Optimization of bodies with locally periodic microstructure by varying the periodicity pattern

  • Received: 01 October 2013 Revised: 01 May 2014
  • Primary: 74N15, 49N45; Secondary: 49Q10, 74Q05.

  • This paper describes a numerical method to optimize elastic bodies featuring a locally periodic microscopic pattern. A new idea, of optimizing the periodicity cell itself, is considered. In previously published works, the authors have found that optimizing the shape and topology of the model hole gives a limited flexibility to the microstructure for adapting to the macroscopic loads. In the present study the periodicity cell varies during the optimization process, thus allowing the microstructure to adapt freely to the given loads. Our approach makes the link between the microscopic level and the macroscopic one. Two-dimensional linearly elastic bodies are considered, however the same techniques can be applied to three-dimensional bodies. Homogenization theory is used to describe the macroscopic (effective) elastic properties of the body. Numerical examples are presented, in which a cantilever is optimized for different load cases, one of them being multi-load. The problem is numerically heavy, since the optimization of the macroscopic problem is performed by optimizing in simultaneous hundreds or even thousands of periodic structures, each one using its own finite element mesh on the periodicity cell. Parallel computation is used in order to alleviate the computational burden.

    Citation: Cristian Barbarosie, Anca-Maria Toader. Optimization of bodies with locally periodic microstructureby varying the periodicity pattern[J]. Networks and Heterogeneous Media, 2014, 9(3): 433-451. doi: 10.3934/nhm.2014.9.433

    Related Papers:

    [1] Giuseppe Maria Coclite, Carlotta Donadello . Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15(2): 197-213. doi: 10.3934/nhm.2020009
    [2] John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021
    [3] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617
    [4] Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020
    [5] Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299
    [6] Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini . Vanishing viscosity for a $ 2\times 2 $ system modeling congested vehicular traffic. Networks and Heterogeneous Media, 2021, 16(3): 413-426. doi: 10.3934/nhm.2021011
    [7] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [8] Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453
    [9] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
    [10] Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723
  • This paper describes a numerical method to optimize elastic bodies featuring a locally periodic microscopic pattern. A new idea, of optimizing the periodicity cell itself, is considered. In previously published works, the authors have found that optimizing the shape and topology of the model hole gives a limited flexibility to the microstructure for adapting to the macroscopic loads. In the present study the periodicity cell varies during the optimization process, thus allowing the microstructure to adapt freely to the given loads. Our approach makes the link between the microscopic level and the macroscopic one. Two-dimensional linearly elastic bodies are considered, however the same techniques can be applied to three-dimensional bodies. Homogenization theory is used to describe the macroscopic (effective) elastic properties of the body. Numerical examples are presented, in which a cantilever is optimized for different load cases, one of them being multi-load. The problem is numerically heavy, since the optimization of the macroscopic problem is performed by optimizing in simultaneous hundreds or even thousands of periodic structures, each one using its own finite element mesh on the periodicity cell. Parallel computation is used in order to alleviate the computational burden.


    We consider a family of scalar conservation laws defined on an oriented graph $ \Gamma $ consisting of $ m $ incoming and $ n $ outgoing edges $ \Omega_\ell $, $ \ell = 1, \ldots m+n $ joining at a single vertex. Incoming edges are parametrized by $ x\in(-\infty,0] $ while outgoing edges by $ x\in[0,\infty) $ in such a way that the junction is always located at $ x = 0 $. We use the index $ i $, $ i = 1,\ldots,m $, to refer to incoming edges and $ j $, $ j = m+1, \ldots, m+n $, for the outgoing ones.

    On the edge $ \Omega_\ell $ we introduce a scalar conservation law, describing the evolution of a density $ \rho_\ell $. Then on the incoming edges we have

    $ tρi+xfi(ρi)=0,t>0,x<0,i=1,...,m,
    $
    (1)

    and on the outgoing ones

    $ tρj+xfj(ρj)=0,t>0,x>0,j=m+1,...,m+n.
    $
    (2)

    The fluxes $ f_1,...,f_{m+n} $, differ in general, however we assume that they are bell-shaped (unimodal), Lipschitz and non-degenerate nonlinear, i.e.

    (H.1) for each $ \ell\in\{1,...,m+n\} $, $ f_\ell\in C^{2}\left([0,1]\right) $, $ f(0) = f(1) = 0 $, $ f_\ell\ge0 $, and there exist $ \overline{\rho}_\ell\in (0,1) $ such that $ f_\ell'(\rho)\; (\overline{\rho}_\ell-\rho)>0 $ for every $ \rho \in [0,1]\setminus \{\overline{\rho}_\ell\} $;

    (H.2) for any $ \ell\in\{1,...,m+n\} $, $ \left\vert \left\{ \rho \: : \: f''_\ell(\rho) = 0 \right\}\right\vert = 0 $.

    We augment (1) and (2) with the initial conditions

    $ {ρi(0,x)=ρi,0(x),x<0,i=1,...,m,ρj(0,x)=ρj,0(x),x>0,j=m+1,...,m+n,
    $
    (3)

    assuming that

    (H.3) $ \rho_{1,0},...,\rho_{m,0}\in L^1(-\infty,0)\cap BV(-\infty,0) $,

    $ \rho_{m+1,0},...,\rho_{m+n,0}\in L^1(0,\infty)\cap BV(0,\infty) $

    and $ 0\le \rho_{1,0},...,\,\rho_{m+n,0}\le 1 $.

    Finally, we introduce the necessary conservation assumption at the node, which transforms our family of independent equations into a single problem

    $ \sum\limits_{i = 1}^m f_i( \rho_i(t,0-)) = \sum\limits_{j = m+1}^{m+n}f_j( \rho_j(t,0+))\quad \text{ for a.e. } t\ge0. $

    Questions related to existence, uniqueness and stability of solutions for problems of this kind have been extensively investigated in recent years, mainly in relation with traffic modeling. The interested reader can refer to [7,13] for an overview of the subject. Here our point of view is different, as we do not focus on a specific model. We consider a parabolic regularization of the problem, similarly to what has been done in [11,10], but instead of enforcing a continuity condition at the node for the regularized solutions, we introduce a more general set of transmission conditions on the parabolic fluxes.

