1.
|
J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini,
Nonlinear modelling of cancer: bridging the gap between cells and tumours,
2010,
23,
0951-7715,
R1,
10.1088/0951-7715/23/1/R01
|
|
2.
|
Dumitru Trucu, Ping Lin, Mark A. J. Chaplain, Yangfan Wang,
A Multiscale Moving Boundary Model Arising in Cancer Invasion,
2013,
11,
1540-3459,
309,
10.1137/110839011
|
|
3.
|
Gülnihal Meral, Christian Stinner, Christina Surulescu,
On a multiscale model involving cell contractivity and its effects on tumor invasion,
2015,
20,
1553-524X,
189,
10.3934/dcdsb.2015.20.189
|
|
4.
|
Feng Dai, Bin Liu,
Optimal control problem for a general reaction–diffusion tumor–immune system with chemotherapy,
2021,
358,
00160032,
448,
10.1016/j.jfranklin.2020.10.032
|
|
5.
|
Gülnihal Meral, İbrahim Çağatay Yamanlar,
Mathematical Analysis and Numerical Simulations for the Cancer Tissue Invasion Model,
2018,
68,
1303-5991,
371,
10.31801/cfsuasmas.421546
|
|
6.
|
Thomas Lorenz, Christina Surulescu,
On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces,
2014,
24,
0218-2025,
2383,
10.1142/S0218202514500249
|
|
7.
|
Anne Dietrich, Niklas Kolbe, Nikolaos Sfakianakis, Christina Surulescu,
Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs,
2022,
20,
1540-3459,
685,
10.1137/21M1412104
|
|
8.
|
Xinru Cao,
Boundedness in a three-dimensional chemotaxis–haptotaxis model,
2016,
67,
0044-2275,
10.1007/s00033-015-0601-3
|
|
9.
|
A. Gerisch, M.A.J. Chaplain,
Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion,
2008,
250,
00225193,
684,
10.1016/j.jtbi.2007.10.026
|
|
10.
|
Yifu Wang,
A Review on the Qualitative Behavior of Solutions in Some Chemotaxis–Haptotaxis Models of Cancer Invasion,
2020,
8,
2227-7390,
1464,
10.3390/math8091464
|
|
11.
|
Pia Domschke, Dumitru Trucu, Alf Gerisch, Mark A. J. Chaplain,
Structured models of cell migration incorporating molecular binding processes,
2017,
75,
0303-6812,
1517,
10.1007/s00285-017-1120-y
|
|
12.
|
Chunhua Jin,
Global solvability and stabilization to a cancer invasion model with remodelling of ECM,
2020,
33,
0951-7715,
5049,
10.1088/1361-6544/ab9249
|
|
13.
|
Feng Dai, Bin Liu,
Optimal control and pattern formation for a haptotaxis model of solid tumor invasion,
2019,
356,
00160032,
9364,
10.1016/j.jfranklin.2019.08.039
|
|
14.
|
Jiashan Zheng,
Boundedness of the solution of a higher-dimensional parabolic–ODE–parabolic chemotaxis–haptotaxis model with generalized logistic source,
2017,
30,
0951-7715,
1987,
10.1088/1361-6544/aa675e
|
|
15.
|
Szabolcs Suveges, Raluca Eftimie, Dumitru Trucu,
Directionality of Macrophages Movement in Tumour Invasion: A Multiscale Moving-Boundary Approach,
2020,
82,
0092-8240,
10.1007/s11538-020-00819-7
|
|
16.
|
Ying Chen, John S. Lowengrub,
Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach,
2014,
361,
00225193,
14,
10.1016/j.jtbi.2014.06.024
|
|
17.
|
Gülnihal Meral,
DRBEM-FDM solution of a chemotaxis–haptotaxis model for cancer invasion,
2019,
354,
03770427,
299,
10.1016/j.cam.2018.04.047
|
|
18.
|
Jeyaraj Manimaran, Lingeshwaran Shangerganesh,
Solvability and numerical simulations for tumor invasion model with nonlinear diffusion,
2020,
2,
2577-7408,
10.1002/cmm4.1068
|
|
19.
|
Feng Dai, Bin Liu,
Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling,
2020,
483,
0022247X,
123583,
10.1016/j.jmaa.2019.123583
|
|
20.
|
Xueyan Tao,
Global weak solutions to an oncolytic viral therapy model with doubly haptotactic terms,
2021,
60,
14681218,
103276,
10.1016/j.nonrwa.2020.103276
|
|
21.
|
Mehdi Dehghan, Niusha Narimani,
An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue,
2018,
59,
0307904X,
500,
10.1016/j.apm.2018.01.034
|
|
22.
|
A. Morozov, M. Ptashnyk, V. Volpert, A. Morozov, M. Ptashnyk, V. Volpert,
Preface. Bifurcations and Pattern Formation in Biological Applications,
2016,
11,
1760-6101,
1,
10.1051/mmnp/201611501
|
|
23.
|
Christian Engwer, Christian Stinner, Christina Surulescu,
On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation,
2017,
27,
0218-2025,
1355,
10.1142/S0218202517400188
|
|
24.
|
Yan Li, Johannes Lankeit,
Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion,
2016,
29,
0951-7715,
1564,
10.1088/0951-7715/29/5/1564
|
|
25.
|
David Reher, Barbara Klink, Andreas Deutsch, Anja Voss-Böhme,
Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model,
2017,
12,
1745-6150,
10.1186/s13062-017-0188-z
|
|
26.
|
Feng Dai, Bin Liu,
Global boundedness for a N-dimensional two species cancer invasion haptotaxis model with tissue remodeling,
2022,
27,
1531-3492,
311,
10.3934/dcdsb.2021044
|
|
27.
|
Jone Urdal, Jahn Otto Waldeland, Steinar Evje,
Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present,
2019,
18,
1617-7959,
1047,
10.1007/s10237-019-01128-2
|
|
28.
