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Abstract. In this paper, we consider a system of reaction–diffusion equations

in a domain consisting of two bulk regions separated by a thin layer with thick-
ness of order ε and a periodic heterogeneous structure. The equations inside

the layer depend on ε and the diffusivity inside the layer on an additional
parameter γ ∈ [−1, 1]. On the bulk-layer interface, we assume a nonlinear

Neumann-transmission condition depending on the solutions on both sides of

the interface. For ε→ 0, when the thin layer reduces to an interface Σ between
two bulk domains, we rigorously derive macroscopic models with effective con-

ditions across the interface Σ. The crucial part is to pass to the limit in the

nonlinear terms, especially for the traces on the interface between the different
compartments. For this purpose, we use the method of two-scale convergence

for thin heterogeneous layers, and a Kolmogorov-type compactness result for

Banach valued functions, applied to the unfolded sequence in the thin layer.

1. Introduction. We consider a system of reaction–diffusion equations in a do-
main Ω consisting of two bulk regions Ω+

ε and Ω−ε , which are separated by a thin
layer ΩMε with periodic heterogeneous structure. The thickness of the thin layer as
well as the period and the size of its heterogeneities are of order ε > 0. Here, the
parameter ε is much smaller than the length scale of the domain Ω. The equations
in the layer depend on ε, the diffusion coefficients having the size εγ with γ ∈ [−1, 1].
On the interface S±ε between the bulk region Ω±ε and the thin layer ΩMε , we consider
nonlinear transmission conditions formulated in terms of normal fluxes which are
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given by nonlinear functions of the solutions on both sides of S±ε . Our aim is to
derive effective models in the limit ε→ 0.

In the limit, the thin layer reduces to an interface Σ between the bulk domains
Ω±. The processes in the bulk are again described by a system of nonlinear reaction–
diffusion equations, and the main challenges of the paper are related to the deriva-
tion of effective interface conditions across Σ. To a certain extent, the effective
interface conditions preserve the form of the microscopic ones in the sense that
they involve the normal fluxes of the macroscopic solutions at Σ. These fluxes are
given by nonlinear functions of the solutions in the respective bulk domain and the
homogenized limit of the microscopic solutions in the thin layer. It turns out that
the equations satisfied by the latter depend on the values of the parameter γ. More
precisely, for γ = 1 the homogenized problem in the layer is formulated on the
standard periodicity cell, for γ ∈ (−1, 1), we obtain a nonlinear system of ordinary
differential equations on Σ, whereas for γ = −1 a system of nonlinear reaction–
diffusion equations on Σ arises. In all three cases, the homogenized problem in the
layer is coupled to the macroscopic solutions in the bulk domains Ω±.

The rigorous derivation of interface conditions for multi-scale and multi-physics
problems is a field that is just at the beginning. More and better analytical multi-
scale tools are required to treat the arising nonlinear systems in many applications
(e.g. biology, material sciences or geosciences, to mention just few of them). Our
paper is one of the first steps in this process. The effective model derived here is a
non-standard micro-macro strongly coupled system of nonlinear equations, involving
the bulk-regions, the separating interface and the so called cell problem which takes
care of the microscopic processes in the thin layer.

The derivation of effective interface conditions is based on two-scale convergence
for thin heterogeneous layers, and a Kolmogorov-type compactness result for Ba-
nach valued functions, applied to the unfolded sequence in the layer. Compared
to previous contributions (see [14, 15] for γ = 1 and [10] for γ ∈ [−1, 1)), where
continuous transmission conditions for the microscopic solutions and their normal
fluxes were considered at the interfaces S±ε , we deal here with additional difficulties
induced by nonlinear transmission conditions at S±ε . More precisely, we have non-
linear terms on the interfaces S±ε , and less regularity in time for the solutions. To
cope with these problems, additionally to the techniques developed in [14, 15, 10],
we make use of the auxiliary function given by the average with respect to the n-th
spatial variable in the layer, and the averaging operator for thin domains, which is
the adjoint of the unfolding operator in the layer. The averaged function is used
in case γ ∈ [−1, 1) as an approximation for the solution in the layer. Its proper-
ties allow the application of classical compactness results (Aubin-Lions-lemma for
γ = −1, and classical Kolmogorov-criterion for γ ∈ (−1, 1)). However, to apply
the latter, we have to introduce equivalent norms on the Sobolev space H1(ΩMε ),
which are well adapted to the thin layer and to different choices of γ. The averaging
operator for thin domains is used in case γ = 1 to prove that the time derivative
of the unfolded sequence in the layer exists in a weak sense, and that it can be
controlled by the time derivative of the solution itself. This allows to show that the
assumptions of the Kolmogorov-type compactness result for Banach valued func-
tions, see [8], are fulfilled, which gives strong convergence of the unfolded sequence.
We emphasize that also in this case, the scaled Sobolev spaces mentioned above are
needed.
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The investigation of processes in domains separated by thin layers with periodic
microstructure can also be found in elasticity problems, see e. g., [11, 13] where
the heterogeneous structure is described by periodically varying constitutive prop-
erties, or [12], where two domains separated by a thin layer made of periodic ver-
tical beams are considered. Further applications can be encountered in fluid flow
through thin filters, built up by an array of obstacles, see e. g., [3]. In [17], a re-
active transport model with an additional convective contribution in the thin layer
and a nonlinear transmission condition of Dirichlet type at the bulk-layer interface
was considered. In the latter, however, a thin homogeneous layer was considered.
In [4], long and horizontally arranged inclusions, only connected in one direction,
were considered for a linear reaction-diffusion problem, and a concept of two-scale
convergence adapted to this special structure was introduced.

This paper is organized as follows: In Section 2, we introduce the microscopic
model, and establish existence and uniqueness of a weak solution. In Section 4, we
derive estimates for the microscopic solutions necessary for the derivation of strong
compactness results. The averaged function is defined in Section 5 and some basic
properties are established. In Section 6 the averaging operator for thin domains
is defined and the commuting property of the generalized time derivative and the
unfolding operator is proved. Section 7 contains our main results. First, we prove
compactness results for the microscopic solutions, especially the strong convergences
in the thin layer. These are then used for the derivation of macroscopic models,
including the effective interface conditions. In the A, we briefly recapitulate the
concepts of two-scale convergence and unfolding operator for thin domains, together
with related basic results.

2. The microscopic model. We consider the domain Ω := Σ × (−H,H) ⊂ Rn
with fixed H > 0, n ≥ 2, and Σ is a bounded and connected Lipschitz domain in
Rn−1. Further, let ε > 0 be a sequence with ε−1 ∈ N. The set Ω consists of three
subdomains given by

Ω+
ε := Σ× (ε,H),

ΩMε := Σ× (−ε, ε),
Ω−ε := Σ× (−H,−ε),

see Figure 1. The domains Ω±ε and ΩMε are separated by an interface S±ε , i. e.,

S+
ε := Σ× {ε} and S−ε := Σ× {−ε},

hence, we have Ω = Ω+
ε ∪ Ω−ε ∪ ΩMε ∪ S+

ε ∪ S−ε . As mentioned above, for ε → 0
the membrane ΩMε reduces to an interface Σ × {0}, which we also denote by Σ
suppressing the n-th component, and we define

Ω+ := Σ× (0, H) and Ω− := Σ× (−H, 0).

To describe the microscopic structure of ΩMε , we introduce the standard cell Z given
by

Z := Y × (−1, 1) with Y := (0, 1)n−1,

and denote the upper and lower boundary of Z by

S+ := Y × {1} = (0, 1)n−1 × {1} and S− := Y × {−1} = (0, 1)n−1 × {−1}.

The vector valued functions u±ε : (0, T )×Ω±ε → Rm and uMε : (0, T )×ΩMε → Rm
are the solutions of
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Figure 1. The microscopic domain containing the thin layer ΩMε
with periodic structure for n = 2. The heterogeneous structure of
the membrane is modeled by the diffusion coefficient DM .

∂tu
±
i,ε −D

±
i ∆u±i,ε = f+

i (u±ε ) in (0, T )× Ω±ε , (1a)

−D±i ∇u
±
i,ε · ν = −h±i (u±ε , u

M
ε ) on (0, T )× S±ε , (1b)

−D±i ∇u
±
i,ε · ν = 0 on (0, T )× ∂Ω±ε \ S±ε , (1c)

u±ε (0) = U±0 in Ω±ε , (1d)

for i = 1, . . . ,m, and
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ε
∂tu
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i,ε − εγ∇ ·

(
DM
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(x
ε

)
∇uMi,ε

)
=

1

ε
gi

(x
ε
, uMε

)
in (0, T )× ΩMε , (1e)

−εγDM
i

( ·
ε

)
∇uMi,ε · ν = −hM,±

i

( x̄
ε
, uMε , u

±
ε

)
on (0, T )× S±ε , (1f)

−εγDM
i

( ·
ε

)
∇uMi,ε · ν = 0 on (0, T )× ∂ΩMε \ S±ε ,

(1g)

uMε (0) = UM0

(̄
·, ·xn
ε

)
in ΩMε , (1h)

for γ ∈ [−1, 1] and i = 1, . . . ,m.
Thin heterogeneous layers occur in many applications, e.g., biology and engineer-

ing, and for every specific situation appropriate transmission conditions between
the layer domain and the bulk regions are required. In previous contributions (see
[14, 15] for γ = 1 and [10] for γ ∈ [−1, 1)), the authors considered continuous
transmission conditions for the microscopic solutions and their normal fluxes at the
interfaces S±ε . However, in many applications the concentrations are discontinuous
at the interfaces between different regions and the normal fluxes across these inter-
faces are controlled by traces of the concentrations in the neighboring regions. In
the present paper, this situation is modelled, with the help of the nonlinear trans-
mission conditions at S±ε . Furthermore, as can be seen from the methods used in
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our paper, we now have the opportunity to mix up the nonlinear Neumann trans-
mission conditions and the continuous transmission conditions on S±ε for different
species, and thus to extend the range of applications which can be investigated using
multiscale techniques, see also Remark 5 (ii). Finally, let us also mention that the
scaling of the equations in the layer allows for a wide range of diffusion coefficients,
and is motivated by the different roles played by the layers in different applications.

Assumptions on the data:

A1) For i = 1, . . . ,m it holds that D±i > 0 and DM
i ∈ L∞per

(
Y, L∞(−1, 1)

)
. Fur-

ther, we set DM
i,ε(x) := DM

i

(
x
ε

)
and DM

i is strictly positive almost everywhere.

A2) The function f± = (f±1 , . . . , f
±
m) : Rm → Rm is Lipschitz continuous. This

ensures the existence of a constant C > 0 such that

|f±i (z)| ≤ C
(
1 + |z|

)
for all z ∈ Rm.

A3) The function g = (g1, . . . , gm) : Y × [−1, 1] × Rm → Rm is continuous, uni-
formly Lipschitz continuous with respect to the last variable, and Y -periodic
with respect to the first variable. Especially,

|gi(ȳ, yn, z)| ≤ C
(
1 + |z|

)
for all (ȳ, yn, z) ∈ Y × [−1, 1]× Rm.

We shortly write y = (ȳ, yn) and define gε(t, x, z) := g
(
t, xε , z

)
.

A4) The function h± = (h±1 , . . . , h
±
m) : Rm × Rm → Rm is Lipschitz continuous,

especially, there exists a constant C > 0 such that

|h±(z±, zM )| ≤ C
(
1 + |z±|+ |zM |

)
∀ (z±, zM ) ∈ Rm × Rm.

A5) The function hM,± = (hM,±
1 , . . . , hM,±

m ) : Y ×Rm×Rm → Rm is continuous, Y -
periodic with respect to the first variable, and uniformly Lipschitz continuous
with respect to the second and the third variable, i. e., for a constant C > 0
it holds that

|hM,±(ȳ, zM , z±)| ≤ C
(
1 + |z±|+ |zM |

)
∀
(
ȳ, zM , z±

)
∈ Y × Rm × Rm.

A6) For the initial functions we assume U±0 ∈ L2(Ω±)m and UM0 ∈ L2(Σ ×
(−1, 1))m.

In the following, we denote for an arbitrary open set U ⊂ Rn the duality pairing
〈·, ·〉H1(U)′,H1(U) by 〈·, ·〉U , and the inner product (·, ·)L2(U) by (·, ·)U .

