it holds that
$‖v(t+h)−v(t)‖2H≤√|h|‖v(t+h)−v(t)‖V‖∂tv‖L2((t,t+h),V′).$ |
Proof. The proof follows the same lines as the proof for the special case
Theorem 7.3. For
$uMi,ϵ→uMi,0inthetwo−scalesenseˉuMi,ϵ→uMi,0inLp((0,T)×Σ),uMi,ϵ|S±ϵ→uMi,0inLp((0,T)×Σ),∂tˉuMi,ϵ⇀∂tuMi,0weaklyinL2((0,T),H1(Σ)′).$ |
Proof. As in Proposition 7.1, Lemma 4.2 and Proposition 10 imply that, up to a subsequence,
We extend all functions outside their domain of definition by zero. Since
$ ‖ˉuMϵ(⋅+s,⋅+ˉξ)−ˉuMϵ‖Lp((0,T)×Σ)→0for (s,ˉξ)→0 $ | (19) |
uniformly with respect to
(ⅰ) For all
$supϵ‖ˉuMϵ(⋅+s,⋅+ˉξ)−ˉuMϵ‖Lp((0,T)h×Σh)→0for (s,ˉξ)→0.$ |
(ⅱ) It holds that
$supϵ‖ˉuMϵ‖Lp((0,T)∖(0,T)h×Σ∖Σh)→0for h→0.$ |
For the definition of the domains
$‖ˉuMϵ‖Lp((0,T)∖(0,T)h×Σ∖Σh)≤C|(0,T)∖(0,T)h×Σ∖Σh|2−p2ph→0⟶0.$ |
For condition (ⅰ), due to the triangle inequality, it is enough to consider shifts separately with respect to the variable
$‖ˉuMϵ(⋅,⋅+ˉξ)−ˉuMϵ‖L2((0,T)×Σh)≤1√2ϵ‖uMϵ(⋅,⋅+(ˉξ,0))−uMϵ‖L2((0,T)×ΩMϵh)≤1√2ϵ‖uMϵ(⋅,⋅+(ˉξ,0))−uMϵ(⋅,⋅+ϵ([ˉξϵ],0))‖L2((0,T)×ΩMϵh)+1√2ϵ‖uMϵ(⋅,⋅+ϵ([ˉξϵ],0))−uMϵ‖L2((0,T)×ΩMϵh).$ |
Due to the mean-value theorem and the a priori estimates for
Now, we have to consider shifts with respect to time. From Lemma 4.4, we have
$‖uMϵ‖L2((0,T),Hϵ,γ)≤C,‖∂tuMi,ϵ‖L2((0,T),H′ϵ,γ)≤Cϵ.$ |
Hence, Lemma 7.2 with
$‖ˉuMϵ(⋅+s,⋅)−ˉuMϵ‖2L2((0,T)h×Σ)≤12ϵ‖uMϵ(⋅+s,⋅)−uMϵ‖2L2((0,T)h×ΩMϵ)≤√h2ϵ‖uMϵ(⋅+s,⋅)−uMϵ‖L2((0,T)h,Hϵ,γ)‖∂tuMϵ‖L2((0,T),H′ϵ,γ)≤C√h.$ |
This gives us the strong convergence of
Again, we obtain the convergences for the nonlinearities.
Corollary 4. For
$f±(χΩ±ϵu±ϵ)→f±(u±0)inL2((0,T)×Ω±),g(⋅ϵ,uMϵ)→g(⋅,uM0)inthetwo−scalesense,h±(u±ϵ|S±ϵ,uMϵ|S±ϵ)→h±(u±0|Σ,uM0)inthetwo−scalesenseonΣ,hM,±(⋅ϵ,uMϵ|S±ϵ,u±ϵ|S±ϵ)→hM,±(⋅,uM0,u±0|Σ)inthetwo−scalesenseonΣ.$ |
Proof. We use the same arguments as in Corollary 3. The only difference is that terms like (16) are estimated by the
Passing to the limit
Proof of Theorem 3.2. The arguments are quite similar to those in Theorem 3.1 for the case
$|ϵγ∫T0∫ΩMϵDMi(xϵ)∇uMi,ϵ(t,x)⋅∇ˉxϕ(ˉx)ψ(t)dxdt|≤Cϵ1+γ2.$ |
Finally, the
Here, we treat the critical case
Lemma 7.4. For all
$‖TMϵϕMϵ(⋅,⋅+ˉξ,⋅)−TMϵϕMϵ‖2L2((0,T)×Σ2h×Z)≤1ϵ∑j∈{0,1}n−1‖δlϕMϵ‖2L2((0,T)×ΩMϵh)$ |
with
Proof. The proof is based on a special decomposition of
Theorem 7.5. For
$uMi,ϵ→uMi,0inthetwo−scalesense,ϵ∇uMi,ϵ→∇yuMi,0inthetwo−scalesense,TMϵuMi,ϵ→uMi,0inLp(Σ,L2((0,T),Hβ(Z))),TΣϵ(uMi,ϵ|S±ϵ)→uMi,0|S±inLp(Σ,L2((0,T)×S±))$ |
Remark 4. Due to the boundedness of the sequence
Proof of Theorem 7.5. The two-scale convergences of
We prove the strong convergence of
(ⅰ) For every
$vϵA(t,y):=∫ATMϵuMϵ(t,ˉx,y)dˉx$ |
is relatively compact in
(ⅱ) It holds that
$supϵ‖TMϵuMϵ(⋅,⋅+ˉξ,⋅)−TMϵuMϵ‖Lp(Σ,L2((0,T),Hβ(Z)))→0for ˉξ→0.$ |
First of all, we have
$⟨∂tvϵA(t),ϕ⟩H′0,H0=⟨∂tTMϵuMi,ϵ(t),χA(⋅ˉx)ϕ(⋅y)⟩L2(Σ,H0)′,L2(Σ,H0),$ |
since for every
$∫T0∫ZvϵA(t,y)ϕ(y)ψ′(t)dydt=∫T0∫Σ∫ZTMϵuMi,ϵ(t,ˉx,y)ϕ(y)χA(ˉx)ψ′(t)dydˉxdt=−∫T0⟨∂tTMϵuMi,ϵ(t),χA(⋅ˉx)ϕ(⋅ˉy)⟩L2(Σ,H0)′,L2(Σ,H0)ψ(t)dt.$ |
Hence, Lemma 4.2, 4.4, and Proposition 8 imply the boundedness of
$\begin{align*} \big\|\mathcal{T}_\epsilon^M u_\epsilon^M (\cdot, \cdot + \bar{\xi}, \cdot) - \mathcal{T}_\epsilon^M u_\epsilon^M &\big\|_{L^p(\Sigma \setminus \Sigma_{2h}, L^2((0, T), H^{\beta}(Z)))} \\ &\le C|h|^{\frac{2-p}{2p}}\|\mathcal{T}_\epsilon^M u_\epsilon^M\|_{L^2((0, T)\times \Sigma, H^1(Z))} \le C h^{\frac{2-p}{2p}}, \end{align*}$ |
by the same arguments as in the proof of Theorem 7.3, it is enough to show that for all
$\begin{align*} \sup\limits_{\epsilon}\big\|\mathcal{T}_\epsilon^M u_\epsilon^M (\cdot, \cdot + \bar{\xi}, \cdot) - \mathcal{T}_\epsilon^M u_\epsilon^M\big\|_{L^p(\Sigma_{2h}, L^2((0, T), H^{\beta}(Z)))} \rightarrow 0 \; \text{for } \; \bar{\xi} \to 0. \end{align*}$ |
So, we fix
$\begin{align*} \big\|\mathcal{T}_\epsilon^M u_\epsilon^M (\cdot, \cdot + &\bar{\xi}, \cdot) - \mathcal{T}_\epsilon^M u_\epsilon^M\big\|_{L^2(\Sigma_{2h}, L^2((0, T), H^{\beta}(Z)))} \\ &\le C\big\|\mathcal{T}_\epsilon^M u_\epsilon^M (\cdot, \cdot + \bar{\xi}, \cdot) - \mathcal{T}_\epsilon^M u_\epsilon^M\big\|_{L^2(\Sigma_{2h}, L^2((0, T), H^1(Z)))} \\ &\le C \sum\limits_{j \in \{0, 1\}^{n-1}} \left(\frac{1}{\epsilon} \|\delta u_\epsilon^M\|^2_{L^2((0, T)\times \Omega_\epsilon^Mh)} + \epsilon \|\nabla \delta u_\epsilon^M\|^2_{L^2((0, T)\times \Omega_\epsilon^Mh)}\right). \end{align*}$ |
Due to Lemma 4.3, the right-hand side converges to zero for
The last statement of the theorem follows from the strong convergence of
Corollary 5. For
$\begin{align*} f^{\pm}(\chi_{\Omega_\epsilon^\pm} u_\epsilon^\pm) &\rightarrow f^{\pm}(u_0^{\pm}) &\; in \; L^2((0, T) \times \Omega^{\pm})^m, \\ g\left(\frac{\cdot}{\epsilon}, u_\epsilon^M\right) &\rightarrow g\big(\cdot, u_0^M\big) &\; in \; the \; two-scale \; sense, \; \\ h^{\pm}\big(u_\epsilon^\pm|_{ S_\epsilon^\pm }, u_\epsilon^M|_{ S_\epsilon^\pm }\big) &\rightarrow h^{\pm}\big(u_0^{\pm}|_{\Sigma}, u_0^M|_{S^{\pm}}\big) &\; in \; the \; two-scale \; sense \; on \; \Sigma, \\ h^{M, \pm}\left(\frac{\cdot}{\epsilon}, u_\epsilon^M|_{ S_\epsilon^\pm } , u_\epsilon^\pm|_{ S_\epsilon^\pm } \right) &\rightarrow h^{M, \pm}\big(\cdot , u_0^M|_{S^{\pm}}, u_0^{\pm}|_{\Sigma}\big) &\; in \; the \; two-scale \; sense \; on \; \Sigma. \end{align*}$ |
Proof. We only show the last convergence. From the strong convergence of
$\begin{align*} \mathcal{T}_\epsilon^\Sigma \left(h^{M, \pm}\left(\frac{\cdot}{\epsilon}, u_\epsilon^M|_{ S_\epsilon^\pm } , u_\epsilon^\pm|_{ S_\epsilon^\pm } \right)\right) = h^{M, \pm}\big(\cdot_{\bar{y}} , \mathcal{T}_\epsilon^\Sigma \big(u_\epsilon^M|_{ S_\epsilon^\pm }\big), \mathcal{T}_\epsilon^\Sigma \big( u_\epsilon^\pm|_{ S_\epsilon^\pm }\big)\big). \end{align*}$ |
The strong convergences of
Finally, the compactness results from Theorem 7.5 and Corollary 5 allow us to pass to the limit
Proof of Theorem 3.3. The equations for the bulk-domains
To derive the limit equation for the membrane, we test the variational equation of
$\begin{align*} -\frac{1}{\epsilon}\int_0^T &\int_{\Omega_\epsilon^M} u_{i, \epsilon}^M(t, x) \phi\left(\bar{x}, \frac{x}{\epsilon}\right) \psi'(t) dx dt \\ &+ \epsilon \int_0^T \int_{\Omega_\epsilon^M} D_i^M\left(\frac{x}{\epsilon}\right) \nabla u_\epsilon^M (t, x) \cdot \left[ \nabla_\bar{x} \phi\left(\bar{x} , \frac{x}{\epsilon}\right) + \frac{1}{\epsilon} \nabla_y \phi\left(\bar{x}, \frac{x}{\epsilon}\right)\right] \psi(t)dx dt \\ = & \frac{1}{\epsilon} \int_0^T \int_{\Omega_\epsilon^M} g_i\left(\frac{x}{\epsilon}, u_\epsilon^M\right) \phi\left(\bar{x}, \frac{x}{\epsilon}\right) \psi(t) dx dt \\ &+ \sum\limits_{\alpha\in \pm} \int_0^T \int_{S_\epsilon^\alpha} h_i^{M, \alpha}\left(\frac{\bar{x}}{\epsilon}, u_\epsilon^M, u_\epsilon^\alpha\right) \phi\left(\bar{x}, \frac{x}{\epsilon}\right) \psi(t) d\bar{x} dt. \end{align*}$ |
For
$\begin{align*} -\int_0^T \int_{\Sigma}& \int_Z u_0^M(t, \bar{x}, y) \phi(\bar{x}, y) \psi'(t) dy d\bar{x} dt \\ & = - \int_0^T \int_{\Sigma} \int_Z D_i^M(y) \nabla_y u_{i, 0}^M(t, \bar{x}, y) \cdot\nabla_y \phi(\bar{x}, y) \psi(t)dy d\bar{x} dt \\ & +\int_0^T \int_{\Sigma} \int_Z g_i(y, u_0^M) \phi(\bar{x}, y) \psi(t) dy d\bar{x} dt \\ & + \sum\limits_{\alpha \in \pm} \int_0^T \int_{\Sigma}\int_Y h_i^{M, \alpha}\big({\bar{y}}, u_0^M(t, \bar{x}, {\bar{y}}, \alpha), u_0^{\alpha}(t, \bar{x}, 0)\big) \phi(\bar{x}, {\bar{y}}, \alpha) \psi(t) d{\bar{y}} d\bar{x} dt. \end{align*}$ |
By a density argument the equation holds for all
Remark 5.
(ⅰ) Due to the uniqueness of the solutions of the effective models in Theorems 3.1, 3.2, and 3.3, it follows that the whole sequence converges.
(ⅱ) The results also hold, if the parameter
In this paper, we derived effective models for reaction-diffusion processes through thin layers with nonlinear transmission conditions at the bulk-layer interface, and diffusivities of order
In the critical case
For
The methods developed in this paper can also be used for more complex multi-physics processes. Furthermore, the effective models obtained here rise new challenges also to numerical approaches, which have to take into account the special micro-macro features of the model.
We repeat the definition of the two-scale convergence and the unfolding operator for thin domains, and briefly summarize some results related to these approaches, which are needed frequently throughout the paper. The two-scale convergences for domains was introduced in [1,16], and extended to thin layers with heterogeneous structure in [15].
Definition A.1. We say that a sequence
$\begin{align*} \lim\limits_{\epsilon\to 0}\frac{1}{\epsilon}\int_0^T \int_{\Omega_\epsilon^M} u_\epsilon(t, x)\phi\left(t, \bar{x}, \frac{x}{\epsilon}\right) dxdt = \int_0^T\int_{\Sigma}\int_Z u_0(t, \bar{x}, y)\phi(t, \bar{x}, y)dyd\bar{x} dt. \end{align*}$ |
Further, we say that a (weakly) two-scale convergent sequence
$\begin{align*} \lim\limits_{\epsilon\to 0} \frac{1}{\sqrt{\epsilon}} \|u_\epsilon\|_{L^2((0, T)\times \Omega_\epsilon^M)} = \|u_0\|_{L^2((0, T)\times \Sigma \times Z)}. \end{align*}$ |
We remark that in [4] a definition of the two-scale convergence was given for a thin domain with a more particular geometry.
In the following, we consider functions
$\begin{align*} \frac{1}{\sqrt{\epsilon}} \|u_\epsilon\|_{L^2((0, T)\times \Omega_\epsilon^M)} + \epsilon^{\frac{\gamma}{2}}\|\nabla u_\epsilon \|_{L^2((0, T)\times \Omega_\epsilon^M)} \le C, \end{align*}$ |
with
$ \begin{align} \label{DuenneSchichtFunktionenraumHperHpero} \begin{split} \mathcal{H}_{\rm{per}} &: = \left\{ u \in H^1(Z) : u \; \text{ is } \; Y\; \text{-periodic} \; \right\}, \\ \mathcal{H}_{\rm{per}}o &: = \left\{u \in \mathcal{H}_{\rm{per}} : \int_Z u dy = 0 \right\}, \end{split} \end{align} $ | (20) |
equipped with the
Proposition 10. Let
$\begin{align*} \frac{1}{\sqrt{\epsilon}} \|u_\epsilon\|_{L^2((0, T)\times \Omega_\epsilon^M)} + \epsilon^{\frac{\gamma}{2}}\|\nabla u_\epsilon \|_{L^2((0, T)\times \Omega_\epsilon^M)} \le C, \end{align*}$ |
with a constant
(i) For
$\begin{align*} u_\epsilon &\rightarrow u_0 &\; in \; the \; two-scale \; sense, \; & \\ \epsilon \nabla u_\epsilon &\rightarrow \nabla_y u_0 &\; in \; the \; two-scale sense. \; & \end{align*}$ |
(ii) For
$\begin{align*} u_\epsilon &\rightarrow u_0 &\; in \; the \; two-scale \; sense, \; & \\ \epsilon^{\frac{\gamma + 1}{2}} \nabla u_\epsilon &\rightarrow \nabla_y u_1 &\; in \; the \; two-scale \; sense. \; & \end{align*}$ |
(iii) For
$\begin{align*} u_\epsilon &\rightarrow u_0 &\; in \; the \; two-scale \; sense \;&, \\ \nabla u_\epsilon &\rightarrow \nabla_{\bar{x}}u_0 + \nabla_y u_1 &\; in \; the \; two-scale \; sense \;&, \end{align*}$ |
where
Proof. The proof of (ⅰ) can be found in [15], and the proof of (ⅱ) and (ⅲ) in [10].
Next, we define the unfolding operator
$ \label{AbgeschnitteneGebiete} \begin{aligned} K_{\epsilon}&: = \big\{\bar{k}\in \mathbb{Z}^{n-1} \, : \, \epsilon(\bar{k}+ Y) \subset \Sigma\big\}, \\ \hat{\Sigma}_\epsilon&: = {\rm{int}} \bigcup\limits_{\bar{k}\in K_{\epsilon}} \epsilon( \bar{k}+ \overline{Y} ), \;\;\; \Lambda_{\epsilon}: = {\rm{int}} \big(\Sigma \setminus \hat{\Sigma}_\epsilon\big), \\ \hat{\Omega}_\epsilon^M &: = \hat{\Sigma}_\epsilon \times (-\epsilon, \epsilon), \;\;\; \Lambda_{\epsilon}^M: = \Lambda_{\epsilon} \times (-\epsilon, \epsilon). \end{aligned} $ | (21) |
Then, we define the unfolding operator as follows:
$\begin{align*} \mathcal{T}_\epsilon^M &: L^2((0, T)\times \Omega_\epsilon^M) \rightarrow L^2((0, T)\times \Sigma \times Z) , \\ \mathcal{T}_\epsilon^M&u_\epsilon (t, \bar{x}, y) = \begin{cases} u_\epsilon\left(t, \epsilon \left(\left[\frac{\bar{x}}{\epsilon}\right] , 0\right) + \epsilon y \right) &\; \text{ for } \; \bar{x} \in \hat{\Sigma}_\epsilon, \\ 0 &\; \text{ for } \; \bar{x} \in \Lambda_{\epsilon}. \end{cases} \end{align*}$ |
The unfolding operator
Lemma A.2. [15] For
$\begin{align*} \big(\mathcal{T}_\epsilon^M u_\epsilon, \mathcal{T}_\epsilon^Mv_\epsilon \big)_{L^2((0, T)\times \Sigma \times Z)} & = \frac{1}{\epsilon} (u_\epsilon, v_\epsilon)_{L^2((0, T)\times \hat{\Omega}_\epsilon^M)}, \\ \big\| \mathcal{T}_\epsilon^M u_\epsilon\big\|_{L^2((0, T)\times \Sigma \times Z)} &\le \frac{1}{\sqrt{\epsilon}} \|u_\epsilon\|_{L^2((0, T)\times \Omega_\epsilon^M)}. \end{align*}$ |
If additionally it holds that
$\begin{align*} \nabla_y \mathcal{T}_\epsilon^M u_\epsilon = \epsilon \mathcal{T}_\epsilon^M \big(\nabla u_\epsilon\big). \end{align*}$ |
Finally, we have the following relation between the unfolding operator
Lemma A.3. [15] Let
$\begin{align*} \|u_\epsilon\|_{L^2((0, T)\times \Omega_\epsilon^M)} \le C \sqrt{\epsilon}, \end{align*}$ |
with a constant
(i)
(ii)
1. | Chiara Giverso, Tommaso Lorenzi, Luigi Preziosi, Effective interface conditions for continuum mechanical models describing the invasion of multiple cell populations through thin membranes, 2022, 125, 08939659, 107708, 10.1016/j.aml.2021.107708 | |
2. | Martin Dugstad, Kundan Kumar, Øystein Pettersen, Dimensional reduction of a fractured medium for a polymer EOR model, 2021, 25, 1420-0597, 1753, 10.1007/s10596-021-10075-w | |
3. | Apratim Bhattacharya, Markus Gahn, Maria Neuss-Radu, Effective transmission conditions for reaction–diffusion processes in domains separated by thin channels, 2022, 101, 0003-6811, 1896, 10.1080/00036811.2020.1789599 | |
4. | Markus Gahn, Willi Jäger, Maria Neuss-Radu, Correctors and error estimates for reaction–diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion, 2021, 383, 03770427, 113126, 10.1016/j.cam.2020.113126 | |
5. | Markus Gahn, Maria Neuss-Radu, Singular Limit for Reactive Diffusive Transport Through an Array of Thin Channels in case of Critical Diffusivity, 2021, 19, 1540-3459, 1573, 10.1137/21M1390505 | |
6. | Mark A. Peletier, André Schlichting, Cosh gradient systems and tilting, 2022, 0362546X, 113094, 10.1016/j.na.2022.113094 | |
7. | Lena Scholz, Carina Bringedal, A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media, 2022, 141, 0169-3913, 737, 10.1007/s11242-022-01746-y | |
8. | M. Gahn, M. Neuss-Radu, I.S. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, 2021, 289, 00220396, 95, 10.1016/j.jde.2021.04.013 | |
9. | Markus Gahn, Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient, 2021, 0, 1534-0392, 0, 10.3934/cpaa.2021167 | |
10. | Florian List, Kundan Kumar, Iuliu Sorin Pop, Florin Adrian Radu, Rigorous Upscaling of Unsaturated Flow in Fractured Porous Media, 2020, 52, 0036-1410, 239, 10.1137/18M1203754 | |
11. | Kundan Kumar, Florian List, Iuliu Sorin Pop, Florin Adrian Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media, 2020, 407, 00219991, 109138, 10.1016/j.jcp.2019.109138 | |
12. | Martin Dugstad, Kundan Kumar, Dimensional reduction of a fractured medium for a two-phase flow, 2022, 162, 03091708, 104140, 10.1016/j.advwatres.2022.104140 | |
13. | Mark A. J. Chaplain, Chiara Giverso, Tommaso Lorenzi, Luigi Preziosi, Derivation and Application of Effective Interface Conditions for Continuum Mechanical Models of Cell Invasion through Thin Membranes, 2019, 79, 0036-1399, 2011, 10.1137/19M124263X | |
14. | Giuseppe Cardone, Willi Jäger, Jean Louis Woukeng, Derivation and analysis of a nonlocal Hele–Shaw–Cahn–Hilliard system for flow in thin heterogeneous layers, 2024, 34, 0218-2025, 1343, 10.1142/S0218202524500246 | |
15. | Tom Freudenberg, Michael Eden, Homogenization and simulation of heat transfer through a thin grain layer, 2024, 19, 1556-1801, 569, 10.3934/nhm.2024025 | |
16. | Hongru Ma, Yanbin Tang, Homogenization of a nonlinear reaction‐diffusion problem in a perforated domain with different size obstacles, 2024, 104, 0044-2267, 10.1002/zamm.202300333 | |
17. | Hongru Ma, Yanbin Tang, Homogenization of a semilinear elliptic problem in a thin composite domain with an imperfect interface, 2023, 46, 0170-4214, 19329, 10.1002/mma.9628 | |
18. | Renata Bunoiu, Karim Karim, Claudia Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, 2021, 2021, 1072-6691, 59, 10.58997/ejde.2021.59 | |
19. | Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with flux jump in high contrast composites, 2024, 103, 0003-6811, 2269, 10.1080/00036811.2023.2291810 |