|
Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu,
Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions,
2021,
18,
1551-0018,
5252,
10.3934/mbe.2021267
|
|
29.
|
M. Aquino, M. Negreanu, A.M. Vargas,
A meshless numerical method for a system with intraspecific and interspecific competition,
2022,
145,
09557997,
242,
10.1016/j.enganabound.2022.09.005
|
|
30.
|
Mikhail K. Kolev, Miglena N. Koleva, Lubin G. Vulkov,
Two positivity preserving flux limited, second-order numerical methods for a haptotaxis model,
2013,
29,
0749159X,
1121,
10.1002/num.21748
|
|
31.
|
Youshan Tao,
Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source,
2009,
354,
0022247X,
60,
10.1016/j.jmaa.2008.12.039
|
|
32.
|
Feng Dai, Linjie Ma,
Boundedness in a two-dimensional two-species cancer invasion haptotaxis model without cell proliferation,
2023,
74,
0044-2275,
10.1007/s00033-023-01942-w
|
|
33.
|
Jozil Takhirov,
Global existence of classical solutions to a chemotaxis-haptotaxis model,
2021,
2,
2662-2963,
10.1007/s42985-021-00069-9
|
|
34.
|
Meng Liu, Yuxiang Li,
Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread,
2022,
21,
1534-0392,
927,
10.3934/cpaa.2022004
|
|
35.
|
Youshan Tao, Michael Winkler,
Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,
2014,
257,
00220396,
784,
10.1016/j.jde.2014.04.014
|
|
36.
|
Luca Scarpa, Andrea Signori,
On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport,
2021,
34,
0951-7715,
3199,
10.1088/1361-6544/abe75d
|
|
37.
|
Xuegang Hu, Liangchen Wang, Chunlai Mu, Ling Li,
Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion,
2017,
355,
1631073X,
181,
10.1016/j.crma.2016.12.005
|
|
38.
|
Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura,
Spatio-temporal oscillations in the Keller–Segel system with logistic growth,
2014,
277,
01672789,
1,
10.1016/j.physd.2014.03.002
|
|
39.
|
Peter Romeo Nyarko, Martin Anokye,
Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue,
2020,
5,
2473-6988,
3111,
10.3934/math.2020200
|
|
40.
|
Jiashan Zheng,
2019,
Chapter 12,
978-3-030-15241-3,
351,
10.1007/978-3-030-15242-0_12
|
|
41.
|
H. Lefraich,
2022,
Chapter 16,
978-3-031-12514-0,
287,
10.1007/978-3-031-12515-7_16
|
|
42.
|
Antonino Amoddeo,
Modeling Avascular Tumor Growth: Approach with an Adaptive Grid Numerical Technique,
2018,
09,
1756-9737,
1840002,
10.1142/S1756973718400024
|
|
43.
|
Youshan Tao, Chun Cui,
A density-dependent chemotaxis–haptotaxis system modeling cancer invasion,
2010,
367,
0022247X,
612,
10.1016/j.jmaa.2010.02.015
|
|
44.
|
Kevin J. Painter, Thomas Hillen,
Spatio-temporal chaos in a chemotaxis model,
2011,
240,
01672789,
363,
10.1016/j.physd.2010.09.011
|
|
45.
|
Anna Zhigun, Christina Surulescu, Aydar Uatay,
Global existence for a degenerate haptotaxis model of cancer invasion,
2016,
67,
0044-2275,
10.1007/s00033-016-0741-0
|
|
46.
|
Hui Wang, Pan Zheng, Jie Xing,
Boundedness in a chemotaxis–haptotaxis model with gradient-dependent flux limitation,
2021,
122,
08939659,
107505,
10.1016/j.aml.2021.107505
|
|
47.
|
Yuhuan Li, Ke Lin, Chunlai Mu,
Boundedness and asymptotic behavior of solutions to a chemotaxis–haptotaxis model in high dimensions,
2015,
50,
08939659,
91,
10.1016/j.aml.2015.06.010
|
|
48.
|
Tomomi Yokota, Michael Winkler, Akio Ito, Kentarou Fujie,
Stabilization in a chemotaxis model for tumor invasion,
2015,
36,
1078-0947,
151,
10.3934/dcds.2016.36.151
|
|
49.
|
Tian Xiang, Jiashan Zheng,
A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source,
2019,
32,
0951-7715,
4890,
10.1088/1361-6544/ab41d5
|
|
50.
|
Adam Korpusik,
A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection,
2017,
43,
10075704,
369,
10.1016/j.cnsns.2016.07.017
|
|
51.
|
On some models for cancer cell migration through
tissue networks,
2011,
8,
1551-0018,
575,
10.3934/mbe.2011.8.575
|
|
52.
|
Zuzanna Szymańska, Jakub Urbański, Anna Marciniak-Czochra,
Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue,
2009,
58,
0303-6812,
819,
10.1007/s00285-008-0220-0
|
|
53.
|
Kang-Ling Liao, Xue-Feng Bai, Avner Friedman, Timothy W. Secomb,
Mathematical Modeling of Interleukin-27 Induction of Anti-Tumor T Cells Response,
2014,
9,
1932-6203,
e91844,
10.1371/journal.pone.0091844
|
|
54.
|
P. Gerlee, A.R.A. Anderson,
Evolution of cell motility in an individual-based model of tumour growth,
2009,
259,
00225193,
67,
10.1016/j.jtbi.2009.03.005
|
|
55.
|
Pan Zheng,
Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion,
2016,
21,
1531-3492,
2039,
10.3934/dcdsb.2016035
|
|
56.
|
Gregory Baramidze, Victoria Baramidze, Ying Xu, Fang-Bao Tian,
Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue,
2021,
16,
1932-6203,
e0260108,
10.1371/journal.pone.0260108
|
|
57.
|
Peter Y.H. Pang, Yifu Wang,
Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,
2017,
263,
00220396,
1269,
10.1016/j.jde.2017.03.016
|
|
58.