Definition 2.1. We call uε := (u+
ε , u

M
ε , u

−
ε ) with u±ε : (0, T ) × Ω±ε → Rm and

uMε : (0, T )× ΩMε → Rm a weak solution of the Problem (1), if

u±ε ∈ L2((0, T ), H1(Ω±ε ))m ∩H1((0, T ), H1(Ω±ε )′)m,

uMε ∈ L2((0, T ), H1(ΩMε ))m ∩H1((0, T ), H1(ΩMε )′)m,

and for all test-functions φ± ∈ H1(Ω±ε ) and φM ∈ H1(ΩMε ), and almost every
t ∈ (0, T ) it holds that〈
∂tu
±
i,ε, φ

±〉
Ω±ε

+D±i
(
∇u±i,ε,∇φ

±)
Ω±ε

=
(
f±i (u±ε ), φ±

)
Ω±ε

+
(
h±i (u±ε , u

M
ε ), φ±

)
S±ε
,

1

ε

〈
∂tu

M
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M
〉

ΩMε
+ εγ

(
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i

( ·
ε

)
∇uMi,ε,∇φM

)
ΩMε

=
1

ε

(
gi

( ·
ε
, uMε

)
, φM

)
ΩMε

+
(
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i

( ·x̄
ε
, uMε , u

+
ε
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, φM

)
S+
ε

+
(
hM,−
i

( ·x̄
ε
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−
ε

)
, φM

)
S−ε

,

(2)

together with the initial conditions (1d) and (1h).
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First of all, we establish the existence of a unique solution using a fix-point
argument. The idea is standard, therefore we only give a short sketch of the proof.

Proposition 1. For every γ ∈ [−1, 1] there exists a unique weak solution uε of the
Problem (1).

Proof. Uniqueness follows by standard energy estimates. For the existence, we use
Schäfer’s fixed point theorem on the space

X := X+ ×XM ×X−

with X∗ := L2((0, T ), Hβ(Ω∗ε ))
m for ∗ ∈ {+,−,M} and β ∈

(
1
2 , 1
)

fixed, where on
X we define the operator F : X → X by F(ū) = u and u is the unique weak solution
of the linearized problem of (1), where we replace the functions in the arguments
of the nonlinearities on the right-hand side by the function ū. The existence of u is
ensured by the Galerkin-method. The continuity and compactness of the operator
F is based on the compactness of the embedding

L2((0, T ), H1(Ω∗ε )) ∩H1((0, T ), H1(Ω∗ε )
′) ↪→ L2((0, T ), Hβ(Ω∗ε ))

and similar estimates as in Lemma 4.2 below.

3. Main results. Our aim is to derive macroscopic approximations for the micro-
scopic solutions uε by passing to the limit ε → 0 in the variational equation (2).
Hereby, we use multi-scale techniques adapted to the thin layers with microscopic
structure, like the two scale-convergence and the unfolding operator for thin do-
mains. The definitions and a brief overview on results related to this concepts are
given in Appendix A.

In this section, we point out main steps in this process, and indicate the chal-
lenging aspects together with our original contributions. Eventually, we present the
macroscopic models (which differ for different values of the parameter γ) obtained
in the limit ε→ 0.

3.1. Estimates of the microscopic solutions. To pass to the asymptotic limit
for ε → 0, we use compactness results based on estimates for uε. Firstly, we prove
energy estimates, see Lemma 4.2, by using rather standard techniques. More chal-
lenging are, however, the estimates for the difference between the solutions and
their shifts, which are used to prove strong convergence results for the solution uMε
in the thin layer and its traces on S±ε , by means of Kolmogorov-type theorems. The
estimates for shifts with respect to the spatial variable x are given in Lemma 4.3.
Similar estimates can be found in previous works of the authors, e.g., [15, 10]. To
estimate the shifts with respect to the time variable, see Theorem 7.3, we introduce
the equivalent norm

‖vε‖2Hε,γ :=
1

ε
‖vε‖2L2(ΩMε ) + εγ

∥∥∇vε∥∥2

L2(ΩMε )
. (3)

on H1(ΩMε ), and estimate the solution in the layer and its time deriative with
respect to this norm, see Lemma 4.4.

3.2. The averaged function in thin domains. Our next step is to prove com-
pactness results for the microscopic solutions, especially in the thin layer. We treat
differently the cases γ ∈ [−1, 1) and γ = 1. For γ ∈ [−1, 1), we approximate the
solution in the layer by its average with respect to the variable xn, i.e., we define
for uε ∈ L2((0, T )× ΩMε ) the function ūε ∈ L2((0, T )× Σ) via
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ūε(t, x̄) :=
1

2ε

∫ ε

−ε
uε(t, x̄, xn)dxn.

In Section 5, we provide estimates for the averaged function in thin domains and
estimate the difference between the averaged function and the microscopic solution
uMε on the domain ΩMε and on the boundaries S±ε . Based on these results, we
establish the relation between the weak limit of ūε and the two-scale limit of uMε
in the layer, see (13) and show a regularity result with respect to time for the
two-scale limit u0, see Proposition 3. Eventually, we prove a strong compactness
result for γ = 1, see Proposition 4. In conclusion, we can say that the averaged
function provides an elegant and powerful tool for showing compactness results with
respect to strong two-scale convergence in the thin layer. We emphasize however,
that a main ingredient in the proof of the compactness result was the fact that for
γ ∈ [−1, 1), the two-scale limit of uMε is independent of the microscopic variable y.

3.3. The averaging operator in thin domains and the time derivative of
the unfolded sequence. In the critical case γ = 1, the two-scale limit of uMε in
general depends on y, and the averaged function in the thin layer is not any longer
a good approximation for uMε . To show strong compactness results in this case, we
use the unfolded sequence in the layer together with a Kolmogorov-typ compactness
result for Banach valued functions, see [8]. This requires some regularity of the time
derivative of the unfolded sequence T Mε uMε . To get rid with this challenging task,
in Section 6 we introduce the so called averaging operator for thin domains UMε ,
see also [6] for general domains. It turns out that 1

εU
M
ε is the formal adjoint of the

unfolding operator T Mε . Based on the properties of the averaging operator, we are
able to show a regularity result with respect to time of the unfolded sequence in the
layer, see Proposition 7, and then to estimate ∂tT Mε uMε by the time derivative of
the function uMε . Here again the equivalent norm (3) is required, see Proposition 8.

3.4. Derivation of the macroscopic problems. Using the results from the pre-
vious sections, in Section 7 we give the proofs for our main results: The convergences
of the microscopic solutions, see Theorem 7.1, 7.3, and 7.5, as well as the macro-
scopic models. The latter consist of equations in the bulk regions Ω± and effective
interface laws at Σ, and can be found in Theorem 3.1 (for the case γ = −1), Theo-
rem 3.2 (for the case γ ∈ (−1, 1)) and Theorem 3.3 (for the case γ = 1), which we
formulate in the following:

Theorem 3.1. Let γ = −1 and let uε be the solution of Problem (1). Let u±0 and
uM0 be the limit functions from Proposition 9 and Theorem 7.1. Then

u±0 ∈ L2((0, T ), H1(Ω±))m ∩H1((0, T ), H1(Ω±)′)m,

uM0 ∈ L2((0, T ), H1(Σ))m ∩H1
(
(0, T ), H1(Σ)′

)m
,

and (u±0 , u
M
0 ) is the unique weak solution of

∂tu
±
i,0 −D

±
i ∆u±i,0 = f±i

(
u±0
)

in (0, T )× Ω±,

−D±i ∇u
±
i,0 · ν = 0 on (0, T )× ∂Ω± \ Σ,

−D±i ∇u
±
i,0 · ν = −h±i

(
u±0 , u

M
0

)
on (0, T )× Σ,

u±0 (t) = U±0 in Ω±,

for i = 1, . . . ,m, and
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|Z|∂tuMi,0 −∇x̄ ·
(
DM,∗
i ∇x̄uMi,0

)
=

∫
Z

gi(y, u
M
0 (·t, ·x̄))dy

+
∑

α∈{±}

∫
Y

hM,α
i (ȳ, uM0 (·t, ·x̄), uα0 (·t, ·x̄, 0)

)
dȳ in (0, T )× Σ,

−DM
i ∇yuMi,0 · ν = 0 on (0, T )× ∂Σ,

uM0 (0, ·x̄) =

∫
Z

UM0 (·x̄, yn)dy in Σ,

where the homogenized diffusion matrix DM,∗
i ∈ R(n−1)×(n−1) is given by(

DM,∗
i

)
kl

=

∫
Z

DM
i (y)

(
∇wi,k + ek

)
·
(
∇wi,l + el

)
dy,

and the wi,j are the solutions of the cell-problems

−∇ ·
(
DM
i

(
∇wi,j + ej

))
= 0 in Z,

−DM
i

(
∇wi,j + ej

)
· ν = 0 on S+ ∪ S−,

wi,j is Y -periodic with

∫
Z

wi,jdy = 0.

(4)

Theorem 3.2. For γ ∈ (−1, 1), let uε be the solution of Problem (1), u±0 and uM0
are the limit functions from Proposition 9 and Theorem 7.3. Then

u±0 ∈ L2((0, T ), H1(Ω±))m ∩H1((0, T ), H1(Ω±)′)m,

uM0 ∈ H1
(
(0, T ), L2(Σ))m,

and (u±0 , u
M
0 ) is the unique weak solution of

∂tu
±
i,0 −D

±
i ∆u±i,0 = f±i

(
u±0
)

in (0, T )× Ω±,

−D±i ∇u
±
i,0 · ν = 0 on (0, T )× ∂Ω± \ Σ,

−D±i ∇u
±
i,0 · ν = −h±i

(
u±0 , u

M
0

)
on (0, T )× Σ,

u±0 (0) = U±0 in Ω±,

for i = 1, . . . ,m, and

|Z|∂tuMi,0 =

∫
Z

gi(y, u
M
0 (·t, ·x̄))dy

+
∑

α∈{±}

∫
Y

hM,α
i (ȳ, uM0 (·t, ·x̄), uα0 (·t, ·x̄, 0)

)
dȳ in (0, T )× Σ,

uM0 (0, ·x̄) =

∫ 1

−1

UM0 (·x̄, yn)dyn in Σ.

Theorem 3.3. Let uε be the solution of Problem (1) for γ = 1, u±0 and uM0 are the
limit functions from Proposition 9 and Theorem 7.5. Then

u±0 ∈ L2((0, T ), H1(Ω±))m ∩H1((0, T ), H1(Ω±)′)m,

uM0 ∈ L2
(
(0, T ), L2(Σ,Hper)

)m ∩H1
(
(0, T ), L2(Σ,Hper)

′)m,
and (u±0 , u

M
0 ) is the unique weak solution of

∂tu
±
i,0 −D

±
i ∆u±i,0 = f±i

(
u±0
)

in (0, T )× Ω±,
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−D±i ∇u
±
i,0 · ν = 0 on (0, T )× ∂Ω± \ Σ,

−D±i ∇u
±
i,0 · ν = −

∫
Y

h±i
(
u±0 , u

M
0 (·t, ·x̄, ·ȳ,±1

)
dȳ on (0, T )× Σ,

u±0 (t) = U±0 in Ω±,

for i = 1, . . . ,m, and (∂±Z := ∂Z \ (S+ ∪ S−))

∂tu
M
i,0 −∇y ·

(
DM
i ∇yuMi,0

)
= gi

(
·y, uM0

)
in (0, T )× Σ× Z,

−DM
i ∇yuMi,0 · ν = −hM,±

i

(
·ȳ, uM0 (·t, ·x̄, ·ȳ,±1), u±0 (·t, ·x̄, 0)

)
on (0, T )× Σ× S±,

−DM
i ∇yuMi,0 · ν = 0 on (0, T )× Σ× ∂±Z,
uM0 (0, ·x̄, ·y) = UM0 (·x̄, ·yn) in Σ× Z,

uM0 is Y -periodic with respect to the last variable.

4. Estimates of the microscopic solutions. Our aim is to derive macroscopic
approximations for the microscopic solutions uε by passing to the limit ε → 0 in
the variational equation (2). For this purpose, we use compactness results based
on estimates for uε. A main issue in the proof of these estimates is to exhibit the
precise dependence on the parameters ε and δ.

Throughout this paper, we will frequently use the following trace estimate for
thin domains.

Lemma 4.1. For uε ∈ H1(ΩMε ) and every θ > 0 it holds that

‖uε‖L2(S±ε ) ≤
C(θ)√
ε
‖uε‖L2(ΩMε ) + θ

√
ε
∥∥∇uε∥∥L2(ΩMε )

,

with a constant C(θ) > 0.

Proof. There exists an extension ũε ∈ H1(Rn−1 × (−ε, ε)) of uε, such that

‖ũε‖L2(Rn−1×(−ε,ε)) ≤ C∗‖uε‖L2(ΩMε ), ‖ũε‖H1(Rn−1×(−ε,ε)) ≤ C∗‖uε‖H1(ΩMε ),

with a constant C∗ > 0 independent of ε. This follows from the fact that we extend
the function uε only with respect to the first (n − 1) components and fix the last
one. Now, define Rε := R× (−ε, ε), such that R ⊂ Rn−1 is a rectangle with integer
corner points and Σ ⊂ R. By a decomposition argument for Rε, we obtain for
arbitrary θ > 0

‖uε‖L2(S±ε ) ≤ ‖ũε‖L2(R×{±ε}) ≤
C(θ)√
ε
‖ũε‖L2(Rε) + θ

√
ε‖∇ũε‖L2(Rε)

≤ C(θ)√
ε
‖uε‖L2(ΩMε ) + θC∗

√
ε‖∇uε‖L2(ΩMε ).

In a first step, we obtain the following estimates:

Lemma 4.2. The solution uε of Problem (1) fulfills the following a priori estimates
for a constant C > 0 independent of ε

‖u±i,ε‖L∞((0,T ),L2(Ω±ε )) +
∥∥∇u±i,ε∥∥L2((0,T ),L2(Ω±ε ))

≤ C, (5a)

1√
ε
‖uMi,ε‖L∞((0,T ),L2(ΩMε )) + ε

γ
2

∥∥∇uMi,ε‖L2((0,T ),L2(ΩMε )) ≤ C, (5b)
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1√
ε
‖∂tuMi,ε‖L2((0,T ),H1(ΩMε )′) + ‖∂tu±i,ε‖L2((0,T ),H1(Ω±ε )′) ≤ C, (5c)

for i = 1, . . . ,m.

Proof. Test the variational equation (2) for u±i,ε with u±i,ε and use the growth con-

ditions for f±i and h±i from our assumptions to obtain almost everywhere in (0, T )〈
∂tu
±
i,ε, u

±
i,ε

〉
Ω±ε

+D±i
∥∥∇u±i,ε∥∥2

L2(Ω±ε )
=
(
f±i (u±ε ), u±i,ε

)
Ω±ε

+
(
h±i (u±ε , u

M
ε ), u±i,ε

)
S±ε

≤ C
(
1 + ‖u±i,ε‖

2
L2(Ω±ε )

+ ‖u±i,ε‖
2
L2(S±ε )

+ ‖uMε ‖2L2(S±ε )

)
≤ C

(
1 + ‖u±ε ‖2L2(Ω±ε )

+
1

ε
‖uMε ‖2L2(ΩMε )

)
+ δε

∥∥∇uMi,ε‖2L2(ΩMε ) + δ
∥∥∇u±ε ∥∥2

L2(Ω±ε )

)
,

for an arbitrary δ > 0, where we have used the scaled trace estimate from Lemma
4.1. Now, testing the equation (2) for uMi,ε with uMi,ε and using similar arguments as
above we get

1

ε

〈
∂tu

M
i,ε,u

M
i,ε

〉
ΩMε

+ εγ
(
DM
i

( ·
ε

)
∇uMi,ε,∇uMi,ε

)
ΩMε

=
1

ε

(
gi

( ·
ε
, uMε

)
, uMi,ε

)
ΩMε

+
(
hM,+
i

( ·x̄
ε
, uMε , u

+
ε

)
, uMi,ε

)
S+
ε

+
(
hM,−
i

( ·x̄
ε
, uMε , u

−
ε

)
, uMi,ε

)
S−ε

≤ C
(

1 +
1

ε
‖uMε ‖2L2(ΩMε ) + ‖uMε ‖2L2(S+

ε ∪S−ε )
+ ‖u+

ε ‖2L2(S+
ε )

+ ‖u−ε ‖2L2(S−ε )

)
≤ C

(
1 +

1

ε
‖uMε ‖2L2(ΩMε ) + ‖u+

ε ‖2L2(Ω+
ε )

+ ‖u−ε ‖2L2(Ω−ε )

)
+ δ

(
ε
∥∥∇uMε ∥∥2

L2(ΩMε )
+
∥∥∇u+

ε

∥∥2

L2(Ω+
ε )

+
∥∥∇u−ε ∥∥2

L2(Ω−ε )

)
for an arbitrary δ > 0. Using the identity 〈∂tu±i,ε, u

±
i,ε〉Ω±ε = 1

2
d
dt‖u

±
i,ε‖2L2(Ω±ε )

and a

similar result for the function uMi,ε, we obtain from the both inequalities above by
summing over i = 1, . . . ,m, choosing δ small enough (so the terms including δ can
be absorbed by the left-hand side), the positivity of DM

i , and ε ≤ εγ for small ε,
the inequality

d

dt

(
1

ε
‖uMε (t)‖2L2(ΩMε ) + ‖u+

ε (t)‖2
L2(Ω+

ε )
+ ‖u−ε (t)‖2

L2(Ω−ε )

)
+ εγ

∥∥∇uMε (t)
∥∥2

L2(ΩMε )
+
∥∥∇u+

ε (t)
∥∥2

L2(Ω+
ε )

+
∥∥∇u−ε (t)

∥∥2

L2(Ω−ε )

≤ C
(

1 +
1

ε
‖uMε (t)‖2L2(ΩMε ) + ‖u+

ε (t)‖2
L2(Ω+

ε )
+ ‖u−ε (t)‖2

L2(Ω−ε )

)
.

Integrating with respect to time from 0 to t ∈ (0, T ) gives us

1

ε
‖uMε (t)‖2L2(ΩMε )+‖u

+
ε (t)‖2

L2(Ω+
ε )

+ ‖u−ε (t)‖2
L2(Ω−ε )

+ εγ
∥∥∇uMε ∥∥2

L2((0,t)×ΩMε )
+
∥∥∇u+

ε

∥∥2

L2((0,t)×Ω+
ε )

+
∥∥∇u−ε ∥∥2

L2((0,t)×Ω−ε )

≤ C
(

1 +
1

ε
‖uMε ‖2L2((0,t)×ΩMε ) + ‖u+

ε ‖2L2((0,t)×Ω+
ε )

+ ‖u−ε ‖2L2((0,t)×Ω−ε )

)
+

1

ε

∥∥∥UM0 (
·x̄,
·xn
ε

)∥∥∥2

L2(ΩMε )
+ ‖U+

0 ‖2L2(Ω+
ε )

+ ‖U−0 ‖2L2(Ω−ε )
.
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The assumptions for the initial conditions and Gronwall’s inequality imply

1

ε
‖uMε ‖2L∞((0,T ),L2(ΩMε )) + ‖u+

ε ‖2L∞((0,T ),L2(Ω+
ε ))

+ ‖u−ε ‖2L∞((0,T ),L2(Ω−ε ))
≤ C,

and together with the inequality above, we obtain the estimates for the gradients
in (5a) and (5b). It remains to prove the estimates for the time derivative. There-
fore we test the variational equation (2) for u±i,ε with v± ∈ H1(Ω±ε ), such that

‖v±‖H1(Ω±ε ) ≤ 1 and obtain with similar arguments as above〈
∂tu
±
i,ε,v

±〉
Ω±ε

= −D±i
(
∇u±i,ε,∇v

±)
Ω±ε

+
(
f±i (u±ε ), v±

)
Ω±ε

+
(
h±i (u±ε , u

M
ε ), v±

)
S±ε

≤ C
(∥∥∇u±i,ε∥∥L2(Ω±ε )

∥∥∇v±∥∥
L2(Ω±ε )

+ ‖v±‖L2(Ω±ε ) + ‖u±ε ‖L2(Ω±ε )‖v
±‖L2(Ω±ε )

+ ‖v±‖L2(S±ε ) + ‖u±ε ‖L2(S±ε )‖v
±‖L2(S±ε ) + ‖uMε ‖L2(S±ε )‖v

±‖L2(S±ε )

)
.

Using again the trace estimate from Lemma 4.1, the boundedness of v±, and the
definition of the operator norm in H1(Ω±ε )′, we get for almost every t ∈ (0, T )

‖∂tu±i,ε(t)‖H1(Ω±ε )′ ≤ C
(

1 + ‖u±ε ‖H1(Ω±ε ) +
1√
ε
‖uMε ‖L2(ΩMε ) +

√
ε
∥∥∇uMε ∥∥L2(ΩMε )

)
.

Integration with respect to time and the inequalities (5a) and (5b) imply the sec-
ond inequality in (5c). For the first inequality, we choose vε ∈ H1(ΩMε ) with
‖vε‖H1(ΩMε ) ≤ 1 as a test function for the variational equation in the membrane
and obtain

1

ε

〈
∂tu

M
i,ε, vε

〉
ΩMε

= −εγ
(
DM
i

( ·
ε

)
∇uMi,ε,∇vε

)
ΩMε

+
1

ε

(
gi

( ·
ε
, uMε

)
, vε

)
ΩMε

+
(
hM,+
i

( ·x̄
ε
, uMε , u

+
ε

)
, vε

)
S+
ε

+
(
hM,−
i

( ·x̄
ε
, uMε , u

−
ε

)
, vε

)
S−ε

≤ C
(
εγ
∥∥∇uMi,ε∥∥L2(ΩMε )

∥∥∇vε∥∥L2(ΩMε )
+

1√
ε
‖vε‖L2(ΩMε ) +

1

ε
‖uMε ‖L2(ΩMε )‖vε‖L2(ΩMε )

+ ‖vε‖L2(S+
ε ) + ‖uMε ‖L2(S+

ε )‖vε‖L2(S+
ε ) + ‖u+

ε ‖L2(S+
ε )‖vε‖L2(S+

ε )

+ ‖vε‖L2(S−ε ) + ‖uMε ‖L2(S−ε )‖vε‖L2(S−ε ) + ‖u−ε ‖L2(S−ε )‖vε‖L2(S−ε )

)
.

(6)
Then, using the trace inequality and the boundedness of vε, we get

‖∂tuMi,ε‖2H1(ΩMε )′ ≤ C
(
ε+ε2+2γ

∥∥∇uMi,ε∥∥2

L2(ΩMε )

+ ‖uMε ‖2L2(ΩMε ) + ε‖u+
ε ‖2L2(Ω+

ε )
+ ε‖u−ε ‖2L2(Ω−ε )

)
.

Integration with respect to time and the a priori estimates (5a) and (5b) give

‖∂tuMi,ε‖2L2((0,T ),H1(ΩMε )′) ≤ C
(
ε+ ε2+2γ

∥∥∇uMi,ε∥∥2

L2((0,T )×ΩMε )

)
≤ C

(
ε+ ε2+γ

)
≤ Cε.

This gives us the last inequality and the proof is complete.

The above estimates are not sufficient for the derivation of appropriate strong
convergence results for the solution uMε in the thin layer and its traces on S±ε . Such
results are, however, needed to pass to the limit ε→ 0 in the nonlinear terms in the
variational equation (2). We will show strong convergence by means of Kolmogorov-
type theorems. These rely on the estimates for the difference between the solutions
and their shifts given in the next lemma.
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Since we are operating in bounded domains, we have to make sure that the shifts
are well-defined. For an arbitrary domain U ⊂ Rd, we define for h > 0 the set

Uh := {x ∈ U : dist(∂U, x) > h}. (7)

Further, we write

ΩMε,h := Σh × (−ε, ε), Ω+
ε,h := Σh × (ε,H), Ω−ε,h := Σh × (−H,−ε). (8)

In the same way as in (21) (see Appendix A), we define the sets Kε,h, Σ̂ε,h, Λε,h,

Ω̂Mε,h, and ΛMε,h, by replacing Σ with Σh. For an arbitrary function v ∈ L2(Ω) we

define for l ∈ Zn−1 small and almost every x ∈ Σh × (−H,H)

δlv(x) := v (x+ ε(l, 0))− v(x). (9)

In the following, we suppress the index l on the left-hand side for an easier notation,
but we should keep in mind the dependence on this parameter. The following
estimate for the shifts δuMε hold:

Lemma 4.3. Let uε be the solution of the Problem (1) with γ ∈ [−1, 1]. Then for
every 0 < h � 1, l ∈ Zn−1 with ε|l| < h there exists a constant C = C(h), such
that for almost every t ∈ (0, T ) the following estimate is valid:

1

ε

∥∥δuMε (t)
∥∥2

L2(ΩMε,2h)
+ εγ

∥∥∇δuMi,ε∥∥2

L2((0,T )×ΩMε,2h)

≤ C
(∥∥δu+

ε

∥∥2

L2(0,T )×Ω+
ε,h)

+
∥∥δu−ε ∥∥2

L2((0,T )×Ω−ε,h)
+ εγ+1

+
1

ε

∥∥δuMε (0)
∥∥2

L2(ΩMε,h)
+
∥∥δu+

ε (0)
∥∥2

L2(Ω+
ε,h)

+
∥∥δu−ε (0)

∥∥2

L2(Ω−ε,h)

)
.

