Citation: Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift[J]. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
[1] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[2] | Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal . Application of a coupled FV/FE multiscale method to cement media. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603 |
[3] | Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004 |
[4] | Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109 |
[5] | Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689 |
[6] | Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025 |
[7] | Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067 |
[8] | Yaxin Hou, Cao Wen, Yang Liu, Hong Li . A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037 |
[9] | Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038 |
[10] | Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021 |
[1] | A. Abdulle, Multiscale methods for advection-diffusion problems, Discrete Contin. Dyn. Syst., suppl (2005), 11-21. |
[2] |
A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459 (electronic). doi: 10.1137/040607137
![]() |
[3] |
A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18-39. doi: 10.1016/S0021-9991(03)00303-6
![]() |
[4] |
A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces, Multiscale Model. Simul., 3 (2004/05), 195-220 (electronic). doi: 10.1137/030600771
![]() |
[5] |
G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM Control Optim. Calc. Var., 13 (2007), 735-749 (electronic). doi: 10.1051/cocv:2007030
![]() |
[6] | G. Allaire and A.-L. Raphael, "Homogénéisation d'un Modèle de Convection-Diffusion Avec Chimie/Adsorption en Milieu Poreux," (French), Rapport Interne, CMAP, Ecole Polytechnique, n. 604, 2006. |
[7] | G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528. |
[8] |
T. Arbogast, G. Pencheva, M. F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), 319-346 (electronic). doi: 10.1137/060662587
![]() |
[9] |
A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Model., 4 (2000), 189-210. doi: 10.1088/1364-7830/4/2/307
![]() |
[10] | W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87-132. |
[11] | W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), 1062-1070. |
[12] | W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in "Multiscale Methods in Science And Engineering," Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, (2005), 89-110. |
[13] |
W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156 (electronic). doi: 10.1090/S0894-0347-04-00469-2
![]() |
[14] |
Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math., 57 (2007), 577-596. doi: 10.1016/j.apnum.2006.07.009
![]() |
[15] |
V. Gravemeier and W. A. Wall, A 'divide-and-conquer' spatial and temporal multiscale method for transient convection-diffusion-reaction equations, Internat. J. Numer. Methods Fluids, 54 (2007), 779-804. doi: 10.1002/fld.1465
![]() |
[16] | P. Henning and M. Ohlberger, A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Preprint, Universität Münster, N-09/09, 2009. |
[17] | P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift, submitted to: ZAA, Journal for Analysis and its Applications, 2010. |
[18] |
P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), 601-629. doi: 10.1007/s00211-009-0244-4
![]() |
[19] |
Multiscale Model. Simul., 3 (2004/05), 168-194 (electronic). doi: 10.1137/030601077
![]() |
[20] |
T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), 169-189. doi: 10.1006/jcph.1997.5682
![]() |
[21] |
T. Y. Hou, X.-H. Wu and C. Zhiqiang, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), 913-943. doi: 10.1090/S0025-5718-99-01077-7
![]() |
[22] |
L. Jiang, Y. Efendiev and V. Ginting, Multiscale methods for parabolic equations with continuum spatial scales, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 833-859 (electronic). doi: 10.3934/dcdsb.2007.8.833
![]() |
[23] |
E. Marušić-Paloka and A. L. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), 72 (2005), 391-409 (electronic). doi: 10.1112/S0024610705006824
![]() |
[24] |
A.-M. Matache, Sparse two-scale FEM for homogenization problems. Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), J. Sci. Comput., 17 (2002), 659-669. doi: 10.1023/A:1015187000835
![]() |
[25] |
A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems, M2AN Math. Model. Numer. Anal., 36 (2002), 537-572. doi: 10.1051/m2an:2002025
![]() |
[26] |
P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, Math. Comp., 76 (2007), 153-177 (electronic). doi: 10.1090/S0025-5718-06-01909-0
![]() |
[27] |
J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model. Simul., 7 (2008), 171-196. doi: 10.1137/070693230
![]() |
[28] |
J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), 22-47. doi: 10.1006/jcph.2000.6585
![]() |
[29] |
M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114 (electronic). doi: 10.1137/040605229
![]() |
[30] | C. Schwab and A.-M. Matache, Generalized FEM for homogenization problems, in "Multiscale and Multiresolution Methods," Lect. Notes Comput. Sci. Eng., 20, Springer, Berlin, (2002), 197-237. |
[31] | V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 1997. |
[32] |
K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), 46-47. doi: 10.1016/S0045-7825(01)00217-1
![]() |
1. | Patrick Henning, Mario Ohlberger, 2012, Chapter 11, 978-3-642-28588-2, 143, 10.1007/978-3-642-28589-9_11 | |
2. | Mario Ohlberger, Michael Schaefer, Felix Schindler, 2018, Chapter 8, 978-3-319-90468-9, 143, 10.1007/978-3-319-90469-6_8 | |
3. | Patrick Henning, Mario Ohlberger, Barbara Verfürth, A New Heterogeneous Multiscale Method for Time-Harmonic Maxwell's Equations, 2016, 54, 0036-1429, 3493, 10.1137/15M1039225 | |
4. | Konrad Simon, Jörn Behrens, 2019, Chapter 30, 978-3-030-22746-3, 393, 10.1007/978-3-030-22747-0_30 | |
5. | Patrick Henning, Axel Målqvist, Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, 2014, 48, 0764-583X, 1331, 10.1051/m2an/2013141 | |
6. | Vishnu Raveendran, Emilio Cirillo, Adrian Muntean, Upscaling of a reaction-diffusion-convection problem with exploding non-linear drift, 2022, 80, 0033-569X, 641, 10.1090/qam/1622 | |
7. | Patrick Henning, Mario Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems, 2015, 8, 1937-1179, 119, 10.3934/dcdss.2015.8.119 | |
8. | B. P. Muljadi, J. Narski, A. Lozinski, P. Degond, Nonconforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part I: Methodologies and Numerical Experiments, 2015, 13, 1540-3459, 1146, 10.1137/14096428X | |
9. | Claude Le Bris, Frédéric Legoll, François Madiot, Multiscale Finite Element Methods for Advection-Dominated Problems in Perforated Domains, 2019, 17, 1540-3459, 773, 10.1137/17M1152048 | |
10. | Patrick Henning, Mario Ohlberger, Ben Schweizer, An Adaptive Multiscale Finite Element Method, 2014, 12, 1540-3459, 1078, 10.1137/120886856 | |
11. | A. Abdulle, M. E. Huber, Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales, 2014, 126, 0029-599X, 589, 10.1007/s00211-013-0578-9 | |
12. | Emmanuel Frénod, Homogenization-based numerical methods, 2016, 9, 1937-1632, i, 10.3934/dcdss.201605i | |
13. | Tao Yu, Peichang Ouyang, Haitao Cao, Error Estimates for the Heterogeneous Multiscale Finite Volume Method of Convection-Diffusion-Reaction Problem, 2018, 2018, 1076-2787, 1, 10.1155/2018/2927080 | |
14. | Konrad Simon, Jörn Behrens, Semi-Lagrangian Subgrid Reconstruction for Advection-Dominant Multiscale Problems with Rough Data, 2021, 87, 0885-7474, 10.1007/s10915-021-01451-w | |
15. | Andreas Dedner, Robert Klöfkorn, Martin Nolte, Mario Ohlberger, A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module, 2010, 90, 0010-485X, 165, 10.1007/s00607-010-0110-3 | |
16. | Franck Ouaki, Grégoire Allaire, Sylvain Desroziers, Guillaume Enchéry, A priori error estimate of a multiscale finite element method for transport modeling, 2015, 67, 2254-3902, 1, 10.1007/s40324-014-0023-8 | |
17. | Patrick Henning, Mario Ohlberger, A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift, 2016, 9, 1937-1632, 1393, 10.3934/dcdss.2016056 | |
18. | PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334 | |
19. | Erik Burman, Robust error estimates in weak norms for advection dominated transport problems with rough data, 2014, 24, 0218-2025, 2663, 10.1142/S021820251450033X | |
20. | A. Abdulle, M. E. Huber, Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows, 2017, 136, 0029-599X, 603, 10.1007/s00211-016-0854-6 | |
21. | Patrick Henning, Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems, 2012, 7, 1556-1801, 503, 10.3934/nhm.2012.7.503 | |
22. | Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler, Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk, Jan Mohring, Steffen Müthing, Mario Ohlberger, Dirk Ribbrock, Stefan Turek, 2016, Chapter 2, 978-3-319-40526-1, 25, 10.1007/978-3-319-40528-5_2 | |
23. | Wenjia Jing, Yiping Zhang, On the Periodic Homogenization of Elliptic Equations in Nondivergence Form with Large Drifts, 2023, 21, 1540-3459, 1486, 10.1137/23M1550906 | |
24. | Lina Zhao, Eric Chung, Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Convection Diffusion Equation, 2023, 21, 1540-3459, 735, 10.1137/22M1487655 | |
25. | Vishnu Raveendran, Ida de Bonis, Emilio Cirillo, Adrian Muntean, Homogenization of a reaction-diffusion problem with large nonlinear drift and Robin boundary data, 2024, 0033-569X, 10.1090/qam/1687 | |
26. | Dylan J. Oliver, Ian W. Turner, Elliot J. Carr, Dual-grid mapping method for the advection-diffusion-reaction equation in a heterogeneous medium, 2024, 154, 08981221, 78, 10.1016/j.camwa.2023.11.021 | |
27. | Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll, Alexei Lozinski, MsFEM for advection-dominated problems in heterogeneous media: Stabilization via nonconforming variants, 2025, 433, 00457825, 117496, 10.1016/j.cma.2024.117496 |