|
Dan Li, Chunlai Mu, Hong Yi,
Global boundedness in a three-dimensional chemotaxis–haptotaxis model,
2019,
77,
08981221,
2447,
10.1016/j.camwa.2018.12.030
|
|
59.
|
M. Kolev, B. Zubik-Kowal,
Numerical Solutions for a Model of Tissue Invasion and Migration of Tumour Cells,
2011,
2011,
1748-670X,
1,
10.1155/2011/452320
|
|
60.
|
Vivi Andasari, Alf Gerisch, Georgios Lolas, Andrew P. South, Mark A. J. Chaplain,
Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation,
2011,
63,
0303-6812,
141,
10.1007/s00285-010-0369-1
|
|
61.
|
Martina Conte, Luca Gerardo-Giorda, Maria Groppi,
Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model,
2020,
486,
00225193,
110088,
10.1016/j.jtbi.2019.110088
|
|
62.
|
Szabolcs Suveges, Raluca Eftimie, Dumitru Trucu,
Re-polarisation of Macrophages Within Collective Tumour Cell Migration: A Multiscale Moving Boundary Approach,
2022,
7,
2297-4687,
10.3389/fams.2021.799650
|
|
63.
|
Francisco J. Solis, Sandra E. Delgadillo,
Evolution of a mathematical model of an aggressive–invasive cancer under chemotherapy,
2015,
69,
08981221,
545,
10.1016/j.camwa.2015.01.013
|
|
64.
|
Steinar Evje, Huanyao Wen,
A Stokes Two-Fluid Model for Cell Migration that Can Account for Physical Cues in the Microenvironment,
2018,
50,
0036-1410,
86,
10.1137/16M1078185
|
|
65.
|
Juan J. Benito, Ángel García, María Lucía Gavete, Mihaela Negreanu, Francisco Ureña, Antonio M. Vargas,
Convergence and Numerical Solution of a Model for Tumor Growth,
2021,
9,
2227-7390,
1355,
10.3390/math9121355
|
|
66.
|
Martha B. Alvarez-Elizondo, Rakefet Rozen, Daphne Weihs,
2018,
9780128129524,
449,
10.1016/B978-0-12-812952-4.00015-5
|
|
67.
|
Youshan Tao, Michael Winkler,
Large Time Behavior in a Multidimensional Chemotaxis-Haptotaxis Model with Slow Signal Diffusion,
2015,
47,
0036-1410,
4229,
10.1137/15M1014115
|
|
68.
|
Farhad Hatami, Mohammad Bagher Ghaemi,
Numerical Solution of Model of Cancer Invasion with Tissue,
2013,
04,
2152-7385,
1050,
10.4236/am.2013.47143
|
|
69.
|
Danqing Zhang, Chunhua Jin, Yi Xiang,
Stabilization to a cancer invasion model with remodeling mechanism and slow diffusion,
2022,
73,
0044-2275,
10.1007/s00033-022-01839-0
|
|
70.
|
Youshan Tao, Mingjun Wang,
A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source,
2009,
41,
0036-1410,
1533,
10.1137/090751542
|
|
71.
|
Kevin J. Painter,
Mathematical models for chemotaxis and their applications in self-organisation phenomena,
2019,
481,
00225193,
162,
10.1016/j.jtbi.2018.06.019
|
|
72.
|
Arran Hodgkinson, Laurent Le Cam, Dumitru Trucu, Ovidiu Radulescu,
Spatio-Genetic and phenotypic modelling elucidates resistance and re-sensitisation to treatment in heterogeneous melanoma,
2019,
466,
00225193,
84,
10.1016/j.jtbi.2018.11.037
|
|
73.
|
Akisato Kubo, Hiroki Hoshino,
2015,
Chapter 28,
978-3-319-12576-3,
233,
10.1007/978-3-319-12577-0_28
|
|
74.
|
Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu,
Glioma follow white matter tracts: a multiscale DTI-based model,
2015,
71,
0303-6812,
551,
10.1007/s00285-014-0822-7
|
|
75.
|
Steinar Evje,
An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment,
2017,
165,
00092509,
240,
10.1016/j.ces.2017.02.045
|
|
76.
|
Vasiliki Bitsouni, Dumitru Trucu, Mark A J Chaplain, Raluca Eftimie,
Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion,
2018,
1477-8599,
10.1093/imammb/dqx019
|
|
77.
|
Antonino Amoddeo, Bernardo Spagnolo,
Moving mesh partial differential equations modelling to describe oxygen induced effects on avascular tumour growth,
2015,
2,
2331-1940,
1050080,
10.1080/23311940.2015.1050080
|
|
78.
|
Jiashan Zheng, Yifu Wang,
Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model,
2016,
71,
08981221,
1898,
10.1016/j.camwa.2016.03.014
|
|
79.
|
Pia Domschke, Dumitru Trucu, Alf Gerisch, Mark A. J. Chaplain,
Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns,
2014,
361,
00225193,
41,
10.1016/j.jtbi.2014.07.010
|
|
80.
|
Anita Häcker,
A mathematical model for mesenchymal and chemosensitive cell dynamics,
2012,
64,
0303-6812,
361,
10.1007/s00285-011-0415-7
|
|
81.
|
Liangchen Wang, Chunlai Mu, Xuegang Hu, Ya Tian,
Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source,
2017,
40,
01704214,
3000,
10.1002/mma.4216
|
|
82.
|
Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu,
Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix,
2022,
19,
1551-0018,
6157,
10.3934/mbe.2022288
|
|
83.
|
Youshan Tao, Michael Winkler,
Boundedness and stabilization in a multi-dimensional chemotaxis—haptotaxis model,
2014,
144,
0308-2105,
1067,
10.1017/S0308210512000571
|
|
84.
|
Ensil Kang, Jihoon Lee,
GLOBAL SOLUTIONS TO CHEMOTAXIS-HAPTOTAXIS TUMOR INVASION SYSTEM WITH TISSUE RE-ESTABLISHMENT,
2015,
28,
1226-3524,
161,
10.14403/jcms.2015.28.1.161
|
|
85.
|
Yifu Wang, Yuanyuan Ke,
Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions,
2016,
260,
00220396,
6960,
10.1016/j.jde.2016.01.017
|
|
86.
|
Noorehan Yaacob, Sharidan Shafie, Takashi Suzuki, Mohd Ariff Admon,
2021,
2423,
0094-243X,
020037,
10.1063/5.0075754
|
|
87.
|
Elisabeth Logak, Chao Wang,
The singular limit of a haptotaxis model with bistable growth,
2012,
11,
1553-5258,
209,
10.3934/cpaa.2012.11.209
|
|
88.
|
Jiashan Zheng,
Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion,
2017,
37,
1553-5231,
627,
10.3934/dcds.2017026
|
|
89.
|
Shuyan Qiu, Chunlai Mu, Yafeng Li,
Boundedness and Stability in a Chemotaxis-Growth Model with Indirect Attractant Production and Signal-Dependent Sensitivity,
2020,
169,
0167-8019,
341,
10.1007/s10440-019-00301-0
|
|
90.
|
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino,
A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion,
2022,
15,
1937-1632,
2053,
10.3934/dcdss.2022044
|
|
91.
|
Viviana Niño-Celis, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa,
Convergence and positivity of Finite Element methods for a haptotaxis model of tumoral invasion,
2021,
89,
08981221,
20,
10.1016/j.camwa.2021.02.007
|
|
92.
|
Feng Dai, Bin Liu,
A New Result for Global Solvability of a Two Species Cancer Invasion Haptotaxis Model with Tissue Remodeling,
2022,
54,
0036-1410,
1,
10.1137/19M1309870
|
|
93.
|
Hai-Yang Jin, Tian Xiang,
Negligibility of haptotaxis effect in a chemotaxis–haptotaxis model,
2021,
31,
0218-2025,
1373,
10.1142/S0218202521500287
|
|
94.
|
Sulasri Suddin, Fajar Adi-Kusumo, Lina Aryati, Sining Zheng,
Reaction-Diffusion on a Spatial Mathematical Model of Cancer Immunotherapy with Effector Cells and IL-2 Compounds’ Interactions,
2021,
2021,
1687-9651,
1,
10.1155/2021/5535447
|
|
95.
|
Hui Tang, Yunfei Yuan,
Optimal control for a chemotaxis–haptotaxis model in two space dimensions,
2022,
2022,
1687-2770,
10.1186/s13661-022-01661-7
|
|
96.
|
Guoqiang Ren, Bin Liu,
Global classical solvability in a three‐dimensional haptotaxis system modeling oncolytic virotherapy,
2021,
44,
0170-4214,
9275,
10.1002/mma.7354
|
|
97.
|
Dumitru Trucu, Pia Domschke, Alf Gerisch, Mark A. J. Chaplain,
2016,
Chapter 5,
978-3-319-42678-5,
275,
10.1007/978-3-319-42679-2_5
|
|
98.
|
Nikolaos Sfakianakis, Anotida Madzvamuse, Mark A. J. Chaplain,
A Hybrid Multiscale Model for Cancer Invasion of the Extracellular Matrix,
2020,
18,
1540-3459,
824,
10.1137/18M1189026
|
|
99.
|
Pan Zheng, Chunlai Mu, Xiaojun Song,
On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion,
2015,
36,
1078-0947,
1737,
10.3934/dcds.2016.36.1737
|
|
100.
|
Yen Nguyen Edalgo, Ashlee Ford Versypt,
Mathematical Modeling of Metastatic Cancer Migration through a Remodeling Extracellular Matrix,
2018,
6,
2227-9717,
58,
10.3390/pr6050058
|
|
101.
|
Elisabetta Rocca, Luca Scarpa, Andrea Signori,
Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis,
2021,
31,
0218-2025,
2643,
10.1142/S0218202521500585
|
|
102.
|
Michael Winkler,
Singular structure formation in a degenerate haptotaxis model involving myopic diffusion,
2018,
112,
00217824,
118,
10.1016/j.matpur.2017.11.002
|
|
103.
|
Joseph Malinzi, Innocenter Amima,
Mathematical analysis of a tumour-immune interaction model: A moving boundary problem,
2019,
308,
00255564,
8,
10.1016/j.mbs.2018.12.009
|
|
104.
|
Hui Wang, Pan Zheng,
Qualitative behavior of solutions for a chemotaxis-haptotaxis system with gradient-dependent flux-limitation,
2022,
0003-6811,
1,
10.1080/00036811.2022.2158820
|
|
105.
|
Peter Y. H. Pang, Yifu Wang,
Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis–haptotaxis,
2019,
29,
0218-2025,
1387,
10.1142/S0218202519500246
|
|
106.
|
W. Domgno Kuipou, A. Mohamadou,
Management of invasive cells in soft biological tissues through modulated nonlinear excitations: Long-range effects,
2022,
110,
10075704,
106360,
10.1016/j.cnsns.2022.106360
|
|
107.
|
Yen T. Nguyen Edalgo, Anya L. Zornes, Ashlee N. Ford Versypt,
A hybrid discrete–continuous model of metastatic cancer cell migration through a remodeling extracellular matrix,
2019,
65,
0001-1541,
10.1002/aic.16671
|
|
108.
|
Sashikumaar Ganesan, Shangerganesh Lingeshwaran,
Galerkin finite element method for cancer invasion mathematical model,
2017,
73,
08981221,
2603,
10.1016/j.camwa.2017.04.006
|
|
109.
|
Feng Dai, Bin Liu,
Global weak solutions in a three-dimensional two-species cancer invasion haptotaxis model without cell proliferation,
2022,
63,
0022-2488,
091501,
10.1063/5.0097126
|
|
110.