    In this work we adopt the following definition of weak solution for the problem (1), (2), and (3). We stress that this definition is for sure not sufficient to ensure uniqueness. On the contrary it fix somehow a minimal set of properties that any reasonable solution is expected to satisfy, see [3] and references therein for a more detailed discussion on this point.

    Definition 1.1. Let $ \rho_1,...,\rho_m:[0,\infty)\times(-\infty,0]\to \mathbb{R} $ and $ \rho_{m+1},...,\rho_{m+n}:[0,\infty)\times[0,\infty)\to \mathbb{R} $ be functions. We say that $ (\rho_1,....,\rho_{m+n}) $ is a weak solution of (1), (2), and (3) if

    (D.1) $ f_1(\rho_1),...,f_m(\rho_m)\in BV_{loc}((0,\infty)\times(-\infty,0)) $ and $ f_{m+1}(\rho_{m+1}),..., f_{m+n}(\rho_{m+n})\in BV_{loc}((0,\infty)\times(0,\infty)) $;

    (D.2) for every $ i\in\{1,...,m\} $, every $ c\in \mathbb{R} $ and every nonnegative test function $ \varphi\in C^\infty( \mathbb{R}\times (-\infty,0)) $ with compact support

    $ 00(|ρic|tφ+sign(ρic)(fi(ρi)fi(c))xφ)dtdx+0|ρi,0(x)c|φ(0,x)dx0;
    $

    (D.3) for every $ j\in\{m+1,...,m+n\} $, every $ c\in \mathbb{R} $ and every nonnegative test function $ \varphi\in C^\infty( \mathbb{R}\times (0,\infty)) $ with compact support

    $ 00(|ρjc|tφ+sign(ρjc)(fj(ρR)fj(c))xφ)dtdx+0|ρj,0(x)c|φ(0,x)dx0;
    $

    (D.4) $ \sum\limits_{i = 1}^m f_i( \rho_i(t,0-)) = \sum\limits_{j = m+1}^{m+n}f_j( \rho_j(t,0+)) $ for a.e. $ t\ge0 $.

    Figure 1.  A junction consisting of $ m $ incoming and $ n $ outgoing edges.

    In [10] the authors approximated (1), (2), and (3) in the following way

    $ {tρi,ε+xfi(ρi,ε)=ε2xxρi,ε,t>0,x<0,i,tρj,ε+xfj(ρj,ε)=ε2xxρj,ε,t>0,x>0,j,ρi,ε(t,0)=ρj,ε(t,0),t>0,i,j,mi=1(fi(ρi,ε(t,0))εxρi,ε(t,0))=m+nj=m+1(fj(ρj,ε(t,0))εxρj,ε(t,0)),t>0,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j,
    $
    (4)

    where $ i\in\{1,...,m\} $ and $ j\in\{m+1,...,m+n\} $ and $ \rho_{i,0, \varepsilon},\, \rho_{j,0, \varepsilon} $ are smooth approximations of $ \rho_{i,0},\, \rho_{j,0} $. In this setting they showed that

    $ ρi,ερia.e. in (0,)×(,0) andin Lploc((0,)×(,0)),1p<, as ε0 for every i,ρj,ερja.e. in (0,)×(0,) and in Lploc((0,)×(0,)),1p<, as ε0 for every j,
    $

    where $ (\rho_1,....,\rho_{m+n}) $ is a weak solution of (1), (2), (3), in the sense of Definition 1.1.

    In this paper we modify the transmission condition of (4) and inspired by [14] we consider the following viscous approximation of (1), (2), and (3)

    $ {tρi,ε+xfi(ρi,ε)=ε2xxρi,ε,t>0,x<0,i,tρj,ε+xfj(ρj,ε)=ε2xxρj,ε,t>0,x>0,j,fi(ρi,ε(t,0))εxρi,ε(t,0)=βi(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,i,fj(ρj,ε(t,0))εxρj,ε(t,0)=βj(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,j,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j,
    $
    (5)

    where, of course,

    $ mi=1βi(ρ1,ε(t,0),,ρm+n,ε(t,0))=m+nj=m+1βj(ρ1,ε(t,0),,ρm+n,ε(t,0)).
    $
    (6)

    The additional assumptions we make on the functions $ \beta_\ell $ and on the initial conditions $ \rho_{\ell,0, \varepsilon} $ are postposed to the next section.

    The main result of the paper is the following.

    Theorem 1.2. Assume(H.1), (H.2), and (H.3). There exist a sequence $ \{ \varepsilon_k\}_{k\in \mathbb{N}}\subset(0,\infty) $, $ \varepsilon_k\to 0 $, and a solution $ (\rho_{1}, \ldots, \rho_{m+n}) $ of (1), (2), and (3), in the sense of Definition 1.1, such that

    $ ρi,εkρi,a.e.andinLploc((0,)×(,0)),
    $
    (7)
    $ ρj,εkρj,a.e.andinLploc((0,)×(0,)),
    $
    (8)
    $ f1(ρ1),...,fm(ρm)BV((0,)×(,0)),fm+1(ρm+1),...,fm+n(ρm+n)BV((0,)×(0,)),
    $
    (9)

    for every $ 1\le p<\infty,\, i\in\{1,..,m\},\,j\in\{m+1,..,m+n\}, $ where $ ( \rho_{1, \varepsilon_k},..., \rho_{m+n, \varepsilon_k}) $ is the corresponding solution of (5).

    It worth mentioning that a complete characterization of the limit solution obtained from (4) as $ \varepsilon\to0 $ is given in [3], where the authors adapt to a star shaped graph setting some ideas and techniques originally developed for conservation laws with discontinous flux, see in particular [2,4,5].

    At the moment we are not able to formulate a similar characterization of the limit of (5). In general, however, the limits coming from parabolic regularization subject to the two different kinds of transmission conditions are different.

    To show this consider the simple case of a junction with one incoming and one outgoing edges. So we have the conservation law

    $ tρ1+xf1(ρ1)=0,t>0,x<0,
    $
    (10)

    on the incoming edge and

    $ tρ2+xf2(ρ2)=0,t>0,x>0,
    $
    (11)

    on the outgoing one. Assume that

    $ f1(0)=f1(1)=f2(0)=f2(1)=0,f1,f2<0,there exists 0<ˇρ<ˆρ<1 and G>0 such that f1(ˆρ)=f2(ˇρ)=G(ˆρˇρ).
    $
    (12)

    Consider the simplified version of (5)

    $ {tρ1,ε+xf1(ρ1,ε)=ε2xxρ1,ε,t>0,x<0,tρ2,ε+xf2(ρ2,ε)=ε2xxρ2,ε,t>0,x>0,f1(ρ1,ε(t,0))εxρ1,ε(t,0)=f2(ρ2,ε(t,0))εxρ2,ε(t,0)=G(ρ1,ερ2,ε),t>0,ρ1,ε(0,x)=ˆρ,x<0,ρ2,ε(0,x)=ˇρ,x>0.
    $
    (13)

    The unique solution of (13) is

    $ ρ1,ε(,)=ˆρ,ρ2,ε(,)=ˇρ,ε>0.
    $
    (14)

    Therefore, as $ \varepsilon\to0 $ we get the solution of (10)-(11)

    $ ρ1(,)=ˆρ,ρ2(,)=ˇρ.
    $
    (15)

    This stationary solution is not admissible in the sense of the classical vanishing viscosity germ, see [5,Sec. 5], as it consists of a nonclassical shock. However, when dealing with conservation laws with discontinuous flux, it is well known that infinitely many $ L^1 $ contractive semigroups of solutions exist, also in relation with different physical applications. In particular, when the right and left fluxes are bell-shaped, as we assume in condition (H.1), each of those notions of admissible solution is uniquely determined by the choice of a $ (A,B) $-connection, see [1,5,9,12] for precise definitions and exemples. In the exemple above the couple $ (\hat\rho, \check\rho) $ is a connection.

    It is worth noticing that entropy solutions admissible in the sense of a $ (A,B) $-connection can be obtained as limits of a sequence of parabolic approximations made with adapted viscosities but a classical condition of continuity at the interface, see [5,Sec. 6.2] for a general result, but also [2,15] for an application to the Buckley-Leverett equation.

    It is difficult, however, to establish a direct equivalence between the aforementioned results and the one we put forward in this paper. In particular, in the present case we miss information on the boundary layers at the parabolic level and we do not know how the transmission conditions we impose on the parabolic fluxes translates into a condition for the hyperbolic problem.

    This means in particular that we have little information on the germ associated to the family of limit solutions obtained in Theorem 1.2 and, so far, we have not been able to prove that this germ is $ L^1 $-dissipative. We conjecture, however, that this is due to a technical obstruction and that uniqueness of the limit solutions holds.

    The paper is organized as follows: Section 2 contains the precise list of assumptions on the initial and transmission conditions in the parabolic problem (5). In Section 3 we present the proofs of all necessary a priori estimates on (5). Finally, in Section 4 we detail the proof of Theorem 1.2.

    The initial conditions $ \rho_{\ell, 0} $, $ \ell = 1,\ldots, m+n $, on the hyperbolic problem (1), (2), and (3) satisfy (H.3).

    Once the functions $ \rho_{\ell, 0} $ are fixed, we impose on (5) initial conditions $ \rho_{\ell,0, \varepsilon} $ such that

    $ ρi,0,εC((,0])L1(,0),ρj,0,εC([0,))L1(0,),ε>0,ρi,0,ερi,0a.e. in (,0) and in Lploc(,0),1p<, as ε0,ρj,0,ερj,0a.e. in (0,) and in Lploc(0,),1p<, as ε0,0ρi,0,ε,ρj,0,ε1,ε>0,ρi,0,εL1(,0)ρi,0L1(,0),ρj,0,εL1(0,)ρj,0L1(0,),ε>0,ρi,0,εL2(,0)ρi,0L2(,0),ρj,0,εL2(0,)ρj,0L2(0,),ε>0,xρi,0,εL1(,0)TV(ρi,0),xρj,0,εL1(0,)TV(ρj,0),ε>0,εxρi,0,εL1(,0),ε2xxρj,0,εL1(0,)C,ε>0,
    $
    (16)

    for some constant $ C>0 $ independent on $ \varepsilon $.

    The functions $ \beta_\ell $ appearing in the transmission conditions in (5) take the form

    $ βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+nj=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(mh=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))m+nh=1Kh,i(ρh,ε(t,0),ρi,ε(t,0)));
    $
    (17)

    for $ i\in\{1,\ldots, m\} $, and for $ j\in\{m+1,\ldots, m+n\} $

    $ βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=mi=1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m+nh=m+1Kh,j(ρh,ε(t,0),ρj,ε(t,0))m+nh=1Kj,h(ρj,ε(t,0),ρh,ε(t,0))).
    $
    (18)

    The functions $ G_{i,j}(u,v)\in C^\infty( \mathbb{R}^2) $, $ i\in\{1,\ldots, m\} $, $ j\in\{m+1,\ldots, m+n\} $, and $ K_{h,\ell}(u,v)\in C^\infty( \mathbb{R}^2) $, $ h,\,\ell\in\{1,\ldots, m+n\} $, satisfy

    $ vGi,j(,)0uGi,j(,),Gi,j(0,0)=Gi,j(1,1)=0,uKh,(,)0vKh,(,),Kh,(0,0)=Kh,(1,1)=0.
    $
    (19)

    In particular, (19) implies

    $ (sign(u)sign(v))Gi,j(,)(u,v)0,u,vR,(sign(u)sign(v))Kh,(,)(u,v)0,u,vR,(sign(uu)sign(vv))(Gi,j(u,v)Gi,j(u,v))0,u,u,v,vR,(sign(uu)sign(vv))(Kh,(u,v)Kh,(u,v))0,u,u,v,vR,(χ(,0)(u)χ(,0)(v))Gi,j(u,v)0,u,vR,(χ(,0)(u)χ(,0)(v))Kh,(u,v)0,u,vR,
    $
    (20)

    where $ \chi_{(-\infty,0)} $ is the characteristic function of the set $ (-\infty,0) $.

    This specific form of transmission conditions is reminiscent of the parabolic transmission conditions considered in [14,8], which were originally inspired from the Kedem-Katchalsky conditions for membrane permeability introduced in [16]

    $ Gh,(u,v)=ch,(uv),
    $
    (21)

    for some constants $ \mathfrak{c}_{h,\ell}>0 $. Our conditions are more general and in particular we can notice that the function $ {\mathcal{G}_{h,\ell}} $ above satisfies

    $ Gh,(u,v)(uv)0,
    $
    (22)

    that allows the authors in [14] to get the $ L^2 $ conservation (see Lemma 3.3 below).

    We can observe that the equality (6) holds as

    $ mi=1βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=mi=1m+nj=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+εmi=1(mh=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))m+nh=1Kh,i(ρh,ε(t,0),ρi,ε(t,0)))=mi=1m+nj=m+1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))εKj,i(ρj,ε(t,0),ρi,ε(t,0)))
    $
    (23)

    and analogously

    $ m+nj=m+1βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+nj=m+1mi=1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))εKj,i(ρj,ε(t,0),ρi,ε(t,0))).
    $
    (24)

    This section is devoted to establish a priori estimates, uniform with respect to $ \varepsilon $, which are necessary toward the proof of our main convergence result in the next section.

    For every $ \varepsilon > 0 $, let $ (\rho_{1, \varepsilon},...,\rho_{m+n, \varepsilon}) $ be a solution of (5) satisfying (16).

    Lemma 3.1 ($ L^\infty $ estimate). We have that

    $ 0ρi,ε,ρj,ε1,i,j.
    $
    (25)

    Proof. Consider the function

    $ η(ξ)=ξχ(,0)(ξ).
    $

    Since

    $ η(ξ)=χ(,0)(ξ),
    $

    using (19) we obtain

    $ ddt(mi=10η(ρi,ε)dx+m+nj=m+10η(ρj,ε)dx)=mi=10η(ρi,ε)tρi,εdx+m+nj=m+10η(ρj,ε)tρj,εdx=mi=10χ(,0)(ρi,ε)tρi,εdxm+nj=m+10χ(,0)(ρj,ε)tρj,εdx=mi=10χ(,0)(ρi,ε)x(fi(ρi,ε)εxρi,ε)dx+m+nj=m+10χ(,0)(ρj,ε)x(fj(ρj,ε)εxρj,ε)dx=mi=1χ(,0)(ρi,ε(t,0))(fi(ρi,ε(t,0))εxρi,ε(t,0))m+nj=m+1χ(,0)(ρj,ε(t,0))(fj(ρj,ε(t,0))εxρj,ε(t,0))+mi=10xρi,ε(fi(ρi,ε)εxρi,ε)dδ{ρi,ε=0}0+m+nj=m+10xρj,ε(fj(ρj,ε)εxρj,ε)dδ{ρj,ε=0}0m+nj=m+1mi=1(χ(,0)(ρi,ε(t,0))χ(,0)(ρj,ε(t,0)))(Gi,j(ρi,ε(t,0),ρj,ε(t,0))εKj,i(ρj,ε(t,0),ρi,ε(t,0)))0,
    $

    where $ \delta_{\{ \rho_{i,\varepsilon} = 0\}} $ and $ \delta_{\{ \rho_{j,\varepsilon} = 0\}} $ are the Dirac deltas concentrated on the sets $ \{ \rho_{i,\varepsilon} = 0\} $ and $ \{ \rho_{j,\varepsilon} = 0\} $, respectively and we apply [6,Lemma 2] to compute the value of the integrals as a limit. Integrating over $ (0,t) $ and using (16) we get

    $ 0mi=10η(ρi,ε(t,x))dx+m+nj=m+10η(ρj,ε(t,x))dxmi=10η(ρi,0,ε)dx+m+nj=m+10η(ρj,0,ε)dx=0
    $

    and then

    $ ρi,ε,ρj,ε0,i,j,
    $

    that proves the lower bounds in (25). The upper bounds in (25) can be proved in the same way using the function $ \xi\mapsto (\xi-1)\chi_{(1,\infty)}(\xi) $.

    Lemma 3.2 ($ L^1 $ estimate). We have that

    $ mi=1ρi,ε(t,)L1(,0)+m+nj=m+1ρj,ε(t,)L1(0,)mi=1ρi,0L1(,0)+m+nj=m+1ρj,0L1(0,),t0.
    $
    (26)

    Proof. Thanks to (5), (23), (24), and (25), we have that

    $ ddt(mi=10|ρi,ε|dx+m+nj=m+10|ρj,ε|dx)=ddt(mi=10ρi,εdx+m+nj=m+10ρj,εdx)=mi=10tρi,εdx+m+nj=m+10tρj,εdx=mi=10x(fi(ρi,ε)εxρi,ε)dxm+nj=m+10x(fj(ρj,ε)εxρj,ε)dx=mi=1βi(ρ1,ε(t,0),,ρm+n,ε(t,0))+m+nj=m+1βj(ρ1,ε(t,0),,ρm+n,ε(t,0))=0.
    $

    Integrating over $ (0,t) $ and using (16) we get (26).

    Lemma 3.3 ($ L^2 $ estimate). We have that

    $ mi=1ρi,ε(t,)2L2(,0)+m+nj=m+1ρj,ε(t,)2L2(0,)+2εt0(mi=1xρi,ε(s,)2L2(,0)+m+nj=m+1xρj,ε(s,)2L2(0,))dsmi=1ρi,02L2(,0)+m+nj=m+1ρj,02L2(0,)+2(m+n=1βL((0,1)m+n)+mi=1fiL1(0,1))t,
    $
    (27)

    for every $ t\ge0 $.

    Proof. Thanks to (5), we have that

    $ ddt(mi=10ρ2i,ε2dx+m+nj=m+10ρ2j,ε2dx)=mi=10ρi,εtρi,εdx+m+nj=m+10ρj,εtρj,εdx=mi=10ρi,εx(fi(ρi,ε)εxρi,ε)dxm+nj=m+10ρj,εx(fj(ρj,ε)εxρj,ε)dx=mi=1ρi,ε(t,0)(fi(ρi,ε(t,0))εxρi,ε(t,0))+m+nj=m+1ρj,ε(t,0)(fj(ρj,ε(t,0))εxρj,ε(t,0))+mi=10x(ρi,ε(t,x)0fi(ξ)dξ)dx+m+nj=m+10x(ρj,ε(t,x)0fj(ξ)dξ)dxεmi=10(xρi,ε)2dxεm+nj=m+10(xρj,ε)2dx=mi=1ρj,ε(t,0)βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))m+nj=m+1ρi,ε(t,0))βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))+mi=1ρi,ε(t,0)0fi(ξ)dξm+nj=m+1ρj,ε(t,0)0fj(ξ)dξ0εmi=10(xρi,ε)2dxεm+nj=m+10(xρj,ε)2dxm+n=1βL((0,1)m+n)+mi=1fiL1(0,1)εmi=10(xρi,ε)2dxεm+nj=m+10(xρj,ε)2dx.
    $

    Integrating over $ (0,t) $ and using (16) we get (27).

    Lemma 3.4 ($ BV $ estimate). We have that

    $ mi=1tρi,ε(t,)L1(,0)+m+nj=m+1tρj,ε(t,)L1(0,)(m+n)C+mi=1fiL(0,1)TV(ρi,0)+m+nj=m+1fjL(0,1)TV(ρj,0),
    $
    (28)

    for every $ t\ge0. $

    Proof. From (5) we get

    $ 2ttρi,ε+x(fi(ρi,ε)tρi,ε)=ε3txxρi,ε,2ttρj,ε+x(fj(ρj,ε)tρj,ε)=ε3txxρj,ε,fi(ρi,ε(t,0))tρi,ε(t,0)ε2txρi,ε(t,0)=m+nj=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))(tρi,ε(t,0),tρj,ε(t,0))+εmh=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))(tρi,ε(t,0),tρh,ε(t,0))εm+nh=1Kh,i(ρh,ε(t,0),ρi,ε(t,0))(tρh,ε(t,0),tρi,ε(t,0)),fj(ρj,ε(t,0))tρj,ε(t,0)ε2txρj,ε(t,0)=mi=1Gi,j(ρi,ε(t,0),ρj,ε(t,0))(tρi,ε(t,0),tρj,ε(t,0))+εm+nh=m+1Kh,j(ρh,ε(t,0),ρj,ε(t,0))(tρh,ε(t,0),tρj,ε(t,0))εm+nh=1Kj,h(ρj,ε(t,0),ρh,ε(t,0))(tρi,ε(t,0),tρh,ε(t,0)).
    $

    Thanks to (20), we have that

    $ ddt(mi=10|tρi,ε|dx+m+nj=m+10|tρj,ε|dx)=mi=102ttρi,εsign(tρi,ε)dx+m+nj=m+102ttρj,εsign(tρj,ε)dx=mi=10sign(tρi,ε)x(fi(ρi,ε)tρi,εε2txρi,ε)dxm+nj=m+10sign(tρj,ε)x(fj(ρj,ε)tρj,εε2txρj,ε)dx=mi=1sign(tρi,ε(t,0))(fi(ρi,ε(t,0))tρi,ε(t,0)ε2txρi,ε(t,0))+m+nj=m+1sign(tρj,ε(t,0))(fj(ρj,ε(t,0))tρj,ε(t,0)ε2txρj,ε(t,0))+2mi=102txρi,ε(fi(ρi,ε)tρi,εε2txρi,ε)dδ{tρi,ε=0}0+2m+nj=m+102txρj,ε(fj(ρj,ε)tρj,εε2txρj,ε)dδ{tρj,ε=0}0mi=1m+nj=m+1(sign(tρi,ε(t,0))sign(tρj,ε(t,0)))××Gi,j(ρi,ε(t,0),ρj,ε(t,0))(tρi,ε(t,0),tρj,ε(t,0))+εmi=1m+nj=m+1(sign(tρi,ε(t,0))sign(tρj,ε(t,0)))××Kj,i(ρi,ε(t,0),ρj,ε(t,0))(tρi,ε(t,0),tρj,ε(t,0))0,
    $

    where $ \delta_{\{ \partial_t \rho_{i,\varepsilon} = 0\}} $ and $ \delta_{\{ \partial_t \rho_{j,\varepsilon} = 0\}} $ are the Dirac deltas concentrated on the sets $ \{ \partial_t \rho_{i,\varepsilon} = 0\} $ and $ \{ \partial_t \rho_{j,\varepsilon} = 0\} $, respectively and we apply [6,Lemma 2].

    Integrating over $ (0,t) $ and using (16), (25) we get

    $ mi=1tρi,ε(t,)L1(,0)+m+nj=m+1tρj,ε(t,)L1(0,)mi=1tρi,ε(0,)L1(,0)+m+nj=m+1tρj,ε(0,)L1(0,)=mi=1ε2xxρi,0,εxfi(ρi,0,ε)L1(,0)+m+nj=m+1ε2xxρj,0,εxfj(ρj,0,ε)L1(0,)mi=1(ε2xxρi,0,εL1(,0)+fi(ρi,0,ε)L(,0)xρi,0,εL1(,0))+m+nj=m+1(ε2xxρj,0,εL1(0,)+fj(ρj,0,ε)L(0,)xρj,0,εL1(0,))(m+n)C+mi=1fiL(0,1)TV(ρi,0)+m+nj=m+1fjL(0,1)TV(ρj,0),
    $

    that is (28).

    Lemma 3.5 (Stability estimate). Let $ (\rho_{1, \varepsilon},...,\rho_{m+n, \varepsilon}) $ and $ (\overline{\rho}_{1, \varepsilon},...,\overline{\rho}_{m+n, \varepsilon}) $ be two solutions of (5). The following estimate holds

    $ mi=1ρi,ε(t,)¯ρi,ε(t,)L1(,0)+m+nj=m+1ρj,ε(t,)¯ρj,ε(t,)L1(0,)mi=1ρi,0,ε¯ρi,0,εL1(,0)+m+nj=m+1ρj,0,ε¯ρj,0,εL1(0,),t0.
    $
    (29)

    Proof. From (5) we get

    $ t(ρi,ε¯ρi,ε)+x(fi(ρi,ε)fi(¯ρi,ε))=ε2xx(ρi,ε¯ρi,ε),t(ρj,ε¯ρj,ε)+x(fj(ρj,ε)fj(¯ρj,ε))=ε2xx(ρj,ε¯ρj,ε).
    $

    Thanks to (5), (20), and (25), we have that

    $ ddt(mi=10|ρi,ε¯ρi,ε|dx+m+nj=m+10|ρj,ε¯ρj,ε|dx)=mi=10sign(ρi,ε¯ρi,ε)t(ρi,ε¯ρi,ε)dx+m+nj=m+10sign(ρj,ε¯ρj,ε)t(ρj,ε¯ρj,ε)dx=mi=10sign(ρi,ε¯ρi,ε)x((fi(ρi,ε)fi(¯ρi,ε))εx(ρi,ε¯ρi,ε))dxm+nj=m+10sign(ρj,ε¯ρj,ε)x((fj(ρj,ε)fj(¯ρj,ε))εx(ρj,ε¯ρj,ε))dx=mi=1m+nj=m+1[sign(ρi,ε(t,0)¯ρi,ε(t,0))sign(ρj,ε(t,0)¯ρj,ε(t,0))]××[Gi,j(ρi,ε(t,0),ρj,ε(t,0))Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+εmi=1m+nj=m+1[sign(ρi,ε(t,0)¯ρi,ε(t,0))sign(ρj,ε(t,0)¯ρj,ε(t,0))]××[Kj,i(ρi,ε(t,0),ρj,ε(t,0))Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+2mi=10x(ρi,ε¯ρi,ε)((fi(ρi,ε)fi(¯ρi,ε))εx(ρi,ε¯ρi,ε))dδ{ρi,ε=¯ρi,ε}0+2m+nj=m+10x(ρj,ε¯ρj,ε)((fi(ρj,ε)fi(¯ρj,ε))εx(ρj,ε¯ρj,ε))dδ{ρj,ε=¯ρj,ε}00,
    $

    where we use [6,Lemma 2] and we denote by $ \delta_{\{ \rho_{i,\varepsilon} = \overline{\rho}_{i,\varepsilon}\}} $ and $ \delta_{\{ \rho_{j,\varepsilon} = \overline{\rho}_{j,\varepsilon}\}} $ respectively the Dirac deltas concentrated on the sets $ \{ \rho_{i,\varepsilon} = \overline{\rho}_{i,\varepsilon}\} $ and $ \{ \rho_{j,\varepsilon} = \overline{\rho}_{j,\varepsilon}\} $.

    Integrating over $ (0,t) $ we get (29).

    The well-posedness of smooth solutions for (5) can be proved following the argument used in [10,Theorem 1.2] to establish the well-posedness of smooth solutions for (4). Indeed, the existence of a linear semigroup of solutions in the linear case (i.e., when $ f_\ell\equiv 0 $) is shown in [14]. Then the Duhamel Formula, estimates similar to the ones in the previous section and a fixed point argument lead to the result.

    The main result of this section is the following.

    Lemma 4.1. Let $ ( \rho_{1, \varepsilon},...,\rho_{m+n, \varepsilon}) $ be the solution of (5). There exist a sequence $ \{ \varepsilon_k\}_{k\in \mathbb{N}} \subset (0,\infty),\, \varepsilon_k\to0 $, and $ m+n $ maps $ \rho_{1},...,\rho_{m+n} $ such that

    $ ρ1,...,ρmL1((0,)×(,0))L((0,)×(,0)),
    $
    (30)
    $ ρm+1,...,ρm+nL1((0,)×(0,))L((0,)×(0,)),
    $
    (31)
    $ 0ρ1,{1,...,m+n},
    $
    (32)
    $ ρi,εkρi,a.e.andinLploc((0,)×(,0)),
    $
    (33)
    $ ρj,εkρj,a.e.andinLploc((0,)×(0,)),
    $
    (34)

    for every $ 1\le p<\infty,\, i\in\{1,..,m\},\, j\in\{m+1,..,m+n\}. $ Moreover, we have that

    $ mi=1ρi(t,)L1(,0)+m+nj=m+1ρj(t,)L1(0,)
    $
    (35)
    $ mi=1ρi,0L1(,0)+m+nj=m+1ρj,0L1(0,),mi=1ρi(t,)2L2(,0)+m+nj=m+1ρj(t,)2L2(0,)
    $
    (36)
    $ mi=1ρi,02L2(,0)+m+nj=m+1ρj,02L2(0,)+2(m+n=1βL((0,1)m+n)+mi=1fiL1(0,1))t,mi=1TV(fi(ρi(t,)))+m+nj=m+1TV(fj(ρj(t,)))=mi=1tρi(t,)M(,0)+m+nj=m+1tρj(t,)M(0,)(m+n)C+mi=1fiL(0,1)TV(ρi,0)+m+nj=m+1fjL(0,1)TV(ρj,0).
    $
    (37)

    Thanks to the genuine nonlinearity of $ f_1,...,f_{m+n} $, we can use the Tartar compensated compactness method [18] to obtain strong convergence of a subsequence of viscosity approximations. The notation $ \mathfrak{R} $ can stand for $ (0,\infty) $ or $ (-\infty, 0) $.