Proof. Let η ∈ C∞0 (Σh) be a cut-off function with 0 ≤ η ≤ 1 and η = 1 in Σ2h. For
all φ ∈ H1(ΩMε ) and almost everywhere in (0, T ), we have the following variational
equality for δuMi,ε:

1

ε

〈
∂tδu

M
i,ε,η

2φ
〉

ΩMε
+ εγ

∫
ΩMε

DM
i

(x
ε

)
∇δuMi,ε · ∇

(
η2φ
)
dx

=
1

ε

∫
ΩMε

δgi

(x
ε
, uMε

)
η2φdx+

∑
α∈±

∫
Sαε

δhM,α
i

( x̄
ε
, uMε , u

α
ε

)
η2φdσ,

with

δgi

(x
ε
, uMε

)
:= gi

(x
ε
, uMε,l

)
− gi

(x
ε
, uMε

)
,

δhM,±
i

( x̄
ε
, uMε , u

±
ε

)
:= hM,±

i

( x̄
ε
, uMε,l, u

±
ε,l

)
− hM,±

i

( x̄
ε
, uMε , u

±
ε

)
,

where u∗ε,l(t, x) := u∗ε (t, x + ε(l, 0)) for ∗ ∈ {+,−,M}. Here, we extended uMε by

zero outside ΩMε , but this has no influence due to the cut-off function η. Now,
choose φ = δuMi,ε as a test function, to obtain for a constant c0 > 0

1

2ε

d

dt
‖ηδuMi,ε‖2L2(ΩMε ) + c0ε

γ‖η∇δuMi,ε‖2L2(ΩMε )

≤1

ε

∫
ΩMε

δgi

(x
ε
, uMε

)
η2δuMi,εdx− 2εγ

∫
ΩMε

ηδuMi,εD
M
i

(x
ε

)
∇δuMi,ε · ∇ηdx

+
∑
α∈±

∫
Sαε

δhM,α
i

( x̄
ε
, uMε , u

α
ε

)
η2δuMi,εdσ =: I1

ε + I2
ε + I+

ε + I−ε .
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Now, we integrate with respect to time and estimate the terms on the right-hand
side. From the Lipschitz continuity of g we obtain for the first term∫ t

0

I1
ε dt ≤

C

ε

∥∥ηδuMε ∥∥2

L2((0,t)×ΩMε )
.

For the second term, our a priori estimates imply∫ t

0

I2
ε dt ≤ Cεγ

∥∥ηδuMi,ε∥∥L2((0,t)×ΩMε )

∥∥∇δuMi,ε∥∥L2((0,t)×ΩMε,h)

≤ C
(

1

ε

∥∥ηδuMi,ε∥∥2

L2((0,t)×ΩMε )
+ εγ+1

)
.

Using the Lipschitz continuity of hM,±
i , the scaled trace estimates for thin domains

from Lemma 4.1, and the a priori estimates, we obtain for arbitrary θ > 0∫ t

0

I±ε dt ≤ C
∫ t

0

∫
S±ε

∣∣ηδu±ε ∣∣2 +
∣∣ηδuMε ∣∣2dσdt

≤ C
(∥∥ηδu±ε ∥∥2

L2((0,t)×Ω±ε )
+

1

ε

∥∥ηδuMε ∥∥2

L2((0,t)×ΩMε )
+
∥∥δu±ε ∥∥2

L2((0,t)×Ω±ε,h)
+ ε2

)
+ θ

(∥∥η∇δu±ε ∥∥2

L2((0,t)×Ω±ε )
+ ε
∥∥η∇δuMε ∥∥2

L2((0,t)×ΩMε )

)
.

Altogether, we obtain for arbitrary θ > 0 and almost every t ∈ (0, T ) the estimate

1

ε
‖ηδuMi,ε(t)‖2L2(ΩMε ) −

1

ε
‖ηδuMi,ε(0)‖2L2(ΩMε ) + εγ‖η∇δuMi,ε‖2L2((0,t)×ΩMε )

≤C
(∑
α∈±

∥∥ηδu±ε ∥∥2

L2((0,t)×Ω±ε )
+

1

ε

∥∥ηδuMε ∥∥2

L2((0,t)×ΩMε )
+
∥∥δu±ε ∥∥2

L2((0,t)×Ω±ε,h)
+ εγ+1

)

+ θ

(∑
α∈±

∥∥η∇δu±ε ∥∥2

L2((0,t)×Ω±ε )
+ ε
∥∥η∇δuMε ∥∥2

L2((0,t)×ΩMε )

)
=: ∆.

In a similar way, we get

‖ηδu±i,ε(t)‖
2
L2(Ω±ε )

− ‖ηδu±i,ε(0)‖2
L2(Ω±ε )

+ ‖η∇δu±i,ε‖
2
L2((0,t)×Ω±ε )

≤ ∆.

Adding up all these inequalities, choosing θ small enough, such that the terms on
the right-hand side containing θ can be absorbed by the left-hand side, and using
Gronwall’s inequality, we get the desired result.

Finally, we give further estimates for the solution in the thin layer and its time
derivative with respect to equivalent norms, which are introduced on H1(ΩMε ).
These norms are well adapted to the thin layer structure and the special choice
of γ, and the estimates in these norms are used especially to to control the time
derivative of the unfolded sequence, see Proposition 8, and to estimate the difference
of solutions and their shifts with respect to time, see Theorem 7.3. Thus, let us
define

Hε,γ := {vε ∈ L2(ΩMε ) : ∇vε ∈ L2(ΩMε )n},

together with the inner product

(vε, wε)Hε,γ :=
1

ε
(vε, wε)ΩMε

+ εγ
(
∇vε,∇wε

)
ΩMε

,
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i. e., the norm ‖vε‖2Hε,γ = 1
ε ‖vε‖

2
L2(ΩMε ) + εγ

∥∥∇vε∥∥2

L2(ΩMε )
. Of course, the norm ‖ ·

‖Hε,γ is equivalent to the usual norm ‖·‖H1(ΩMε ) with equivalent-constants depending
on ε.

Remark 1. We consider the Gelfand-triple Hε,γ ⊂ L2(ΩMε ) ⊂ H ′ε,γ under the

natural embedding of Hε,γ in L2(ΩMε ). Then for the microscopic solution in the
layer, we have uMε ∈ H1((0, T ), H ′ε,γ) with 〈∂tuMε , φε〉H′ε,γ ,Hε,γ = 〈∂tuMε , φε〉ΩMε for
all φε ∈ Hε,γ .

For the solution uMε as a function in L2((0, T ), Hε,γ)∩H1((0, T ), H ′ε,γ), we obtain
the following a priori estimates which are independent of γ.

Lemma 4.4. Let uε be the solution of Problem (1) for γ ∈ [−1, 1]. Then, it holds
that

‖uMε ‖L2((0,T ),Hε,γ) ≤ C, (10a)∥∥∂tuMi,ε∥∥L2((0,T ),H′ε,γ)
≤ Cε. (10b)

Proof. The first inequality follows directly from Lemma 4.2. For the second in-
equality, we choose vε ∈ Hε,γ with ‖vε‖Hε,γ = 1, i. e., we have

‖vε‖L2(ΩMε ) ≤
√
ε, ‖∇vε‖L2(ΩMε ) ≤ ε−

γ
2 , ‖vε‖L2(S±ε ) ≤ C.

Inequality (6) from the proof of Lemma 4.2 is still valid for this vε. Using the
inequalities above, we obtain∣∣〈∂tuMi,ε, vε〉H′ε,γ ,Hε,γ ∣∣

≤ C
(
ε1+ γ

2 ‖∇uMε ‖L2(ΩMε ) +
√
ε‖uMε ‖L2(ΩMε ) + ε‖u±ε ‖H1(Ω±ε ) + ε

)
.

Squaring, integration with respect to time, and Lemma 4.2 give us the desired
result.

5. The averaged function in thin domains. The aim of this section is to pro-
vide general results for the averaged function in thin domains, obtained by taking
the average over the n-th component. This function will be used as an auxiliary
function to obtain appropriate strong convergence results for the solution uMε in the
case γ ∈ [−1, 1). We define for uε ∈ L2((0, T )×ΩMε ) the function ūε ∈ L2((0, T )×Σ)
via

ūε(t, x̄) :=
1

2ε

∫ ε

−ε
uε(t, x̄, xn)dxn.

Here, we consider a sequence uε ∈ L2((0, T ), H1(ΩMε ))∩H1((0, T ), H1(ΩMε )′), such
that

1√
ε
‖uε‖L2((0,T )×ΩMε ) + ε

γ
2 ‖∇uε‖L2((0,T )×ΩMε ) +

1√
ε
‖∂tuε‖L2((0,T ),H1(ΩMε )′) ≤ C.

(11)

The following estimates hold for the averaged sequence ūε and its derivatives.

Lemma 5.1. It holds that ūε ∈ L2((0, T ), H1(Σ)) ∩H1((0, T ), H1(Σ)′), such that

‖ūε‖L2((0,T )×Σ) ≤
1√
2ε
‖uε‖L2((0,T )×ΩMε ) ≤ C, (12a)

‖∇x̄ūε‖L2((0,T )×Σ) ≤
1√
2ε
‖∇x̄uε‖L2((0,T )×ΩMε ) ≤ Cε

−γ−1
2 , (12b)
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‖∂tūε‖L2((0,T ),H1(Σ)′) ≤
1√
2ε
‖∂tuε‖L2((0,T ),H1(ΩMε )′) ≤ C. (12c)

Further, we have

1√
ε
‖uε − ūε‖L2(ΩMε ) ≤ 2

√
ε‖∂nuε‖L2((0,T )×ΩMε ) ≤ Cε

1−γ
2 . (12d)

Proof. It is clear that ūε ∈ L2((0, T ), H1(Σ)), so we have to check inequalities (12a)
and (12b). We have

‖ūε‖2L2((0,T )×Σ) =

∫ T

0

∫
Σ

∣∣∣∣ 1

2ε

∫ ε

−ε
uε(t, x̄, xn)dxn

∣∣∣∣2dx̄dt
=

1

(2ε)2

∫ T

0

∫
Σ

∣∣∣∣ ∫ ε

−ε
uε(t, x̄, xn)dxn

∣∣∣∣2dx̄dt
≤ 1

2ε
‖uε‖2L2((0,T )×ΩMε )

(11)

≤ C.

In a similar way, we obtain

‖∇x̄ūε‖2L2(Σ) =
1

(2ε)2

∫ T

0

∫
Σ

∣∣∣∣ ∫ ε

−ε
∇x̄uε(t, x̄, xn)dxn

∣∣∣∣2dx̄dt
≤ 1

2ε
‖∇x̄uε‖2L2((0,T )×ΩMε )

(11)

≤ Cε−γ−1.

Now, we consider the time derivative of ūε. First of all, we have for all ψ ∈ D(0, T ),
and φ ∈ H1(Σ) with constant extension in xn-direction:∫ T

0

∫
Σ

ūε(t, x̄)φ(x̄)ψ′(t)dx̄dt =
1

2ε

∫ T

0

∫
ΩMε

uε(t, x)φ(x̄)ψ′(t)dxdt

= − 1

2ε

∫ T

0

〈∂uε(t), φ〉ΩMε ψ(t)dt,

i. e., we have ∂tūε ∈ L2((0, T ), H1(Σ)′) with

〈∂tūε, φ〉Σ =
1

2ε
〈∂tuε, φ〉ΩMε ∀φ ∈ H1(Σ).

Additionally, since
√

2ε‖φ‖H1(Σ) = ‖φ‖H1(ΩMε ), we immediately obtain the following
estimates almost everywhere in (0, T )∣∣〈∂tūε, φ〉Σ∣∣ ≤ 1

2ε
‖∂tuε‖H1(ΩMε )′‖φ‖H1(ΩMε ) ≤

1√
2ε
‖∂tuε‖H1(ΩMε )′‖φ‖H1(Σ).

Squaring, integration with respect to time, and (11) gives inequality (12c).
It remains to prove estimate (12d). We obtain with the fundamental theorem of

calculus

‖uε − ūε‖2L2((0,T )×ΩMε ) =
1

(2ε)2

∫ T

0

∫
ΩMε

∣∣∣∣ ∫ ε

−ε
uε(t, x̄, xn)− uε(t, x̄, x̃n)dx̃n

∣∣∣∣2dxdt
≤
∫ T

0

∫
ΩMε

(∫ ε

−ε
|∂nuε(t, x̄, s)|ds

)2

dxdt

≤ (2ε)2‖∂nuε‖2L2((0,T )×ΩMε )

(11)

≤ Cε2−γ .
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In the following proposition, we compare the L2-norm on Σ of the traces of uε
on S±ε and the averaged function ūε.

Lemma 5.2. It holds that ∥∥uε|S±ε − ūε∥∥L2(Σ)
≤ Cε

1−γ
2 .

Proof. We only consider the trace on S+
ε . Again from the fundamental theorem of

calculus, we obtain

∥∥uε|S+
ε
− ūε

∥∥2

L2((0,T )×Σ)
=

1

(2ε)2

∫ T

0

∫
Σ

∣∣∣∣ ∫ ε

−ε
uε(x̄, ε)− uε(x̄, xn)dxn

∣∣∣∣2dx̄dt
≤ Cε‖∂nuε‖2L2((0,T )×Σ)

(11)

≤ Cε1−γ .

Remark 2. From Lemma 5.1, we immediately obtain the existence of a function
ū0 ∈ L2((0, T ) × Σ) ∩ H1((0, T ), H1(Σ)′), such that up to a subsequence it holds
that

ūε ⇀ ū0 weakly in L2((0, T )× Σ),

∂tūε ⇀ ∂tū0 weakly in L2((0, T ), H1(Σ)′).

In Section 7, we will use the averaged function to prove convergence results for
the solution uMε in the layer. For this purpose, the following two propositions will
be helpful.

Let u0 ∈ L2((0, T ) × Σ × Z) be the two-scale limit of uε, which exists (up to a
subsequence) due to (11) and Proposition 10.

Proposition 2. The following relation holds between the weak limit ū0 of ūε and
the two-scale limit u0 of uε: For almost every (t, x̄) ∈ (0, T )× Σ, we have

ū0(t, x̄) =
1

|Z|

∫
Z

u0(t, x̄, y)dy. (13)

Proof. For all φ ∈ L2(Σ) and ψ ∈ D(0, T ), we have∫ T

0

∫
Σ

∫
Z

u0(t, x̄, y)φ(x̄)ψ(t)dydx̄dt = lim
ε→0

1

ε

∫ T

0

∫
ΩMε

uε(t, x)φ(x̄)ψ(t)dxdt

= lim
ε→0
|Z|
∫ T

0

∫
Σ

ūε(t, x̄)φ(x̄)ψ(t)dx̄dt = |Z|
∫ T

0

∫
Σ

ū0(t, x̄)φ(x̄)ψ(t)dx̄dt.

From ū0 ∈ H1((0, T ), H1(Σ)′), we get the differentiability respect to time of the
mean of u0 over Z:

Proposition 3. We have 1
|Z|
∫
Z
u0(·t, ·x̄, y)dy ∈ H1((0, T ), H1(Σ)′) with〈

∂t

(
1

|Z|

∫
Z

u0(t, ·x̄, y)dy

)
, φ

〉
Σ

= 〈∂tū0(t), φ〉Σ ∀φ ∈ H1(Σ), a.e. t ∈ (0, T ).
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Proof. This follows easily from partial integration with respect to time. In fact, for
all φ ∈ H1(Σ), ψ ∈ D(0, T ), we get∫ T

0

〈∂tū0, φ〉Σψ(t)dt = lim
ε→0

∫ T

0

〈∂tūε(t), φ〉Σψ(t)dt

= − lim
ε→0

1

2ε

∫ T

0

∫
ΩMε

uε(t, x)φ(x̄)ψ′(t)dxdt

= − 1

|Z|

∫ T

0

∫
Σ

∫
Z

u0(t, x̄, y)φ(x̄)ψ′(t)dydx̄dt.

A straightforward consequence of Proposition 2 and Proposition 3 is given in the
following

Corollary 1. If the two-scale limit u0 does not depend on y, we have

ū0 = u0, ∂tū0 = ∂tu0.

For γ = −1, we obtain the following strong compactness result:

Proposition 4. Let uε ∈ L2((0, T ), H1(ΩMε )) ∩H1((0, T ), H1(ΩMε )′), such that

‖uε‖L2((0,T )×ΩMε ) + ‖∇uε‖L2((0,T )×ΩMε ) + ‖∂tuε‖L2((0,T ),H1(ΩMε )′) ≤ C
√
ε.

Then, there exist u0 ∈ L2((0, T ), H1(Σ))∩H1((0, T ), H1(Σ)′) and u1 ∈ L2((0, T )×
Σ,H0

per), such that up to a subsequence it holds that

uε → u0 strongly in the two-scale sense

∇uε → ∇x̄u0 +∇yu1 in the two-scale sense,

uε|S±ε → u0 in L2((0, T )× Σ),

∂tūε ⇀ ∂tu0 weakly in L2((0, T ), H1(Σ)′).

Proof. Proposition 10 implies that, up to a subsequence, uε converges in two-scale
sense to a limit u0, which is independent of the microscopic variable y. On the
other hand, due to Lemma 5.1, the sequence ūε is bounded in L2((0, T ), H1(Σ)) ∩
H1((0, T ), H1(Σ)′). The Aubin-Lions Lemma implies the strong convergence of ūε
and the limit coincides with the two-scale limit u0, see Corollary 1. Using now
estimate (12d), it follows that uε converges even strongly in the two-scale sense
to the limit u0. The convergence of ∇uε follows from Proposition 10(iii). The
strong convergence of the traces is a direct consequence of Lemma 5.2, and the
weak convergence of ∂tūε is obtained from the boundedness of ūε in H1((0, T ),
H1(Σ)′).

6. The averaging operator in thin domains and the time derivative of the
unfolded sequence. Lemma A.2 shows that the unfolded sequence T Mε uε inherits
the regularity with respect to the microscopic variable y ∈ Z from the function uε.
Now, we want to analyze if this is also true for the regularity with respect to the
time variable. If we have uε ∈ H1((0, T ), L2(ΩMε )), then an easy integration by
substitution shows T Mε uε ∈ H1((0, T ), L2(Σ× Z)) and we have almost everywhere
in (0, T ) × Σ × Z the identity ∂tT Mε uε(t, x̄, y) = T Mε (∂tuε)(t, x̄, y). In our case,
however, the microscopic solution uMε ∈ H1((0, T ), H1(ΩMε )′) and it is not clear,
whether the time derivative of the unfolded sequence T Mε uMε exists in a weak sense,
since a pointwise definition with respect to the spatial variable is not possible. In
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this section, we show that also in this case a time derivative exists in some weaker
sense and it can be controlled by the time derivative of the function uMε itself.
Therefore, we introduce the so called averaging operator for thin domains UMε ,
see also [6] for general domains, and show that under a suitable restriction of the
domain of definition, the averaging operator UMε preserves the spatial regularity.

For Ω̂Mε and ΛMε given in (21), see Appendix, and {x} := x− [x], we define

UMε : L2((0, T )× Σ× Z)→ L2((0, T )× ΩMε ),

UMε (φ)(t, x) =

{∫
Y
φ
(
t, ε
(
z̄ +

[
x̄
ε

])
,
({

x̄
ε

}
, xnε

))
dz̄ for x ∈ Ω̂Mε ,

0 for x ∈ ΛMε .

The following Lemma shows that 1
εU

M
ε is the formal adjoint of the unfolding oper-

ator T Mε :

Proposition 5. Let uε ∈ L2((0, T ) × ΩMε ) and φ ∈ L2((0, T ) × Σ × Z), then we
have∫ T

0

∫
Σ

∫
Z

T Mε uε(t, x̄, y)φ(t, x̄, y)dydx̄dt =
1

ε

∫ T

0

∫
ΩMε

uε(t, x)UMε (φ)(t, x)dxdt.

Further, we have the identity UMε
(
T Mε uε

)
= uε for all uε ∈ L2((0, T )× ΩMε ).

Proof. The proof uses the same arguments as in [6, Proposition 4.3] and is skipped
here.

As a corollary we immediately obtain the following inequality:

Corollary 2. For φ ∈ L2((0, T )× Σ× Z) we have∥∥UMε (φ)
∥∥
L2((0,T )×ΩMε )

≤
√
ε‖φ‖L2((0,T )×Σ×Z).

From the definition of the operator UMε , we see that for a function φ ∈ L2((0, T )×
Σ, H1(Z)), the function UMε (φ) is not an element of the space L2((0, T ), H1(ΩMε )).
Already for n = 2 it is easy to find a counterexample. If we want more regularity
of UMε (φ) with respect to the spatial variable, we have to restrict the domain of
definition. We define the space

H0 := C∞0 (Y × [−1, 1])
‖·‖H1(Z) , (14)

together with the usual H1(Z)-norm, i. e., H0 is the space of functions from H1(Z)
with trace equal to 0 on the lateral boundary ∂Z \ (S+ ∪ S−).

Proposition 6. It holds UMε : L2((0, T ) × Σ,H0) → L2((0, T ), H1(ΩMε )), and for
φ ∈ L2((0, T )× Σ,H0), we have almost everywhere in (0, T )× ΩMε

ε∇UMε (φ)(t, x) = UMε
(
∇yφ

)
(t, x).
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Proof. Let φ ∈ L2((0, T )×Σ,H0) and uε ∈ D((0, T )×ΩMε ). Then, with Proposition
5 and integration by parts, we obtain for i = 1, . . . , n∫ T

0

∫
ΩMε

UMε (φ)(t, x)∂xiuε(t, x)dxdt

=

∫ T

0

∫
Σ

∫
Z

φ(t, x̄, y)∂yiT Mε uε(t, x̄, y)dydx̄dt

= −
∫ T

0

∫
Σ

∫
Z

∂yiφ(t, x̄, y)T Mε uε(t, x̄, y)dydx̄dt

+

∫ T

0

∫
Σ

∫
∂Z

φ(t, x̄, y)T Mε uε(t, x̄, y)νidσydx̄dt.

The last term is equal to 0, since φ vanishes on the lateral boundary of Z and since
uε has compact support in ΩMε , i. e., T Mε uε = 0 on S±. Hence, we obtain using
again Proposition 5∫ T

0

∫
ΩMε

UMε (φ)(t, x)∂xiuε(t, x)dxdt = −1

ε

∫ T

0

∫
ΩMε

UMε
(
∂yiφ

)
(t, x)uε(t, x)dxdt,

which gives us the desired result.

We are now able to state our regularity result with respect to time for the un-
folding operator.

Proposition 7. Let uε ∈ L2((0, T )× ΩMε ) ∩H1((0, T ), H1(ΩMε )′). Then we have

T Mε uε ∈ L2((0, T ), L2(Σ× Z)) ∩H1((0, T ), L2(Σ,H0)′),

and it holds that〈
∂tT Mε uε(t), φ

〉
L2(Σ,H0)′,L2(Σ,H0)

=
1

ε

〈
∂tuε(t), U

M
ε (φ)

〉
ΩMε

for almost every t ∈ (0, T ) and all φ ∈ L2(Σ,H0).

Proof. Let φ ∈ L2(Σ,H0) and ψ ∈ D(0, T ). Due to Proposition 6, we have UMε (φ) ∈
H1(ΩMε ). We obtain∫ T

0

∫
Σ

∫
Z

T Mε uε(t, x̄, y)φ(x̄, y)ψ′(t)dydx̄dt

=
1

ε

∫ T

0

∫
ΩMε

uε(t, x)UMε (φ)(x)ψ′(t)dxdt

= −1

ε

∫ T

0

〈
∂tuε(t), U

M
ε (φ)

〉
ΩMε

ψ(t)dt,

what gives us the claim.

Our aim now is to estimate the norm of ∂tT Mε uε by a suitable norm of ∂tuε.
Due to the properties of UMε from Corollary 2 and Proposition 6, we can see that
it is appropriate to work with the scaled norm on Hε,1. For this space, the aver-
aging operator UMε is a linear operator between the space L2((0, T ) × Σ,H0) and
L2((0, T ), Hε,1), such that its operator norm is independent of ε:

Lemma 6.1. Let φ ∈ L2((0, T )× Σ,H0), then it holds∥∥UMε (φ)
∥∥
L2((0,T ),Hε,1)

≤ ‖φ‖L2((0,T )×Σ,H0).
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Proof. The claim follows immediately from Corollary 2 and Proposition 6.

As an easy consequence, we obtain the following estimate for the time derivative
∂tT Mε uε.

Proposition 8. Let uε ∈ L2((0, T )× ΩMε ) ∩H1((0, T ), H1(ΩMε )′), then we have∥∥∂tT Mε uε
∥∥
L2((0,T ),L2(Σ,H0)′)

≤ 1

ε

∥∥∂tuε∥∥L2((0,T ),H′ε,1)
.

Proof. Due to Lemma 6.1, we have
∥∥UMε (φ)

∥∥
Hε,1

≤ 1 for all φ ∈ L2(Σ,H0) with

‖φ‖L2(Σ,H0) = 1. Hence, for almost every t ∈ (0, T ) we obtain for all φ ∈ L2(Σ,H0)
with ‖φ‖L2(Σ,H0) = 1〈
∂tT Mε uε(t), φ

〉
L2(Σ,H0)′,L2(Σ,H0)

=
1

ε

〈
∂tuε(t), U

M
ε (φ)

〉
H′ε,1,Hε,1

≤ 1

ε

∥∥∂tuε(t)∥∥H′ε,1∥∥UMε (φ)
∥∥
Hε,1
≤ 1

ε

∥∥∂tuε(t)∥∥H′ε,1 ,
i. e.,

∥∥∂tT Mε uε(t)
∥∥
L2(Σ,H0)′

≤ 1
ε ‖∂tuε(t)‖H′ε,1 . Squaring and intgration with respect

to time gives us the desired result.

7. Derivation of the macroscopic problems. In this section, we derive conver-
gence results for the sequences u±ε and uMε , which we then use for the derivation of
the macroscopic problems. Compared with the results in [10, 15], new challenges
appear concerning the convergence of the solutions in the thin layer. Firstly, the
time derivative of the solutions is no more bounded in the L2-norm, but is only a
functional pointwise in time. This causes difficulties especially for the derivation of
strong compactness results, which are needed for passing to the limit in the non-
linear terms. Concerning the nonlinear terms, other than in [10, 15], here, we have
nonlinear terms at the interfaces S±ε , which require the strong two-scale convergence
of the traces uMε |S±ε .

For the derivation of the convergence results for uMε in the layer, we will use
different approaches: For γ = −1 and γ ∈ (−1, 1), when the limit function uM0
is independent of the microscopic variable y, we approximate the solution in the
layer by its average ūMε , see (15) below. In the first case, the latter is bounded
in L2((0, T ), H1(Σ)) ∩H1((0, T ), H1(Σ)′), and thus converges strongly, due to the
Aubin-Lions Lemma. In the second case, the gradient ∇x̄ūMε is no longer bounded
uniformly with respect to ε. Here, we use the Kolmogorov compactness result, based
on estimates for the shifts with respect to t and x̄. In the critical case γ = 1, when
the two-scale limit in general depends on y, we use the unfolded sequence together
with a Kolmogorov-type compactness result for Banach valued functions. To pass
to the limit in the microscopic problem (2), we use the two-scale convergence for
thin domains with heterogeneous structure, see Definition A.1 in A.

Let us start with the convergence results in the bulk domains. These are similar to
those in [10, 15], except for the time derivative, which is in this case only a functional
pointwise in time. For the convergence of the time derivative, we transform the fixed
domain Ω± to the ε-dependent set Ω±ε via the transformation

Φ±ε : Ω± → Ω±ε , Φ±ε (x) =

(
x̄,
H − ε
H

xn ± ε
)
,
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and define ũ±ε (t, x) := u±ε
(
t,Φ±ε (x)

)
for almost every (t, x) ∈ (0, T ) × Ω±. Inte-

gration by substitution gives us ũ±ε ∈ L2((0, T ), H1(Ω±))m ∩H1((0, T ), H1(Ω±)′)m

with 〈
∂tũ
±
i,ε(t), φ

〉
Ω±

=

〈
H

H − ε
∂tu
±
i,ε(t), φ ◦

(
Φ±ε
)−1

〉
Ω±ε

,

and especially we obtain with our a priori estimates from Lemma 4.2∥∥∂tũ±i,ε∥∥L2((0,T ),H1(Ω±)′)
≤ C

∥∥∂tu±i,ε∥∥L2((0,T ),H1(Ω±ε )′)
≤ C.

Proposition 9. Let uε be the solution of Problem (1) for γ ∈ [−1, 1]. Then there
exists u±0 ∈ L2((0, T ), H1(Ω±))m ∩H1((0, T ), H1(Ω±)′)m, such that up to a subse-
quence

χΩ±ε
u±i,ε → u±i,0 strongly in L2((0, T )× Ω±),

χΩ±ε
∇u±i,ε ⇀ ∇u

±
i,0 weakly in L2((0, T )× Ω±),

ũ±i,ε|Σ → u±i,0 strongly in L2((0, T )× Σ),

∂tũ
±
i,ε ⇀ ∂tu

±
i,0 weakly in L2((0, T ), H1(Ω±)′).

Further, for all φ ∈ L2((0, T ), H1(Ω±)) it holds that

lim
ε→0

∫ T

0

〈
∂tu
±
i,ε(t), φ|Ω±ε (t)

〉
Ω±ε
dt =

∫ T

0

〈
∂tu
±
i,0(t), φ(t)

〉
Ω±
dt.

Proof. The convergences of χΩ±ε
u±i,ε, χΩ±ε

∇u±i,ε, the trace ũ±i,ε, and the time deriva-

tive ∂tũ
±
i,ε follow the same lines as in [15]. The last convergence follows easily from

the representation of ∂tũ
±
i,ε above.

After having established the convergence results for the sequences u±ε , we con-
centrate on the sequence uMε in the layer. Since different approaches are used for
different values of the parameter γ, we consider each of these cases in a separate
subsection, where after establishing the convergence results, we also derive the cor-
responding macroscopic problem.

Remark 3. In the following, we consider the traces uMε |S±ε and u±ε |S±ε as functions

in L2((0, T ) × Σ) instead of the ε-dependent space L2((0, T ) × S±ε ), especially, we
have u±ε |S±ε = ũ±i,ε|Σ.

7.1. The case γ = −1.
To prove the convergence results for the sequence uMε and to pass to the limit in

the microscopic equations, we will use as an auxiliary function the averaged function

ūMε (t, x̄) :=
1

2ε

∫ ε

−ε
uMε (t, x̄, xn)dxn, (15)

introduced in Section 5.

Theorem 7.1. For γ = −1, there exist functions uM0 ∈ L2((0, T ), H1(Σ))m ∩
H1((0, T ), H1(Σ)′)m and uM1 ∈ L2((0, T )×Σ,H0

per)
m, such that up to a subsequence
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it holds that

uMi,ε → uMi,0 strongly in the two-scale sense

∇uMi,ε → ∇x̄uMi,0 +∇yuMi,1 in the two-scale sense,

uMi,ε|S±ε → uMi,0 in L2((0, T )× Σ),

∂tū
M
i,ε ⇀ ∂tu

M
i,0 weakly in L2((0, T ), H1(Σ)′).

Proof. This follows directly from Lemma 4.2 and Proposition 4.

From the strong convergences above, we immediately obtain the two-scale con-
vergences of the nonlinear terms:

Corollary 3. For γ = −1, it holds up to a subsequence

f±(χΩ±ε
u±ε )→ f±(u±0 ) in L2((0, T )× Ω±),

g
( ·
ε
, uMε

)
→ g

(
·, uM0

)
in the two-scale sense,

h±
(
u±ε |S±ε , u

M
ε |S±ε

)
→ h±

(
u±0 |Σ, uM0

)
in the two-scale sense on Σ,

hM,±
( ·
ε
, uMε |S±ε , u

±
ε |S±ε

)
→ hM,±(·, uM0 , u±0 |Σ

)
in the two-scale sense on Σ.

Proof. The first convergence follows from Proposition 9. To show the second con-
vergence, we start from

1

ε

∫ T

0

∫
ΩMε

g
(x
ε
, uMε

)
φ
(
t, x̄,

x

ε

)
dxdt

=
1

ε

∫ T

0

∫
ΩMε

[
g
(x
ε
, uMε

)
− g

(x
ε
, ūMε

)]
φ
(
t, x̄,

x

ε

)
dxdt

+
1

ε

∫ T

0

∫
ΩMε

[
g
(x
ε
, ūMε

)
− g

(x
ε
, uM0

)]
φ
(
t, x̄,

x

ε

)
dxdt

+
1

ε

∫ T

0

∫
ΩMε

g
(x
ε
, uM0

)
φ
(
t, x̄,

x

ε

)
dxdt =: Iε1 + Iε2 + Iε3,

with φ ∈ C0
(
[0, T ]×Σ, C0

per

(
[0, 1]n−1, C0([−1, 1])

))
. Using the Lipschitz-continuity

of the function g and inequality (12d) corresponding to uMε , we obtain limε→0 I
ε
1 = 0.

To estimate Iε2, we proceed as follows

Iε2 =
1

ε

∫ T

0

∫
ΩMε

[
g
(x
ε
, ūMε

)
− g

(x
ε
, uM0

)]
φ
(
t, x̄,

x

ε

)
dxdt

≤ C

ε

∫ T

0

∫
ΩMε

∣∣∣g (x
ε
, ūMε

)
− g

(x
ε
, uM0

)∣∣∣ dxdt ≤ C

ε

∫
ΩMε

∣∣ūMε − uM0 ∣∣ dxdt
≤ C||ūMε − uM0 ||L1((0,T )×Σ). (16)

Thus, the strong convergence of ūMε to uM0 in L2((0, T )×Σ) implies limε→0 I
ε
2 = 0.

Finally, the two-scale convergence of g
( ·
ε , u

M
0

)
to g

(
·, uM0

)
yields the desired result.

In a similar way the third and the last convergence follow, by using additionally the
strong convergence of u±ε |S±ε in L2((0, T )× Σ) from Proposition 9.

Now, based on the above convergence results, we derive the macroscopic model
from Theorem 3.1.
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Proof of Theorem 3.1. To obtain the equations in the bulk domains, we test the
variational equation (2) in the bulk with φ(x)ψ(t), where φ ∈ D

(
Ω±
)

and ψ ∈
D(0, T ). Integration with respect to time, using Proposition 9, Theorem 7.1, Corol-
lary 3, and a density argument, we can go to the limit ε→ 0, and obtain the weak
formulation for u±0 .

Testing the variational equation (2) of uMi,ε with φε(t, x̄) := εψ(t)φ(x̄)θ
(
x
ε

)
and

ψ ∈ D(0, T ), φ ∈ D
(
Σ
)
, and θ ∈ Hper, we get after integrating with respect to time

1

ε

∫ T

0

〈∂tuMi,ε(t), φε(t)〉ΩMε dt

+

∫ T

0

∫
ΩMε

DM
i

(x
ε

)
∇uMi,ε(t, x) ·

[
θ
(x
ε

)
∇x̄φ(x̄) +

1

ε
φ(x̄)∇yθ

(x
ε

)]
ψ(t)dxdt

=
1

ε

∫ T

0

∫
ΩMε

gi

(x
ε
, uMε

)
φε(t, x)dxdt

+
∑
α∈±

∫ T

0

∫
Sαε

hM,α
i

( x̄
ε
, uMε , u

α
ε

)
φε(t, x̄, α1)dx̄dt.

Due to our a priori estimates, all the terms except the diffusion therm involving
∇yθ are of order ε. Hence, from the two-scale convergence of ∇uMi,ε in Theorem 7.1,
we obtain for ε→ 0∫ T

0

∫
Σ

∫
Z

DM
i (y)

[
∇x̄uMi,0(t, x̄) +∇yuMi,1(t, x̄, y)

]
· ψ(t)φ(x̄)∇yθ(y)dydx̄dt = 0.

This implies almost everywhere in (0, T )× Σ× Z

uMi,1(t, x̄, y) =

n−1∑
j=1

∂ju
M
i,0(t, x̄)wi,j(y), (17)

where wi,j is the unique weak solution of the cell problem (4).
Now, we choose as a test function ψ(t)φ(x̄), with ψ and φ as above. After

integration with respect to time and using the properties of ūε from Section 5, we
obtain∫ T

0

〈∂tūMi,ε(t), φ〉Σψ(t)dt+
1

ε

∫ T

0

∫
ΩMε

DM
i

(x
ε

)
∇uMi,ε(t, x) · ∇x̄φ(x̄)ψ(t)dxdt

=
1

ε

∫ T

0

∫
ΩMε

gi

(x
ε
, uMε

)
φ(x̄)ψ(t)dxdt

+
∑
α∈±

∫ T

0

∫
Sαε

hM,α
i

( x̄
ε
, uMε , u

α
ε

)
φ(x̄)ψ(t)dx̄dt.

(18)

From Theorem 7.1, Corollary 3, and the identity (17), we get for ε→ 0

|Z|
∫ T

0

〈
∂tu

M
i,0(t), φ

〉
Σ
ψ(t)dt+

∫ T

0

∫
Σ

DM,∗
i ∇x̄uMi,0(t, x̄) · ∇x̄φ(x̄)ψ(t)dx̄dt.

=

∫ T

0

∫
Σ

(∫
Z

gi(y, u
M
0 )dy +

∑
α∈{±}

∫
Y

hM,α
i

(
ȳ, uM0 , uα0

)
dȳ

)
φ(x̄)ψ(t)dx̄dt.

Since D
(
Σ
)

is dense in H1(Σ), this gives us the weak formulation for the problem of

uM0 . The initial condition is obtained by similar arguments, where we have to choose
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test function ψ ∈ D
(
[0, T )

)
and use integration by parts in the term involving the

time derivative. Uniqueness is standard.

7.2. The case γ ∈ (−1, 1).
Again, we use the averaged function ūMε . However, now, the gradient ∇x̄ūMε is

no longer bounded uniformly with respect to ε, i. e., we are not able to apply the
Aubin-Lions Lemma to obtain the strong convergence of ūMε . Instead, we apply the
Kolmogorov compactness theorem [5, Theorem 4.26]. To cope with the shifts with
respect to time, we make use of the following embedding of Nikolskii-type, applied
to the Hilbert space Hε,γ with its corresponding norm.

Lemma 7.2. Let V and H be Hilbert spaces and we assume that (V,H, V ′) is a
Gelfand triple. Let v ∈ L2((0, T ), V ) ∩H1((0, T ), V ′). Then, for every φ ∈ V and
almost every t ∈ (0, T ), h ∈ (−T, T ), such that t+ h ∈ (0, T ), we have∣∣(v(t+ h)− v(t), φ)H

∣∣ ≤√|h|‖φ‖V ‖∂tv‖L2((t,t+h),V ′).

Especially, it holds that∥∥v(t+ h)− v(t)
∥∥2

H
≤
√
|h|
∥∥v(t+ h)− v(t)

∥∥
V
‖∂tv‖L2((t,t+h),V ′).

Proof. The proof follows the same lines as the proof for the special case V = H1(Ω)
and H = L2(Ω), see [9, Lemma 9].

Theorem 7.3. For γ ∈ (−1, 1), let uε be the solution of Problem (1). Then, there
exists uM0 ∈ L2((0, T )× Σ)m ∩H1((0, T ), H1(Σ)′)m, such that up to a subsequence
it holds for all p ∈ [1, 2), that

uMi,ε → uMi,0 in the two-scale sense

ūMi,ε → uMi,0 in Lp((0, T )× Σ),

uMi,ε|S±ε → uMi,0 in Lp((0, T )× Σ),

∂tū
M
i,ε ⇀ ∂tu

M
i,0 weakly in L2((0, T ), H1(Σ)′).

Proof. As in Proposition 7.1, Lemma 4.2 and Proposition 10 imply that, up to a
subsequence, uMε converges in two-scale sense to a limit uM0 , which is independent
of the microscopic variable y. Concerning the averaged sequence ūMε , we have that
due to Lemma 5.1, it is bounded in L2((0, T )×Σ). Thus, up to a subsequence, ūMε
converges weakly and the limit coincides with the two-scale limit uM0 . The next
step in the proof is to show the strong convergence of ūMε in Lp((0, T )×Σ) by using
the Kolmogorov compactness criterion.

We extend all functions outside their domain of definition by zero. Since ūMε is
bounded in L2((0, T )×Σ) ⊂ Lp((0, T )×Σ), to apply the Kolmogorov compactness
result, see [5, Theorem 4.26], it is enough to show

‖ūMε (·+ s, ·+ ξ̄)− ūMε ‖Lp((0,T )×Σ) → 0 for (s, ξ̄)→ 0 (19)

uniformly with respect to ε. Therefore, we show the following two statements:

(i) For all h > 0 fixed, we have

sup
ε
‖ūMε (·+ s, ·+ ξ̄)− ūMε ‖Lp((0,T )h×Σh) → 0 for (s, ξ̄)→ 0.

(ii) It holds that

sup
ε
‖ūMε ‖Lp((0,T )\(0,T )h×Σ\Σh) → 0 for h→ 0.
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For the definition of the domains (0, T )h,Σh and ΩMε,h, see (7) and (8). Condition

(ii) is an easy consequence of the Hölder-inequality and the boundedness of ūMε in
L2((0, T )× Σ). In fact, we have∥∥ūMε ∥∥Lp((0,T )\(0,T )h×Σ\Σh)

≤ C|(0, T ) \ (0, T )h × Σ \ Σh|
2−p
2p

h→0−→ 0.

For condition (i), due to the triangle inequality, it is enough to consider shifts
separately with respect to the variable t and x̄. We fix h > 0, and obtain for |ξ̄| < h

‖ūMε (·, ·+ ξ̄)− ūMε ‖L2((0,T )×Σh) ≤
1√
2ε
‖uMε (·, ·+ (ξ̄, 0))− uMε ‖L2((0,T )×ΩMε,h)

≤ 1√
2ε

∥∥∥∥uMε (·, ·+ (ξ̄, 0))− uMε
(
·, ·+ ε

([
ξ̄

ε

]
, 0

))∥∥∥∥
L2((0,T )×ΩMε,h)

+
1√
2ε

∥∥∥∥uMε (·, ·+ ε

([
ξ̄

ε

]
, 0

))
− uMε

∥∥∥∥
L2((0,T )×ΩMε,h)

.

Due to the mean-value theorem and the a priori estimates for uMε , the first term is

of order ε
1−γ
2 and therefore tends to zero for ε→ 0. The second term goes to zero,

due to Lemma 4.3 for ε, ξ̄ → 0. The uniform convergence with respect to ε is then
obtained from the convergence of the difference of the shifts to 0 for ξ̄ → 0 for every
fixed ε.

Now, we have to consider shifts with respect to time. From Lemma 4.4, we have

‖uMε ‖L2((0,T ),Hε,γ) ≤ C,
∥∥∂tuMi,ε∥∥L2((0,T ),H′ε,γ)

≤ Cε.

Hence, Lemma 7.2 with V = Hε,γ and H = L2(ΩMε ) implies for |s| < h

‖ūMε (·+s, ·)− ūMε ‖2L2((0,T )h×Σ) ≤
1

2ε
‖uMε (·+ s, ·)− uMε ‖2L2((0,T )h×ΩMε )

≤
√
h

2ε
‖uMε (·+ s, ·)− uMε ‖L2((0,T )h,Hε,γ)‖∂tuMε ‖L2((0,T ),H′ε,γ) ≤ C

√
h.

This gives us the strong convergence of ūMε in Lp((0, T ) × Σ). Then, the strong
converges of the traces uMε |S±ε follow by Lemma 5.2 and the triangle inequality.
The convergence of the time derivative follows since the sequence is bounded in
L2((0, T ), H1(Σ)′).

Again, we obtain the convergences for the nonlinearities.

Corollary 4. For γ ∈ (−1, 1), it holds up to a subsequence

f±(χΩ±ε
u±ε )→ f±(u±0 ) in L2((0, T )× Ω±),

g
( ·
ε
, uMε

)
→ g

(
·, uM0

)
in the two-scale sense,

h±
(
u±ε |S±ε , u

M
ε |S±ε

)
→ h±

(
u±0 |Σ, uM0

)
in the two-scale sense on Σ,

hM,±
( ·
ε
, uMε |S±ε , u

±
ε |S±ε

)
→ hM,±(·, uM0 , u±0 |Σ

)
in the two-scale sense on Σ.

Proof. We use the same arguments as in Corollary 3. The only difference is that
terms like (16) are estimated by the Lp-norm, with p < 2, of ūMε − uM0 instead of
the L2-norm, and then the strong convergence of ūMε to uM0 in Lp((0, T ) × Σ) is
used.

Passing to the limit ε→ 0, we obtain Theorem 3.2:
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Proof of Theorem 3.2. The arguments are quite similar to those in Theorem 3.1
for the case γ = −1, so we only point out the main differences. The variational
equation (18) is still valid for all φ ∈ D

(
Σ
)

and ψ ∈ D(0, T ) if we replace 1
ε by εγ

in front of the diffusion term. In the limit ε→ 0 this terms vanishes, since∣∣∣∣∣εγ
∫ T

0

∫
ΩMε

DM
i

(x
ε

)
∇uMi,ε(t, x) · ∇x̄φ(x̄)ψ(t)dxdt

∣∣∣∣∣ ≤ Cε 1+γ
2 .

Finally, the L2-regularity of the time derivative ∂tu
M
0 follows from the regularity of

the right-hand side of the differential equation of uM0 .

7.3. The case γ = 1.
Here, we treat the critical case γ = 1. Since in this case the two-scale limit uM0

depends on the macroscopic and the microscopic variable, it is no longer sufficient
to work with the averaged function ūε. To prove the convergences of the nonlinear
terms, we use a Kolmogorov type compactness result for Banach valued functions,
see [8], applied to the unfolded sequence T Mε uMε ∈ Lp(Σ, L2((0, T ), Hβ(Z))). A
main ingredient in this proof is the following lemma.

Lemma 7.4. For all φMε ∈ L2((0, T )× ΩMε ), h > 0, and ξ̄ ∈ Rn−1 with |ξ̄| < h, it
holds for ε small enough that∥∥T Mε φMε (·, ·+ ξ̄, ·)− T Mε φMε

∥∥2

L2((0,T )×Σ2h×Z)
≤ 1

ε

∑
j∈{0,1}n−1

‖δlφMε ‖2L2((0,T )×ΩMε,h)

with δlφ
M
ε defined in (9) with l = l(ε, ξ̄, j) = j +

[
ξ̄
ε

]
.

Proof. The proof is based on a special decomposition of Z and can be found in [15,

page 709], where here, we additionally use the fact that ΩMε,2h ⊂ Ω̂Mε,h ⊂ ΩMε,h for ε
small enough.

Theorem 7.5. For γ = 1, let uε be the solution of Problem (1). Then, there exists
uM0 ∈ L2((0, T )× Σ,Hper)

m ∩H1((0, T ), L2(Σ,H0)′)m, such that for p ∈ [1, 2) and
β ∈

(
1
2 , 1
)

up to a subsequence it holds that

uMi,ε → uMi,0 in the two-scale sense,

ε∇uMi,ε → ∇yuMi,0 in the two-scale sense,

T Mε uMi,ε → uMi,0 in Lp(Σ, L2((0, T ), Hβ(Z))),

T Σ
ε

(
uMi,ε|S±ε

)
→ uMi,0|S± in Lp(Σ, L2((0, T )× S±))

Remark 4. Due to the boundedness of the sequence T Mε uMε in the space L2((0, T )×
Σ, H1(Z)) ∩H1((0, T ), L2(Σ,H′0)), see Lemma 4.2, 4.4, and Proposition 8, we ad-
ditionally obtain the weak convergence of T Mε uMε in L2((0, T ) × Σ, H1(Z)) and
∂tT Mε uMε in L2((0, T ), L2(Σ,H′0)). However, the convergence of the time derivative
will not be used in the derivation of the macroscopic problem, since the structure
of the limit problem gives us even more regularity with respect to time.

Proof of Theorem 7.5. The two-scale convergences of uMε and ε∇uMε follow from
the a priori estimates for uMε and Proposition 10.

We prove the strong convergence of T Mε uMε . We make use of the Kolmogorov-
type compactness result from [8, Theorem 2.2]. We have to show (all functions are
extended by zero)
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(i) For every A ⊂ Σ measurable, the sequence

vεA(t, y) :=

∫
A

T Mε uMε (t, x̄, y)dx̄

is relatively compact in L2((0, T ), Hβ(Z)).
(ii) It holds that

sup
ε
‖T Mε uMε (·, ·+ ξ̄, ·)− T Mε uMε ‖Lp(Σ,L2((0,T ),Hβ(Z))) → 0 for ξ̄ → 0.

First of all, we have vεA ∈ L2((0, T ), H1(Z)) ∩H1((0, T ),H′0) with time derivative

〈∂tvεA(t), φ〉H′0,H0
=
〈
∂tT Mε uMi,ε(t), χA(·x̄)φ(·y)

〉
L2(Σ,H0)′,L2(Σ,H0)

,

since for every ψ ∈ D(0, T ) and φ ∈ H0, we have∫ T

0

∫
Z

vεA(t, y)φ(y)ψ′(t)dydt =

∫ T

0

∫
Σ

∫
Z

T Mε uMi,ε(t, x̄, y)φ(y)χA(x̄)ψ′(t)dydx̄dt

= −
∫ T

0

〈
∂tT Mε uMi,ε(t), χA(·x̄)φ(·y)

〉
L2(Σ,H0)′,L2(Σ,H0)

ψ(t)dt.

Hence, Lemma 4.2, 4.4, and Proposition 8 imply the boundedness of vεA in the space
L2((0, T ), H1(Z))∩H1((0, T ),H′0). For β ∈

(
1
2 , 1
)

the embedding H1(Z) ↪→ Hβ(Z)

is compact and the embedding Hβ(Z) ↪→ H′0 is continuous. Therefore, we can apply
the Aubin-Lions Lemma and obtain that the sequence vεA is relatively compact in
L2((0, T ), Hβ(Z)), what proves (i). Since for all h > 0 and |ξ̄| � h, we have∥∥T Mε uMε (·, ·+ ξ̄, ·)− T Mε uMε

∥∥
Lp(Σ\Σ2h,L2((0,T ),Hβ(Z)))

≤ C|h|
2−p
2p ‖T Mε uMε ‖L2((0,T )×Σ,H1(Z)) ≤ Ch

2−p
2p ,

by the same arguments as in the proof of Theorem 7.3, it is enough to show that
for all h > 0, it holds that

sup
ε

∥∥T Mε uMε (·, ·+ ξ̄, ·)− T Mε uMε
∥∥
Lp(Σ2h,L2((0,T ),Hβ(Z)))

→ 0 for ξ̄ → 0.

So, we fix h > 0 and obtain with Lemma 7.4∥∥T Mε uMε (·, ·+ξ̄, ·)− T Mε uMε
∥∥
L2(Σ2h,L2((0,T ),Hβ(Z)))

≤ C
∥∥T Mε uMε (·, ·+ ξ̄, ·)− T Mε uMε

∥∥
L2(Σ2h,L2((0,T ),H1(Z)))

≤ C
∑

j∈{0,1}n−1

(
1

ε
‖δuMε ‖2L2((0,T )×ΩMε,h) + ε‖∇δuMε ‖2L2((0,T )×ΩMε,h)

)
.

Due to Lemma 4.3, the right-hand side converges to zero for ε, ξ̄ → 0. The uniform
convergence is again obtained by the convergences of the shifts to 0 for every fixed
ε.

The last statement of the theorem follows from the strong convergence of T Mε uMε ,

together with the continuity of the trace operator from Hβ(Z) into Hβ− 1
2 (∂Z) for

β ∈
(

1
2 , 1
)

and the fact that T Σ
ε

(
uMε |S±ε

)
=
(
T Mε uMε

)
|S± .
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Corollary 5. For γ = 1, it holds up to a subsequence

f±(χΩ±ε
u±ε )→ f±(u±0 ) in L2((0, T )× Ω±)m,

g
( ·
ε
, uMε

)
→ g

(
·, uM0

)
in the two-scale sense,

h±
(
u±ε |S±ε , u

M
ε |S±ε

)
→ h±

(
u±0 |Σ, uM0 |S±

)
in the two-scale sense on Σ,

hM,±
( ·
ε
, uMε |S±ε , u

±
ε |S±ε

)
→ hM,±(·, uM0 |S± , u±0 |Σ) in the two-scale sense on Σ.

Proof. We only show the last convergence. From the strong convergence of u±ε |S±ε
to u±0 |Σ in L2((0, T ) × Σ), see Proposition 9, it follows that T Σ

ε

(
u±ε |S±ε

)
converges

strongly to u±0 |Σ in L2((0, T )× Σ× Y ). We have

T Σ
ε

(
hM,±

( ·
ε
, uMε |S±ε , u

±
ε |S±ε

))
= hM,±(·ȳ, T Σ

ε

(
uMε |S±ε

)
, T Σ
ε

(
u±ε |S±ε

))
.

The strong convergences of T Σ
ε

(
u±ε |S±ε

)
and T Σ

ε

(
uMε |S±ε

)
imply, up to a subsequence,

the pointwise convergence of the right-hand side almost everywhere in (0, T )×Σ×Y
to hM,±(·, uM0 |S± , u±0 |Σ). Further, this sequence is bounded in L2((0, T )×Σ× Y ),

i. e., it converges weakly in L2((0, T )×Σ× Y ) to the same limit. Now, Lemma A.3
gives us the result.

Finally, the compactness results from Theorem 7.5 and Corollary 5 allow us to
pass to the limit ε → 0 in the microscopic problem and to obtain the macroscopic
model in Theorem 3.3.

Proof of Theorem 3.3. The equations for the bulk-domains Ω± can be obtained by
similar arguments as for the cases γ = −1 and γ ∈ (−1, 1).

To derive the limit equation for the membrane, we test the variational equation of
uMε in (2) with φ

(
x̄, xε

)
ψ(t), where φ ∈ D

(
Σ, C∞per

(
Y ,C1([−1, 1])

))
, ψ ∈ D((0, T )),

integrate over time and use integration by parts in the term involving the time
derivative to obtain

−1

ε

∫ T

0

∫
ΩMε

uMi,ε(t, x)φ
(
x̄,
x

ε

)
ψ′(t)dxdt

+ ε

∫ T

0

∫
ΩMε

DM
i

(x
ε

)
∇uMε (t, x) ·

[
∇x̄φ

(
x̄,
x

ε

)
+

1

ε
∇yφ

(
x̄,
x

ε

)]
ψ(t)dxdt

=
1

ε

∫ T

0

∫
ΩMε

gi

(x
ε
, uMε

)
φ
(
x̄,
x

ε

)
ψ(t)dxdt

+
∑
α∈±

∫ T

0

∫
Sαε

hM,α
i

( x̄
ε
, uMε , u

α
ε

)
φ
(
x̄,
x

ε

)
ψ(t)dx̄dt.

For ε→ 0, we obtain from Theorem 7.5 and Corollary 5

−
∫ T

0

∫
Σ

∫
Z

uM0 (t, x̄, y)φ(x̄, y)ψ′(t)dydx̄dt

= −
∫ T

0

∫
Σ

∫
Z

DM
i (y)∇yuMi,0(t, x̄, y) · ∇yφ(x̄, y)ψ(t)dydx̄dt

+

∫ T

0

∫
Σ

∫
Z

gi(y, u
M
0 )φ(x̄, y)ψ(t)dydx̄dt
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+
∑
α∈±

∫ T

0

∫
Σ

∫
Y

hM,α
i

(
ȳ, uM0 (t, x̄, ȳ, α), uα0 (t, x̄, 0)

)
φ(x̄, ȳ, α)ψ(t)dȳdx̄dt.

By a density argument the equation holds for all φ ∈ L2(Σ,Hper). The regularity of
the terms on the right-hand side imply ∂tu

M
0 ∈ L2((0, T ), L2(Σ,Hper)

′). The initial
condition can be established in the usual way, where we have to use the two-scale
convergence of UM0

(
·x̄, ·xnε

)
to U0(x̄, yn). Uniqueness is again standard.

Remark 5.

(i) Due to the uniqueness of the solutions of the effective models in Theorems
3.1, 3.2, and 3.3, it follows that the whole sequence converges.

(ii) The results also hold, if the parameter γ is different for every species, i. e.,
we have to replace γ by γi in the microscopic problem. Further, the results
from this paper and [10] remain valid if we mix up the nonlinear Neumann-
transmission conditions and the continuous transmission conditions on S±ε for
different species.

8. Summary and discussion. In this paper, we derived effective models for
reaction–diffusion processes through thin layers with nonlinear transmission con-
ditions at the bulk-layer interface, and diffusivities of order εγ , γ ∈ [−1, 1] in the
layer region. It turns out, that for all γ ∈ [−1, 1], the effective bulk solution u±0 is
described by the same system of reaction–diffusion equations in Ω±, with parame-
ters inherited from the microscopic system. At the interface Σ, we obtain interface
laws, which strongly depend on the choice of the parameter γ.

In the critical case γ = 1, the effective solution u0 and its normal flux may exhibit
jumps across Σ. The normal flux of u±0 on Σ is given by a nonlinear Neumann
boundary condition which involves the homogenized solution uM0 in the layer. The
evolution of uM0 is described by a reaction–diffusion system on the standard cell Z,
where x ∈ Σ plays the role of a parameter. This system is strongly coupled to the
effective equations for u±0 in Ω± via a nonlinear Neumann boundary condition on
S±.

For γ ∈ [−1, 1), the solution u0 is continuous across Σ, and the common trace is
equal to uM0 , which in this case is independent of the microscopic variable y. The
normal flux of u±0 on Σ is again given by a nonlinear Neumann boundary condition
which depends on uM0 . The interface laws satisfied by uM0 are, however, different
for γ ∈ (−1, 1) and γ = −1. For γ ∈ (−1, 1), the function uM0 is the solution of an
ordinary differential equation which also depends on the parameter x ∈ Σ. In the
case γ = −1, we obtain an additional surface diffusion on Σ, i. e., uM0 is the solution
of a reaction–diffusion equation on Σ. In both cases, the jump in the normal flux
of u0 across Σ enters the equation for uM0 as a sink/source term.

The methods developed in this paper can also be used for more complex multi-
physics processes. Furthermore, the effective models obtained here rise new chal-
lenges also to numerical approaches, which have to take into account the special
micro-macro features of the model.

Appendix A. Two-scale convergence and the unfolding operator in thin
domains. We repeat the definition of the two-scale convergence and the unfold-
ing operator for thin domains, and briefly summarize some results related to these
approaches, which are needed frequently throughout the paper. The two-scale con-
vergences for domains was introduced in [1, 16], and extended to thin layers with
heterogeneous structure in [15].
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Definition A.1. [15] We say that a sequence uε ∈ L2((0, T ) × ΩMε ) converges
(weakly) in the two-scale sense to the limit function u0 ∈ L2((0, T )×Σ×Z), if for
all φ ∈ C0

(
[0, T ]× Σ, C0

per

(
[0, 1]n−1, C0([−1, 1])

))
it holds that

lim
ε→0

1

ε

∫ T

0

∫
ΩMε

uε(t, x)φ
(
t, x̄,

x

ε

)
dxdt =

∫ T

0

∫
Σ

∫
Z

u0(t, x̄, y)φ(t, x̄, y)dydx̄dt.

Further, we say that a (weakly) two-scale convergent sequence uε converges strongly
in the two-scale sense to the limit u0, if we additionally have

lim
ε→0

1√
ε
‖uε‖L2((0,T )×ΩMε ) = ‖u0‖L2((0,T )×Σ×Z).

We remark that in [4] a definition of the two-scale convergence was given for a
thin domain with a more particular geometry.

In the following, we consider functions uε ∈ L2((0, T ), H1(ΩMε )), such that

1√
ε
‖uε‖L2((0,T )×ΩMε ) + ε

γ
2 ‖∇uε‖L2((0,T )×ΩMε ) ≤ C,

with γ ∈ [−1, 1]. The behavior in the limit ε → 0 depends on the choice of γ, and
we have to distinguish the three cases γ = 1, γ ∈ (−1, 1), and γ = −1. To state the
compactness results for uε and ∇uε for different γ, we make use of the following
spaces:

Hper :=
{
u ∈ H1(Z) : u is Y -periodic

}
,

H0
per :=

{
u ∈ Hper :

∫
Z

udy = 0

}
,

(20)

equipped with the ‖ · ‖H1(Z)-norm.

Proposition 10. Let uε be a sequence in L2((0, T ), H1(ΩMε )) such that

1√
ε
‖uε‖L2((0,T )×ΩMε ) + ε

γ
2 ‖∇uε‖L2((0,T )×ΩMε ) ≤ C,

with a constant C > 0 independent of ε. Then, we have the following convergence
results:

(i) For γ = 1, there exists a subsequence and a limit function u0 ∈ L2((0, T ) ×
Σ,Hper), such that

uε → u0 in the two-scale sense,

ε∇uε → ∇yu0 in the two-scale sense.

(ii) For γ ∈ (−1, 1), there exist u0 ∈ L2((0, T )×Σ) and u1 ∈ L2
(
(0, T )×Σ,H0

per

)
,

such that up to a subsequence

uε → u0 in the two-scale sense,

ε
γ+1
2 ∇uε → ∇yu1 in the two-scale sense.

(iii) For γ = −1, there exist u0 ∈ L2((0, T ), H1(Σ)) and u1 ∈ L2((0, T )×Σ,H0
per),

such that up to a subsequence

uε → u0 in the two-scale sense,

∇uε → ∇x̄u0 +∇yu1 in the two-scale sense,

where ∇x̄u0 := (∂1u0, . . . , ∂n−1u0, 0).

Proof. The proof of (i) can be found in [15], and the proof of (ii) and (iii) in [10].
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Next, we define the unfolding operator T Mε for thin domains introduced in [15],
which is an extension of the unfolding operator in fixed or perforated domains, see
e. g., [2, 6, 18]. Here, we consider thin domains with a general lateral boundary
∂Σ× (−ε, ε), see also [7]. For the definition, we need the following notations:

Kε :=
{
k̄ ∈ Zn−1 : ε(k̄ + Y ) ⊂ Σ

}
,

Σ̂ε := int
⋃
k̄∈Kε

ε(k̄ + Y ), Λε := int
(
Σ \ Σ̂ε

)
,

Ω̂Mε := Σ̂ε × (−ε, ε), ΛMε := Λε × (−ε, ε).

(21)

Then, we define the unfolding operator as follows:

T Mε : L2((0, T )× ΩMε )→ L2((0, T )× Σ× Z),

T Mε uε(t, x̄, y) =

{
uε
(
t, ε
([
x̄
ε

]
, 0
)

+ εy
)

for x̄ ∈ Σ̂ε,

0 for x̄ ∈ Λε.

The unfolding operator T Mε has the following basic properties:

Lemma A.2. [15] For uε, vε ∈ L2((0, T )× ΩMε ), we have(
T Mε uε, T Mε vε

)
L2((0,T )×Σ×Z)

=
1

ε
(uε, vε)L2((0,T )×Ω̂Mε ),∥∥T Mε uε

∥∥
L2((0,T )×Σ×Z)

≤ 1√
ε
‖uε‖L2((0,T )×ΩMε ).

If additionally it holds that uε ∈ L2((0, T ), H1(ΩMε )), then T Mε uε ∈ L2((0, T ) ×
Σ, H1(Z)) and almost everywhere in (0, T )× Σ× Z it holds that

∇yT Mε uε = εT Mε
(
∇uε

)
.

Finally, we have the following relation between the unfolding operator T Mε and
the two-scale convergence in thin domains.

Lemma A.3. [15] Let uε ∈ L2((0, T )× ΩMε ) be a sequence with

‖uε‖L2((0,T )×ΩMε ) ≤ C
√
ε,

with a constant C > 0 independent of ε. Then the following statements are equiva-
lent:

(i) uε → u0 weakly/strongly in the two-scale sense,
(ii) T Mε uε → u0 weakly/strongly in L2((0, T )× Σ× Z).
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