|
MIKHAIL KOLEV, BARBARA ZUBIK-KOWAL,
NUMERICAL VERSUS EXPERIMENTAL DATA FOR PROSTATE TUMOUR GROWTH,
2011,
19,
0218-3390,
33,
10.1142/S0218339011003774
|
|
111.
|
JAN KELKEL, CHRISTINA SURULESCU,
A MULTISCALE APPROACH TO CELL MIGRATION IN TISSUE NETWORKS,
2012,
22,
0218-2025,
1150017,
10.1142/S0218202511500175
|
|
112.
|
Youshan Tao, Michael Winkler,
Dominance of chemotaxis in a chemotaxis–haptotaxis model,
2014,
27,
0951-7715,
1225,
10.1088/0951-7715/27/6/1225
|
|
113.
|
Zhen Chen, Youshan Tao,
Large-Data Solutions in a Three-Dimensional Chemotaxis-Haptotaxis System with Remodeling of Non-diffusible Attractant: The Role of Sub-linear Production of Diffusible Signal,
2019,
163,
0167-8019,
129,
10.1007/s10440-018-0216-8
|
|
114.
|
J.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas,
Solving a chemotaxis–haptotaxis system in 2D using Generalized Finite Difference Method,
2020,
80,
08981221,
762,
10.1016/j.camwa.2020.05.008
|
|
115.
|
Akisato Kubo, Yuto Miyata, Hidetoshi Kobayashi, Hiroki Hoshino, Naoki Hayashi,
Nonlinear Evolution Equations and Its Application to a Tumour Invasion Model,
2016,
06,
2160-0368,
878,
10.4236/apm.2016.612066
|
|
116.
|
Lu Peng, Dumitru Trucu, Ping Lin, Alastair Thompson, Mark A. J. Chaplain,
A Multiscale Mathematical Model of Tumour Invasive Growth,
2017,
79,
0092-8240,
389,
10.1007/s11538-016-0237-2
|
|
117.
|
Sounak Sadhukhan, P. K. Mishra,
A multi-layered hybrid model for cancer cell invasion,
2022,
60,
0140-0118,
1075,
10.1007/s11517-022-02514-2
|
|
118.
|
Mark A. J. Chaplain,
2007,
0470025069,
10.1002/9780470025079.chap60.pub2
|
|
119.
|
Chunhua Jin,
Global classical solutions and convergence to a mathematical model for cancer cells invasion and metastatic spread,
2020,
269,
00220396,
3987,
10.1016/j.jde.2020.03.018
|
|
120.
|
Chunhua Jin,
Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms,
2018,
50,
00246093,
598,
10.1112/blms.12160
|
|
121.
|
Jahn O. Waldeland, Steinar Evje,
A multiphase model for exploring tumor cell migration driven by autologous chemotaxis,
2018,
191,
00092509,
268,
10.1016/j.ces.2018.06.076
|
|
122.
|
Feng Dai, Bin Liu,
Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production,
2020,
269,
00220396,
10839,
10.1016/j.jde.2020.07.027
|
|
123.
|
N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler,
Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision,
2022,
32,
0218-2025,
713,
10.1142/S0218202522500166
|
|
124.
|
Dan Li, Chunlai Mu, Pan Zheng,
Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion,
2018,
28,
0218-2025,
1413,
10.1142/S0218202518500380
|
|
125.
|
Masaaki Mizukami, Hirohiko Otsuka, Tomomi Yokota,
Global existence and boundedness in a chemotaxis–haptotaxis system with signal-dependent sensitivity,
2018,
464,
0022247X,
354,
10.1016/j.jmaa.2018.04.002
|
|
126.
|
Johannes Lankeit, Michael Winkler,
Facing Low Regularity in Chemotaxis Systems,
2020,
122,
0012-0456,
35,
10.1365/s13291-019-00210-z
|
|
127.
|
Peng Feng, Zhewei Dai, Dorothy Wallace,
On a 2D Model of Avascular Tumor with Weak Allee Effect,
2019,
2019,
1110-757X,
1,
10.1155/2019/9581072
|
|
128.
|
Zhe Jia, Zuodong Yang,
Global boundedness to a chemotaxis–haptotaxis model with nonlinear diffusion,
2020,
103,
08939659,
106192,
10.1016/j.aml.2019.106192
|
|
129.
|
Szabolcs Suveges, Kismet Hossain-Ibrahim, J. Douglas Steele, Raluca Eftimie, Dumitru Trucu,
Mathematical Modelling of Glioblastomas Invasion within the Brain: A 3D Multi-Scale Moving-Boundary Approach,
2021,
9,
2227-7390,
2214,
10.3390/math9182214
|
|
130.
|
N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler,
Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues,
2015,
25,
0218-2025,
1663,
10.1142/S021820251550044X
|
|
131.
|
Christian Stinner, Christina Surulescu, Aydar Uatay,
Global existence for a go-or-grow multiscale model for tumor invasion with therapy,
2016,
26,
0218-2025,
2163,
10.1142/S021820251640011X
|
|
132.
|
J. Fan, K. Zhao,
A Note on a 3D Haptotaxis Model of Cancer Invasion,
2013,
1687-1200,
10.1093/amrx/abt004
|
|
133.
|
M. Akhmouch, M. Benzakour Amine,
A time semi-exponentially fitted scheme for chemotaxis-growth models,
2017,
54,
0008-0624,
609,
10.1007/s10092-016-0201-4
|
|
134.
|
Guoqiang Ren, Jinlong Wei,
Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia,
2021,
72,
0044-2275,
10.1007/s00033-021-01572-0
|
|
135.
|
Youshan Tao, Mingjun Wang,
Global solution for a chemotactic–haptotactic model of cancer invasion,
2008,
21,
0951-7715,
2221,
10.1088/0951-7715/21/10/002
|
|
136.
|
Zhi-An Wang,
Wavefront of an angiogenesis model,
2012,
17,
1531-3492,
2849,
10.3934/dcdsb.2012.17.2849
|
|
137.
|
Meng Liu, Yuxiang Li,
Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space,
2023,
20,
1551-0018,
7565,
10.3934/mbe.2023327
|
|
138.
|
Gülnihal Meral, Christina Surulescu,
Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion,
2013,
408,
0022247X,
597,
10.1016/j.jmaa.2013.06.017
|
|
139.
|
Feng Dai, Bin Liu,
Global Solvability and Optimal Control to a Haptotaxis Cancer Invasion Model with Two Cancer Cell Species,
2021,
84,
0095-4616,
2379,
10.1007/s00245-020-09712-0
|
|
140.
|
Chunhua Jin,
Global Strong Solution and Periodic Dynamic Behavior to Chaplain–Lolas Model,
2022,
1040-7294,
10.1007/s10884-022-10210-w
|
|
141.
|
Tian Xiang,
Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system,
2022,
336,
00220396,
44,
10.1016/j.jde.2022.07.015
|
|
142.
|
Jiashan Zheng, Yuanyuan Ke,
Large time behavior of solutions to a fully parabolic chemotaxis–haptotaxis model in N dimensions,
2019,
266,
00220396,
1969,
10.1016/j.jde.2018.08.018
|
|
143.
|
William Domgno Kuipou, A. Mohamadou,
Management of Invasive Cells in Soft Biological Tissues Through Modulated Nonlinear Excitations: Long-Range Effects,
2021,
1556-5068,
10.2139/ssrn.3941676
|
|
144.
|
Khadijeh Baghaei, Mohammad Bagher Ghaemi, Mahmoud Hesaaraki,
Global Existence of Classical Solutions to a Cancer Invasion Model,
2012,
03,
2152-7385,
382,
10.4236/am.2012.34059
|
|
145.
|
Youshan Tao,
Global existence for a haptotaxis model of cancer invasion with tissue remodeling,
2011,
12,
14681218,
418,
10.1016/j.nonrwa.2010.06.027
|
|
146.
|
Long Lei, Zhongping Li,
Boundedness in a quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type,
2019,
2019,
1687-2770,
10.1186/s13661-019-1255-4
|
|
147.
|
Vasiliki Bitsouni, Mark A. J. Chaplain, Raluca Eftimie,
Mathematical modelling of cancer invasion: The multiple roles of TGF-β pathway on tumour proliferation and cell adhesion,
2017,
27,
0218-2025,
1929,
10.1142/S021820251750035X
|
|
148.
|
Yao Nie, Jia Yuan,
Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces,
2020,
196,
0362546X,
111782,
10.1016/j.na.2020.111782
|
|
149.
|
Xueyan Tao, Yuanwei Qi, Shulin Zhou,
Mathematical analysis of a tumor invasion model—global existence and stability,
2021,
61,
14681218,
103297,
10.1016/j.nonrwa.2021.103297
|
|
150.
|
Mingjun Wang, Minghao Li,
2008,
Global Mild Solution for a Chemotaxis-Haptotaxis Model of Tumor Invasion,
978-0-7695-3498-5,
613,
10.1109/ISCSCT.2008.276
|
|
151.
|
Mikhail K. Kolev, Miglena N. Koleva, Lubin G. Vulkov,
An Unconditional Positivity-Preserving Difference Scheme for Models of Cancer Migration and Invasion,
2022,
10,
2227-7390,
131,
10.3390/math10010131
|
|
152.
|
Peter Y. H. Pang, Yifu Wang,
Global boundedness of solutions to a chemotaxis–haptotaxis model with tissue remodeling,
2018,
28,
0218-2025,
2211,
10.1142/S0218202518400134
|
|
153.
|
Luis Almeida, Gissell Estrada-Rodriguez, Lisa Oliver, Diane Peurichard, Alexandre Poulain, Francois Vallette,
Treatment-induced shrinking of tumour aggregates: a nonlinear volume-filling chemotactic approach,
2021,
83,
0303-6812,
10.1007/s00285-021-01642-x
|
|
154.
|
Sashikumaar Ganesan, Shangerganesh Lingeshwaran,
A biophysical model of tumor invasion,
2017,
46,
10075704,
135,
10.1016/j.cnsns.2016.10.013
|
|
155.
|
Yuanyuan Ke, Jiashan Zheng,
A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,
2018,
31,
0951-7715,
4602,
10.1088/1361-6544/aad307
|
|
156.
|
Yifu Wang,
Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion,
2016,
260,
00220396,
1975,
10.1016/j.jde.2015.09.051
|
|
157.
|
Katsutaka Kimura, Hiroki Hoshino, Akisato Kubo,
2015,
Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model,
1-60133-018-9,
733,
10.3934/proc.2015.0733
|
|
158.
|
Linnea C. Franssen, Tommaso Lorenzi, Andrew E. F. Burgess, Mark A. J. Chaplain,
A Mathematical Framework for Modelling the Metastatic Spread of Cancer,
2019,
81,
0092-8240,
1965,
10.1007/s11538-019-00597-x
|
|
159.
|
W. Domgno Kuipou, A. Mohamadou, E. Kengne,
Cellular transport through nonlinear mechanical waves in fibrous and absorbing biological tissues,
2021,
152,
09600779,
111321,
10.1016/j.chaos.2021.111321
|
|
160.
|
Sina Anvari, Shruti Nambiar, Jun Pang, Nima Maftoon,
Computational Models and Simulations of Cancer Metastasis,
2021,
28,
1134-3060,
4837,
10.1007/s11831-021-09554-1
|
|
161.
|
Rui Li, Bei Hu,
A parabolic–hyperbolic system modeling the growth of a tumor,
2019,
267,
00220396,
693,
10.1016/j.jde.2019.01.020
|
|
162.
|
J. Ignacio Tello, Dariusz Wrzosek,
Predator–prey model with diffusion and indirect prey-taxis,
2016,
26,
0218-2025,
2129,
10.1142/S0218202516400108
|
|
163.
|
L. Shangerganesh, V. N. Deiva Mani, S. Karthikeyan,
Existence of solutions of cancer invasion parabolic system with integrable data,
2020,
31,
1012-9405,
1359,
10.1007/s13370-020-00801-5
|
|
164.
|
Arran Hodgkinson, Dumitru Trucu, Matthieu Lacroix, Laurent Le Cam, Ovidiu Radulescu,
Computational Model of Heterogeneity in Melanoma: Designing Therapies and Predicting Outcomes,
2022,
12,
2234-943X,
10.3389/fonc.2022.857572
|
|
165.
|
Haiyan Xu, Limin Zhang, Chunhua Jin,
Global solvability and large time behavior to a chemotaxis–haptotaxis model with nonlinear diffusion,
2019,
46,
14681218,
238,
10.1016/j.nonrwa.2018.09.019
|
|
166.
|
Robyn Shuttleworth, Dumitru Trucu,
Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion,
2020,
82,
0092-8240,
10.1007/s11538-020-00732-z
|
|
167.
|
S. I. Kaykanat, A. K. Uguz,
The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery,
2023,
17,
1932-1058,
021502,
10.1063/5.0130769
|
|
168.
|
Chunhua Jin,
Uniform boundedness and eventual Hölder continuity to a cancer invasion model with remodeling of ECM and nonlinear diffusion,
2023,
0022-2526,
10.1111/sapm.12577
|
|
169.
|
Akisato Kubo, Hiroki Hoshino,
2023,
Chapter 49,
978-3-031-36374-0,
647,
10.1007/978-3-031-36375-7_49
|
|
170.
|
TONG LI, ZHI-AN WANG,
NONLINEAR STABILITY OF LARGE AMPLITUDE VISCOUS SHOCK WAVES OF A GENERALIZED HYPERBOLIC–PARABOLIC SYSTEM ARISING IN CHEMOTAXIS,
2010,
20,
0218-2025,
1967,
10.1142/S0218202510004830
|
|
171.
|
D. Burini, N. Chouhad,
Cross-diffusion models in complex frameworks from microscopic to macroscopic,
2023,
33,
0218-2025,
1909,
10.1142/S0218202523500458
|
|
172.
|
Ying-Yuan Mi, Cui Song, Zhi-Cheng Wang,
Global existence of a diffusive predator–prey model with prey-stage structure and prey-taxis,
2023,
74,
0044-2275,
10.1007/s00033-023-01975-1
|
|
173.
|
Shahin Heydari, Petr Knobloch, Thomas Wick,
Flux-corrected transport stabilization of an evolutionary cross-diffusion cancer invasion model,
2024,
499,
00219991,
112711,
10.1016/j.jcp.2023.112711
|
|
174.
|
THOMAS HILLEN, KEVIN J. PAINTER, MICHAEL WINKLER,
CONVERGENCE OF A CANCER INVASION MODEL TO A LOGISTIC CHEMOTAXIS MODEL,
2013,
23,
0218-2025,
165,
10.1142/S0218202512500480
|
|
175.
|
Nikolay A. Kudryashov, Sofia F. Lavrova,
Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies,
2023,
11,
2227-7390,
3203,
10.3390/math11143203
|
|
176.
|
Xianyun Jiang, Huijun Jiang, Zhonghuai Hou,
Nonlinear chemical reaction induced abnormal pattern formation of chemotactic particles,
2023,
19,
1744-683X,
3946,
10.1039/D2SM01433E
|
|
177.
|
Zhongjian Wang, Jack Xin, Zhiwen Zhang,
A DeepParticle method for learning and generating aggregation patterns in multi-dimensional Keller–Segel chemotaxis systems,
2024,
460,
01672789,
134082,
10.1016/j.physd.2024.134082
|
|
178.
|
Poonam Rani, Jagmohan Tyagi,
A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results,
2024,
402,
00220396,
180,
10.1016/j.jde.2024.04.034
|
|
179.
|
Yuanlin Chen, Tian Xiang,
Negligibility of haptotaxis on global dynamics in a chemotaxis-haptotaxis system with indirect signal production,
2024,
409,
00220396,
1,
10.1016/j.jde.2024.06.034
|
|
180.
|
Tao Youshan,
A probe into research of complex chemotaxis models,
2023,
1674-7216,
10.1360/SSM-2022-0179
|
|
181.
|
Muhammad Akmal Ramlee, Nuha Loling Othman, Takashi Suzuki,
Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem,
2023,
11,
2227-7390,
3044,
10.3390/math11143044
|
|
182.
|
Zhan Jiao, Irena Jadlovská, Tongxing Li,
Combined effects of nonlinear diffusion and gradient-dependent flux limitation on a chemotaxis–haptotaxis model,
2024,
75,
0044-2275,
10.1007/s00033-023-02134-2
|
|
183.
|
Fatemeh Asadi-Mehregan, Pouria Assari, Mehdi Dehghan,
Simulation of the cancer cell growth and their invasion into healthy tissues using local radial basis function method,
2024,
163,
09557997,
56,
10.1016/j.enganabound.2024.02.015
|
|
184.
|
ANNA MARCINIAK-CZOCHRA, MARIYA PTASHNYK,
BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL,
2010,
20,
0218-2025,
449,
10.1142/S0218202510004301
|
|
185.
|
Dimitrios Katsaounis, Mark A. J. Chaplain, Nikolaos Sfakianakis,
Stochastic differential equation modelling of cancer cell migration and tissue invasion,
2023,
87,
0303-6812,
10.1007/s00285-023-01934-4
|
|
186.
|
Bengisen Pekmen, Ummuhan Yirmili,
Numerical and statistical approach on chemotaxis-haptotaxis model for cancer cell invasion of tissue,
2024,
4,
2767-8946,
195,
10.3934/mmc.2024017
|
|
187.
|
ANI JAIN, PARIMITA ROY,
ENDEAVORING THE ROLE OF OBESITY IN EXTRACELLULAR MATRIX DEGRADATION LEADING TO METASTASIS,
2024,
32,
0218-3390,
407,
10.1142/S0218339024500153
|
|
188.
|
Guoqiang Ren,
Boundedness of solutions to a chemotaxis–haptotaxis model with nonlocal terms,
2024,
31,
1021-9722,
10.1007/s00030-023-00908-1
|
|
189.
|
MARK A. J. CHAPLAIN, MIROSŁAW LACHOWICZ, ZUZANNA SZYMAŃSKA, DARIUSZ WRZOSEK,
MATHEMATICAL MODELLING OF CANCER INVASION: THE IMPORTANCE OF CELL–CELL ADHESION AND CELL–MATRIX ADHESION,
2011,
21,
0218-2025,
719,
10.1142/S0218202511005192
|
|
190.
|
S. Angelin Shena, J. Manimaran, K. Sethukumarasamy, L. Shangerganesh,
Convergence of BDF2-Galerkin finite element scheme for cancer invasion model,
2024,
1951-6355,
10.1140/epjs/s11734-024-01272-6
|
|
191.
|
Chunhua Jin,
Critical exponent to a cancer invasion model with nonlinear diffusion,
2024,
65,
0022-2488,
10.1063/5.0143786
|
|
192.
|
V.S. Aswin, J. Manimaran, Nagaiah Chamakuri,
Space-time adaptivity for a multi-scale cancer invasion model,
2023,
146,
08981221,
309,
10.1016/j.camwa.2023.07.005
|
|
193.
|
Jiashan Zheng, Yuanyuan Ke,
Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy,
2023,
33,
0218-2025,
1875,
10.1142/S0218202523500446
|
|
194.
|
Muhammad Amsyar Hamidi, Nur Azura Noor Azhuan, Noorehan Yaacob, Takashi Suzuki, Mohd Ariff Admon,
2024,
3080,
0094-243X,
020019,
10.1063/5.0194718
|
|
195.
|
Hong-Bing Chen,
Bifurcation and Stability of a Haptotaxis Mathematical Model for Complex MAP,
2024,
34,
0218-1274,
10.1142/S0218127424501475
|
|
196.
|
Chunhua Jin,
Global well‐posedness and long‐time behavior in a tumor invasion model with cross‐diffusion,
2024,
152,
0022-2526,
1133,
10.1111/sapm.12673
|
|
197.
|
Xiaobing Ye, Liangchen Wang,
Boundedness and asymptotic stability in a chemotaxis model with indirect signal production and logistic source,
2022,
2022,
1072-6691,
58,
10.58997/ejde.2022.58
|
|
198.
|
Siying Li, Jinhuan Wang,
Optimal mass on the parabolic-elliptic-ODE minimal chemotaxis-haptotaxis in
R2
,
2023,
98,
0031-8949,
095223,
10.1088/1402-4896/aceba0
|
|
199.
|
Chun Hua Jin,
Global Solvability, Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion,
2023,
39,
1439-8516,
1597,
10.1007/s10114-023-1184-0
|
|
200.
|
Jinhuan Wang, Haomeng Chen, Mengdi Zhuang,
Global boundedness of weak solutions to a chemotaxis–haptotaxis model with p-Laplacian diffusion,
2023,
74,
0044-2275,
10.1007/s00033-023-02113-7
|
|
201.
|
Chun Wu,
Qualitative behavior of solutions for a chemotaxis-haptotaxis model with flux limitation,
2024,
0,
2163-2480,
0,
10.3934/eect.2024054
|
|
202.
|
Mario Fuest, Shahin Heydari, Petr Knobloch, Johannes Lankeit, Thomas Wick,
Global existence of classical solutions and numerical simulations of a cancer invasion model,
2023,
57,
2822-7840,
1893,
10.1051/m2an/2023037
|
|
203.
|
Beibei Ai, Zhe Jia,
The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production,
2024,
12,
2227-7390,
2577,
10.3390/math12162577
|
|
204.
|
ZUZANNA SZYMAŃSKA, CRISTIAN MORALES RODRIGO, MIROSŁAW LACHOWICZ, MARK A. J. CHAPLAIN,
MATHEMATICAL MODELLING OF CANCER INVASION OF TISSUE: THE ROLE AND EFFECT OF NONLOCAL INTERACTIONS,
2009,
19,
0218-2025,
257,
10.1142/S0218202509003425
|
|
205.
|
Hongbing Chen, Fengling Jia,
Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP,
2024,
12,
2227-7390,
1116,
10.3390/math12071116
|
|
206.
|
Poonam Rani, Jagmohan Tyagi,
Finite-time blow-up in the higher dimensional parabolic-parabolic-ODE minimal chemotaxis-haptotaxis system,
2025,
423,
00220396,
133,
10.1016/j.jde.2024.12.030
|
|
207.
|
Simone Fagioli, Emanuela Radici, Licia Romagnoli,
On a chemotaxis model with nonlinear diffusion modelling multiple sclerosis,
2025,
6,
2662-2963,
10.1007/s42985-024-00307-w
|
|
208.
|
Ling Liu,
Boundedness and global existence in a higher-dimensional parabolic-elliptic-ODE chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,
2025,
549,
0022247X,
129473,
10.1016/j.jmaa.2025.129473
|
|
209.
|
Mubashir Qayyum, Sidra Nayab, Imran Siddique, Abdullatif Ghallab,
Analysis of time-fractional cancer-tumor immunotherapy model using modified He-Laplace algorithm,
2025,
15,
2045-2322,
10.1038/s41598-024-82170-8
|
|