    Theorem 4.2 (Tartar). Let $ \{v_\nu\}_{\nu>0} $ be a family of functions defined on $ (0,\infty)\times\mathfrak{R} $ such that

    $ vνL((0,T)×R)MT,T,ν>0,
    $

    and the family

    $ {tη(vν)+xq(vν)}ν>0
    $

    is compact in $ H^{-1}_{loc}((0,\infty)\times\mathfrak{R}) $, for every convex $ \eta\in C^2( \mathbb{R}) $, where $ q_\ell' = f_\ell'\eta' $. Then there exist a sequence $ \{\nu_n\}_{n\in \mathbb{N}}\subset(0,\infty),\,\nu_n\to 0, $ and a map $ v\in L^\infty((0,T)\times\mathfrak{R}),\,T>0, $ such that

    $ vνnva.e.andinLploc((0,)×R),1p<.
    $

    The following compact embedding of Murat [17] is useful.

    Theorem 4.3 (Murat). Let $ \Omega $ be a bounded open subset of $ \mathbb{R}^N $, $ N\ge 2 $. Suppose the sequence $ \left\{{\mathcal L}_n\right\}_{n\in \mathbb{N}} $ of distributions is bounded in $ W^{-1,\infty}(\Omega) $. Suppose also that

    $ Ln=L1,n+L2,n,
    $

    where $ \left\{{\mathcal L}_{1,n}\right\}_{n\in \mathbb{N}} $ lies in a compact subset of $ H_{\mathrm{loc}}^{-1}(\Omega) $ and $ \left\{ {\mathcal L}_{2,n}\right\}_{n\in \mathbb{N}} $ lies in a bounded subset of $ L^1_{loc}(\Omega) $. Then $ \left\{{\mathcal L}_n\right\}_{n\in \mathbb{N}} $ lies in a compact subset of $ H_{\mathrm{loc}}^{-1}(\Omega) $.

    Proof of Lemma 4.1. Let us fix $ i\in\{1,...,m\} $ and prove the lemma for the incoming edges, as the proof for the outgoing ones is analogous.

    Let $ \eta: \mathbb{R}\to \mathbb{R} $ be any convex $ C^2 $ entropy function, and let $ q_i: \mathbb{R}\to \mathbb{R} $ be the corresponding entropy flux defined by $ q_i' = \eta'f_i' $. By multiplying $ i- $th equation in (5) by $ \eta'( \rho_{i,\varepsilon}) $ and using the chain rule, we get

    $ tη(ρi,ε)+xqi(ρi,ε)=ε2xxη(ρi,ε)L1,εεη(ρi,ε)(xρi,ε)2L2,ε.
    $
    (38)

    We claim that

    $L1,ε0inH1((0,T)×(,0)),T>0,asε0,{L2,ε}εisuniformlyboundedinL1((0,T)×(,0)),T>0.
    $
    (39)

    Indeed, (25) and (27) imply

    $ εxη(ρi,ε)L2((0,T)×(,0))εηL(0,1)εxρi,εL2((0,)×(,0))εηL(0,1)(mi=1ρi,ε,0L2(,0)+m+nj=m+1ρj,ε,0L2(0,)+2(m+n=1βL((0,1)m+n)+mi=1fiL1(0,1))T)0,εη(ρi,ε)(xρi,ε)2L1((0,T)×(,0))ηL(0,1)(mi=1ρi,ε,02L2(,0)+m+nj=m+1ρj,ε,02L2(0,)+2(m+n=1βL((0,1)m+n)+mi=1fiL1(0,1))T).
    $

    Due to (16), (39) follows. Therefore, Theorems 4.3 and 4.2 give the existence of a subsequence $ \{ \rho_{i,\varepsilon_k}\}_{k\in \mathbb{N}} $ and a limit function $ \rho_i $ satisfying (30) such that as $ k\to \infty $

    $ ρi,εkρiinLploc((0,)×(,0))foranyp[1,),ρi,εkρia.e.in(0,)×(,0),
    $
    (40)

    that guarantees (32) and (33).

    Finally, thanks to Lemmas 3.2, 3.3, and 3.4 we have (35), (36), and (37).

    Proof of Theorem 1.2.. The first part of the statement related to the convergence of vanishing viscosity approximations has been proved in Lemma 4.1.

    Let us fix $ i \in \{ 1, \ldots, m \} $ and prove (9) for the incoming edges, the case of the outgoing ones is analogous.

    Thanks to (3.4) and (33), for all $ \varphi \in C^\infty((0,\infty)\times(-\infty,0)) $ with compact support, we have

    $ 00ρitφdxdt=limk00ρi,εktφdxdt=limk00tρi,εkφdxdtφL((0,)×(,0))((m+n)C+mi=1fiL(0,1)TV(ρi,0)+m+nj=m+1fjL(0,1)TV(ρj,0)),
    $

    therefore

    $ tρiM((0,)×(,0)),
    $
    (41)

    where $ \mathcal{M}((0,\infty)\times(-\infty,0)) $ is the set of all Radon measures on $ (0,\infty)\times(-\infty,0). $ Moreover, from the equations in (1) and (2) we have also

    $ xfi(ρi)M((0,)×(,0)).
    $
    (42)

    Clearly (41) and (42) give (9) and so the trace at the junction $ f(\rho_{i}(t,0-)) $ exists for a.e. $ t > 0 $.

    We prove now that the identity

    $ mi=1fi(ρi(t,0))=n+mj=m+1fj(ρj(t,0+))
    $
    (43)

    holds for a.e. $ t > 0 $; consequently the functions $ \rho_1,\ldots, \rho_{m+n} $ provide a solution to (1), (2), and (3) in the sense of Definition 1.1.

    Let $ \varphi \in C^1([0,\infty)), \, \varphi(0) = 0 $ with compact support. Consider the sequence $ \{r_\nu\}_{\nu\in \mathbb{N}\setminus\{0\}}\subset C^2([0,\infty)) $ of cut-off functions satisfying

    $ 0rν(x)1,rν(0)=1,supp(rν)[0,1ν],
    $
    (44)

    for every $ x \ge 0 $ and $ \nu \ge 1 $. Moreover, for every $ \nu \ge 1 $, we define the sequence $ \{\tilde r_\nu\}_{\nu\in \mathbb{N}\setminus\{0\}}\subset C^2((-\infty,0]) $ by writing $ \tilde r_\nu(x) = r_\nu(-x) $ for every $ x \le 0 $.

    From (5) we have that

    $ 0=mi=100(tρi,εk+xfi(ρi,εk)εk2xxρi,εk)φ(t)˜rν(x)dxdt+m+nj=m+100(tρj,εk+xfj(ρj,εk)εk2xxρj,εk)φ(t)rν(x)dxdt=mi=100(ρi,εkφ(t)˜rν(x)+fi(ρi,εk)φ(t)˜rν(x)εkxρi,εkφ(t)˜rν(x))dxdtm+nj=m+100(ρj,εkφ(t)rν(x)+fj(ρj,εk)φ(t)rν(x)εkxρj,εkφ(t)rν(x))dxdt+mi=10(fi(ρi,εk(t,0))εkxρi,εk(t,0))φ(t)dtm+nj=m+10(fj(ρj,εk(t,0))εkxρj,εk(t,0))φ(t)dt=mi=100(ρi,εkφ(t)˜rν(x)+fi(ρi,εk)φ(t)˜rν(x)εkxρi,εkφ(t)˜rν(x))dxdtm+nj=m+100(ρj,εkφ(t)rν(x)+fj(ρj,εk)φ(t)rν(x)εkxρj,εkφ(t)rν(x))dxdt.
    $

    As $ k\to\infty $, due to (27), (33), and (34),

    $ 0=mi=100(ρiφ(t)˜rν(x)+fi(ρi)φ(t)˜rν(x))dxdtm+nj=m+100(ρjφ(t)rν(x)+fj(ρj)φ(t)rν(x))dxdt.
    $

    Finally, sending $ \nu\to \infty $,

    $ 0=mi=10fi(ρi(t,0))φ(t)dt+m+nj=m+10fj(ρj(t,0+))φ(t)dt,
    $

    that gives (43).

    [1] G. Allaire, Shape Optimization by the Homogenization Method, Springer, Applied Mathematical Sciences 146, 2002. doi: 10.1007/978-1-4684-9286-6
    [2] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method, Journal of Computational Physics, 194 (2004), 363-393. doi: 10.1016/j.jcp.2003.09.032
    [3] C. Barbarosie, Shape optimization of periodic structures, Computational Mechanics, 30 (2003), 235-246. doi: 10.1007/s00466-002-0382-3
    [4] C. Barbarosie and S. Lopes, A generalized notion of compliance, Comptes Rendus Mécanique, 339 (2011), 641-648. doi: 10.1016/j.crme.2011.07.002
    [5] C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part I, The shape and the topological derivative, Structural and Multidisciplinary Optimization, 40 (2009), 381-391. doi: 10.1007/s00158-009-0378-0
    [6] C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part II, Optimization algorithm and numerical examples, Structural and Multidisciplinary Optimization, 40 (2009), 393-408. doi: 10.1007/s00158-009-0377-1
    [7] C. Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructre, Mechanics of advanced materials and structures, 19 (2012), 290-301. doi: 10.1080/15376494.2011.642939
    [8] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Studies in Mathematics and its Applications, 5, 1978.
    [9] M. Briane, Homogenization of a nonperiodic material, J. Math. Pures et Appl., 73 (1994), 47-66.
    [10] A. Cherkaev, Variational Methods for Structural Optimization, Springer Verlag, 2000. doi: 10.1007/978-1-4612-1188-4
    [11] D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, Journal of Mathematical Analysis and Applications, 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7
    [12] F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, (eds. A. Cherkaev and R. Kohn), Progress in Nonlinear Differential Equations and Their Applications, 31, Birkhäuser, (1997), 21-43
    [13] O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization, SIAM J. Control Optim., 47 (2008), 1380-1398. doi: 10.1137/070688900
    [14] H. Rodrigues, J. M. Guedes and M. P. Bendsøe, Hierarchical optimization of material and structure, Structural and Multidisciplinary Optimization, 24 (2002), 1-10. doi: 10.1007/s00158-002-0209-z
    [15] F. Schury, M. Stingl and F. Wein, Efficient two-scale optimization of manufacturable graded structures, SIAM Journal on Scientific Computing, 34 (2012), B711-B733. doi: 10.1137/110850335
    [16] A. M. Toader, The topological derivative of homogenized elastic coefficients of periodic microstructures, SIAM Journal on Control and Optimization, 49 (2011), 195-200. doi: 10.1137/100782772
    [17] (web page)
    [18] (web page)
  • This article has been cited by:

    1. Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, 2022, 17, 1556-1801, 101, 10.3934/nhm.2021025
    2. Francesca R. Guarguaglini, Roberto Natalini, Vanishing viscosity approximation for linear transport equations on finite star-shaped networks, 2021, 21, 1424-3199, 2413, 10.1007/s00028-021-00688-0
    3. John D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, 2022, 17, 1556-1801, 1, 10.3934/nhm.2021021
    4. Ulrik S. Fjordholm, Markus Musch, Nils H. Risebro, Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks, 2022, 60, 0036-1429, 606, 10.1137/21M145001X
    5. Jon Asier Bárcena-Petisco, Márcio Cavalcante, Giuseppe Maria Coclite, Nicola De Nitti, Enrique Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024015
    6. Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos, Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms, 2024, 19, 1556-1801, 1085, 10.3934/nhm.2024048
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3840) PDF downloads(253) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog