The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift

  • Received: 01 March 2010 Revised: 01 May 2010
  • Primary: 35K15, 35B45, 65N30.

  • This contribution is concerned with the formulation of a heterogeneous multiscale finite elements method (HMM) for solving linear advection-diffusion problems with rapidly oscillating coefficient functions and a large expected drift. We show that, in the case of periodic coefficient functions, this approach is equivalent to a discretization of the two-scale homogenized equation by means of a Discontinuous Galerkin Time Stepping Method with quadrature. We then derive an optimal order a-priori error estimate for this version of the HMM and finally provide numerical experiments to validate the method.

    Citation: Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift[J]. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711

    Related Papers:

    [1] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [2] Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal . Application of a coupled FV/FE multiscale method to cement media. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603
    [3] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [4] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [5] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [6] Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025
    [7] Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067
    [8] Yaxin Hou, Cao Wen, Yang Liu, Hong Li . A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037
    [9] Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038
    [10] Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021
  • This contribution is concerned with the formulation of a heterogeneous multiscale finite elements method (HMM) for solving linear advection-diffusion problems with rapidly oscillating coefficient functions and a large expected drift. We show that, in the case of periodic coefficient functions, this approach is equivalent to a discretization of the two-scale homogenized equation by means of a Discontinuous Galerkin Time Stepping Method with quadrature. We then derive an optimal order a-priori error estimate for this version of the HMM and finally provide numerical experiments to validate the method.


    [1] A. Abdulle, Multiscale methods for advection-diffusion problems, Discrete Contin. Dyn. Syst., suppl (2005), 11-21.
    [2] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459 (electronic). doi: 10.1137/040607137
    [3] A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18-39. doi: 10.1016/S0021-9991(03)00303-6
    [4] A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces, Multiscale Model. Simul., 3 (2004/05), 195-220 (electronic). doi: 10.1137/030600771
    [5] G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM Control Optim. Calc. Var., 13 (2007), 735-749 (electronic). doi: 10.1051/cocv:2007030
    [6] G. Allaire and A.-L. Raphael, "Homogénéisation d'un Modèle de Convection-Diffusion Avec Chimie/Adsorption en Milieu Poreux," (French), Rapport Interne, CMAP, Ecole Polytechnique, n. 604, 2006.
    [7] G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528.
    [8] T. Arbogast, G. Pencheva, M. F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), 319-346 (electronic). doi: 10.1137/060662587
    [9] A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Model., 4 (2000), 189-210. doi: 10.1088/1364-7830/4/2/307
    [10] W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87-132.
    [11] W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), 1062-1070.
    [12] W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in "Multiscale Methods in Science And Engineering," Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, (2005), 89-110.
    [13] W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156 (electronic). doi: 10.1090/S0894-0347-04-00469-2
    [14] Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math., 57 (2007), 577-596. doi: 10.1016/j.apnum.2006.07.009
    [15] V. Gravemeier and W. A. Wall, A 'divide-and-conquer' spatial and temporal multiscale method for transient convection-diffusion-reaction equations, Internat. J. Numer. Methods Fluids, 54 (2007), 779-804. doi: 10.1002/fld.1465
    [16] P. Henning and M. Ohlberger, A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Preprint, Universität Münster, N-09/09, 2009.
    [17] P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift, submitted to: ZAA, Journal for Analysis and its Applications, 2010.
    [18] P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), 601-629. doi: 10.1007/s00211-009-0244-4
    [19] Multiscale Model. Simul., 3 (2004/05), 168-194 (electronic). doi: 10.1137/030601077
    [20] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), 169-189. doi: 10.1006/jcph.1997.5682
    [21] T. Y. Hou, X.-H. Wu and C. Zhiqiang, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), 913-943. doi: 10.1090/S0025-5718-99-01077-7
    [22] L. Jiang, Y. Efendiev and V. Ginting, Multiscale methods for parabolic equations with continuum spatial scales, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 833-859 (electronic). doi: 10.3934/dcdsb.2007.8.833
    [23] E. Marušić-Paloka and A. L. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), 72 (2005), 391-409 (electronic). doi: 10.1112/S0024610705006824
    [24] A.-M. Matache, Sparse two-scale FEM for homogenization problems. Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), J. Sci. Comput., 17 (2002), 659-669. doi: 10.1023/A:1015187000835
    [25] A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems, M2AN Math. Model. Numer. Anal., 36 (2002), 537-572. doi: 10.1051/m2an:2002025
    [26] P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, Math. Comp., 76 (2007), 153-177 (electronic). doi: 10.1090/S0025-5718-06-01909-0
    [27] J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model. Simul., 7 (2008), 171-196. doi: 10.1137/070693230
    [28] J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), 22-47. doi: 10.1006/jcph.2000.6585
    [29] M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114 (electronic). doi: 10.1137/040605229
    [30] C. Schwab and A.-M. Matache, Generalized FEM for homogenization problems, in "Multiscale and Multiresolution Methods," Lect. Notes Comput. Sci. Eng., 20, Springer, Berlin, (2002), 197-237.
    [31] V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 1997.
    [32] K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), 46-47. doi: 10.1016/S0045-7825(01)00217-1
  • This article has been cited by:

    1. Patrick Henning, Mario Ohlberger, 2012, Chapter 11, 978-3-642-28588-2, 143, 10.1007/978-3-642-28589-9_11
    2. Mario Ohlberger, Michael Schaefer, Felix Schindler, 2018, Chapter 8, 978-3-319-90468-9, 143, 10.1007/978-3-319-90469-6_8
    3. Patrick Henning, Mario Ohlberger, Barbara Verfürth, A New Heterogeneous Multiscale Method for Time-Harmonic Maxwell's Equations, 2016, 54, 0036-1429, 3493, 10.1137/15M1039225
    4. Konrad Simon, Jörn Behrens, 2019, Chapter 30, 978-3-030-22746-3, 393, 10.1007/978-3-030-22747-0_30
    5. Patrick Henning, Axel Målqvist, Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, 2014, 48, 0764-583X, 1331, 10.1051/m2an/2013141
    6. Vishnu Raveendran, Emilio Cirillo, Adrian Muntean, Upscaling of a reaction-diffusion-convection problem with exploding non-linear drift, 2022, 80, 0033-569X, 641, 10.1090/qam/1622
    7. Patrick Henning, Mario Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems, 2015, 8, 1937-1179, 119, 10.3934/dcdss.2015.8.119
    8. B. P. Muljadi, J. Narski, A. Lozinski, P. Degond, Nonconforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part I: Methodologies and Numerical Experiments, 2015, 13, 1540-3459, 1146, 10.1137/14096428X
    9. Claude Le Bris, Frédéric Legoll, François Madiot, Multiscale Finite Element Methods for Advection-Dominated Problems in Perforated Domains, 2019, 17, 1540-3459, 773, 10.1137/17M1152048
    10. Patrick Henning, Mario Ohlberger, Ben Schweizer, An Adaptive Multiscale Finite Element Method, 2014, 12, 1540-3459, 1078, 10.1137/120886856
    11. A. Abdulle, M. E. Huber, Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales, 2014, 126, 0029-599X, 589, 10.1007/s00211-013-0578-9
    12. Emmanuel Frénod, Homogenization-based numerical methods, 2016, 9, 1937-1632, i, 10.3934/dcdss.201605i
    13. Tao Yu, Peichang Ouyang, Haitao Cao, Error Estimates for the Heterogeneous Multiscale Finite Volume Method of Convection-Diffusion-Reaction Problem, 2018, 2018, 1076-2787, 1, 10.1155/2018/2927080
    14. Konrad Simon, Jörn Behrens, Semi-Lagrangian Subgrid Reconstruction for Advection-Dominant Multiscale Problems with Rough Data, 2021, 87, 0885-7474, 10.1007/s10915-021-01451-w
    15. Andreas Dedner, Robert Klöfkorn, Martin Nolte, Mario Ohlberger, A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module, 2010, 90, 0010-485X, 165, 10.1007/s00607-010-0110-3
    16. Franck Ouaki, Grégoire Allaire, Sylvain Desroziers, Guillaume Enchéry, A priori error estimate of a multiscale finite element method for transport modeling, 2015, 67, 2254-3902, 1, 10.1007/s40324-014-0023-8
    17. Patrick Henning, Mario Ohlberger, A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift, 2016, 9, 1937-1632, 1393, 10.3934/dcdss.2016056
    18. PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334
    19. Erik Burman, Robust error estimates in weak norms for advection dominated transport problems with rough data, 2014, 24, 0218-2025, 2663, 10.1142/S021820251450033X
    20. A. Abdulle, M. E. Huber, Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows, 2017, 136, 0029-599X, 603, 10.1007/s00211-016-0854-6
    21. Patrick Henning, Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems, 2012, 7, 1556-1801, 503, 10.3934/nhm.2012.7.503
    22. Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler, Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk, Jan Mohring, Steffen Müthing, Mario Ohlberger, Dirk Ribbrock, Stefan Turek, 2016, Chapter 2, 978-3-319-40526-1, 25, 10.1007/978-3-319-40528-5_2
    23. Wenjia Jing, Yiping Zhang, On the Periodic Homogenization of Elliptic Equations in Nondivergence Form with Large Drifts, 2023, 21, 1540-3459, 1486, 10.1137/23M1550906
    24. Lina Zhao, Eric Chung, Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Convection Diffusion Equation, 2023, 21, 1540-3459, 735, 10.1137/22M1487655
    25. Vishnu Raveendran, Ida de Bonis, Emilio Cirillo, Adrian Muntean, Homogenization of a reaction-diffusion problem with large nonlinear drift and Robin boundary data, 2024, 0033-569X, 10.1090/qam/1687
    26. Dylan J. Oliver, Ian W. Turner, Elliot J. Carr, Dual-grid mapping method for the advection-diffusion-reaction equation in a heterogeneous medium, 2024, 154, 08981221, 78, 10.1016/j.camwa.2023.11.021
    27. Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll, Alexei Lozinski, MsFEM for advection-dominated problems in heterogeneous media: Stabilization via nonconforming variants, 2025, 433, 00457825, 117496, 10.1016/j.cma.2024.117496
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5454) PDF downloads(125) Cited by(27)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog