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Abstract. This paper describes a numerical method to optimize elastic bodies

featuring a locally periodic microscopic pattern. A new idea, of optimizing the

periodicity cell itself, is considered. In previously published works, the authors
have found that optimizing the shape and topology of the model hole gives a

limited flexibility to the microstructure for adapting to the macroscopic loads.

In the present study the periodicity cell varies during the optimization process,
thus allowing the microstructure to adapt freely to the given loads. Our ap-

proach makes the link between the microscopic level and the macroscopic one.

Two-dimensional linearly elastic bodies are considered, however the same tech-
niques can be applied to three-dimensional bodies. Homogenization theory is

used to describe the macroscopic (effective) elastic properties of the body. Nu-
merical examples are presented, in which a cantilever is optimized for different

load cases, one of them being multi-load. The problem is numerically heavy,

since the optimization of the macroscopic problem is performed by optimizing
in simultaneous hundreds or even thousands of periodic structures, each one

using its own finite element mesh on the periodicity cell. Parallel computation

is used in order to alleviate the computational burden.

1. Introduction. The main motivation of the present paper comes from the study
of bodies having locally periodic microstructure and optimization of their macro-
scopic properties, in the context of linearized elasticity. A body having locally
periodic microstructure is a body whose material coefficients vary at a microscopic
scale, and this variation is locally periodic in the sense that, around each point
of the body, the material coefficients vary according to a periodic pattern. This
pattern changes from point to point (at the macroscopic scale). Homogenization
theory allows one to accurately describe the macroscopic behaviour of such a body
by means of so-called cellular problems, which are elliptic PDEs subject to peri-
odicity conditions, see e.g. [1], [10], [12]. Porous materials, that is, bodies with
locally periodic infinitesimal perforations, can be described in a similar manner, see
[11]. Other approaches to the optimization of locally periodic microstructures are
described in [14] and [15].
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Figure 1. Periodic mixture of two materials

In [7], the authors have presented an algorithm for optimization of locally pe-
riodic structures. This algorithm links the microscopic level with the macroscopic
problem. At the microscopic level, the optimization process described in [7] focuses
on the shape of the microscopic hole and on its topology (that is, the number of its
connected components). However, the periodicity group (or, more precisely, the two
vectors defining the periodicity cell) was kept fixed along the optimization process.

In the present paper, the authors present new results obtained by varying the
vectors defining the periodicity. The structure thus obtained has much more free-
dom do adapt itself to the macroscopic loads, by adjusting the periodicity cell’s
aspect and orientation along the optimization process. In order to compute the
desired variation of the vectors defining the periodicity, the authors have computed
the derivatives of the homogenized elastic coefficients with respect to these two
vectors. These derivatives are then linked with the derivative of the macroscopic
objective functional with respect to the elastic coefficients.

The layout of the paper is as follows. Section 2 presents the mathematical back-
ground on periodic microstructures. Section 3 focuses on the computation of the
derivatives of the homogenized elastic coefficients with respect to the geometric pa-
rameters defining the microstructure, with special emphasis on the derivative with
respect to the vectors defining the periodicity pattern. Section 4 extends these
notions and results to locally periodic microstructures. Section 5 describes the
optimization process, while in Section 6 some numerical examples are presented.

2. Periodic microstructures. As a preliminary for describing mathematically
the notion of body having locally periodic microstructure, we briefly recall some
notations and results on periodic microstructures. For more details, see [5].

Consider a parallelogram Y in R2 which defines the periodicity of the microstruc-
ture. Often Y is taken to be the unit square for the sake of simplicity, but in the
present work Y will be a general parallelogram defined by two linearly independent
vectors ~g1, ~g2 ∈ R2 :

Y =
{
s1~g1 + s2~g2 : s1, s2 ∈ [0, 1]

}
. (1)

A periodic microstructure is a body whose material coefficients (i.e., for the case
of linear elasticity, its rigidity tensor) varies according to a periodic pattern C,
which is a Y -periodic fourth-order tensor field C : R2 → R16. Typically, but not
necessarily, the pattern tensor field C takes only two values, modeling a periodic
mixture between two given component materials (see Figure 1). A function φ is
said to be Y -periodic if φ(y + ~gi) = φ(y) for i ∈ {1, 2}.
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The effective (macroscopic) behaviour of the body is described by the so-called
homogenized elastic tensor, denoted by CH and defined in terms of solutions of el-
liptic partial differential equations subject to periodicity conditions. More precisely,
for a given macroscopic strain (represented by a symmetric 2×2 matrix A), consider
the problem {

−div(C ε(wA)) = 0 in R2

wA(y) = Ay + φA(y), with φA Y−periodic,
(2)

known in homogenization theory as cellular problem. Here, ε represents the sym-
metric part of the gradient.

The solution wA of the above problem depends (linearly) on the matrix A. Con-
sequently, the matrix σ defined by

σ =
1

|Y |

∫
Y

C ε(wA) , (3)

representing the macroscopic stress associated to wA, depends linearly on the macro-
scopic strain A and this dependency defines the homogenized elastic tensor CH

through CHA = σ, that is,

CHA =
1

|Y |

∫
Y

C ε(wA) . (4)

In the above, |Y | denotes the area of the periodicity cell Y . An equivalent definition
of CH can be given in terms of energy type products : for two given symmetric
matrices A and B, one has

〈CHA,B〉 =
1

|Y |

∫
Y

〈C ε(wA), ε(wB)〉 .

Note that, for a function wA of the form wA(y) = Ay + φA(y), with φA Y -periodic,
one has

A =
1

|Y |

∫
Y

ε(wA) (5)

(see in [5] Lemma 1 and its consequences).
This can be expressed in a more concise form by introducing the set LP of linear

plus periodic functions defined as

LP = {w:R2 7→R2 | w(y)=Ay+φ(y) where A is a 2×2 matrix and φ is Y -periodic} .

Functions w ∈ LP are characterized by the property

w(y + ~gi) = w(y) +A~gi , i = 1, 2 .

The cellular problem (2) may be written in strain formulation as follows:
wA ∈ LP

−div(C ε(wA)) = 0 in R2

1
|Y |
∫
Y
ε(wA) = A ,

(6)

where A is a prescribed strain matrix.
The case of porous structures, that is, infinitesimal perforations in a given ma-

terial, can be treated in a similar way (see [5, Section 4]). Consider a model hole,
which is a compact set T ⊂ Y (see Figure 2), where Y is the periodicity cell.
The cellular problem describing the behaviour of this perforated material is defined
on the perforated space, denoted by R2

perf, and a Neumann boundary condition is
imposed on the boundary of the model hole.
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T

Y

Figure 2. Periodicity cell with model hole (zoomed)

Figure 3. Periodically perforated plane

Figure 4. Periodically perforated plane for another cell

The perforated space is obtained from R2 by removing translations of the model
hole (see Figures 3 and 4) :

R2
perf = R2 \

⋃
~k∈Z2

(T + k1~g1 + k2~g2)

The direct generalization of the cellular problem (2) for porous materials is stated
below (the base material C is now considered to be constant) :

−div(C ε(wA)) = 0 in R2
perf

C ε(wA) n = 0 on ∂T
wA(y) = Ay + φA(y), φA periodic function.

(7)
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The homogenized tensor CH can be defined as

CHA =
1

|Y |

∫
Y \T

C ε(wA)

or

〈CHA,B〉 =
1

|Y |

∫
Y \T
〈C ε(wA), ε(wB)〉 .

Remark 1. Note that, through careful interpretetation, problem (7) makes sense
even if the model hole T exits partially the periodicity cell Y , as long as it does

not touch any of its translations T + k1~g1 + k2~g2, ~k ∈ Z2, ~k 6= ~0. This is important
since, in the optimization process, the model hole often crosses the boundary of Y .

Remark 2. In Figures 2, 3 and 4, the model hole T was chosen to be connected. But
there is no difficulty in considering a model hole with several connected components.

3. Derivatives of the homogenized coefficients. The homogenized elastic ten-
sor CH depends, of course, on the geometric parameters defining the periodic struc-
ture under consideration : the shape and topology of the model hole T , as well as
the periodicity pattern. In order to use gradient-based optimization algorithms, the
derivatives of these dependencies must be computed.

The aim of this section is the computation of the derivative of the homogenized
tensor with respect to the periodicity pattern (at the end of the section we recall the
fomulae for the shape and topology derivatives). This periodicity pattern is given
by the aspect and orientation of the periodicity cell Y , or, equivalently, by the two
vectors ~g1 and ~g2 defining Y , see formula (1). Our goal is to compute the derivative
of the homogenized elastic coefficients (components of the tensor CH) with respect
to the vectors ~g1 and ~g2.

We shall analyse the case of a mixture of materials, governed by the system (2)
or, equivalently, (6). The case of porous materials, governed by the system (7), can
be treated in a similar manner.

V Ỹ

~g1

~g2

~̃g1

~̃g2Y

Figure 5. Change in the periodicity pattern

Consider a linear application V (see Figure 5) that transforms the periodicity cell

Y in Ỹ generated by the vectors ~̃g1 = V (~g1) and ~̃g2 = V (~g2). The corresponding

fourth-order tensor field C̃ verifies C̃(V (y)) = C(y).
To a certain extent, this is similar to the approach in [13]. The main difference

is that, in [13], the authors try to adapt the linear transformation in order for
the homogenized coefficients of the deformed microstructure to match a previously
computed elastic tensor; this adaption is done as a post-processing step. In the
present paper, everything is done in one optimization process.
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The homogenized coefficients C̃H for the deformed configuration are defined by
evaluating, for two given symmetric matrices A and B, the energy-type quantity

〈C̃HA,B〉 =
1

|Ỹ |

∫
Ỹ

〈C̃(z) ε(w̃A)(z), ε(w̃B)(z)〉 dz .

where w̃A and w̃B are the solutions of problem (6) in the deformed configuration.
By changing the integration domain to Y , the above expression writes as

〈C̃HA,B〉 =
1

|Ỹ |

∫
Y

〈C̃(V (y)) ε(w̃A)(V (y)), ε(w̃B)(V (y))〉|det(V )|dy,

and having in mind that C̃(V (y)) = C(y) and |Ỹ | = |det∇V ||Y | = |detV ||Y |,

〈C̃HA,B〉 =
1

|Y |

∫
Y

〈C(y) ε(w̃A)(V (y)), ε(w̃B)(V (y))〉dy.

By taking advantage of the symmetry properties of the elastic tensor C, the quantity
〈C̃HA,B〉 can be written in the form

〈C̃HA,B〉 =
1

|Y |

∫
Y

Cijkl(y)
∂w̃iA
∂zj

(V (y))
∂w̃kB
∂zl

(V (y)) dy.

In order to express the above quantity in terms of functions defined on the orig-
inal configuration Y , we introduce the functions w̄A(y) = w̃A(V (y)) and w̄B(y) =

w̃B(V (y)). One has then w̃A(z) = w̄A(W (z)), with W = V -1, and thus
∂w̃iA
∂zj

(z) =

∂w̄iA
∂ym

(W (z))
∂Wm

∂zj
(z) and similarly

∂w̃kB
∂zl

(z) =
∂w̄kB
∂yp

(W (z))
∂W p

∂zl
(z). Due to the

linear character of V and W ,
∂Wm

∂zj
(z) = Wmj and

∂W p

∂zl
(z) = Wpl, hence

〈C̃HA,B〉 =
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

Wmj
∂w̄kB
∂yp

Wpl dy.

We now turn to the study of the (infinitesimal) variations induced in the quantity

〈C̃HA,B〉 by infinitesimal variations of V . The prefix δ will be used to denote an
infinitesimal variation of the quantity following it.

Remark 3. Along the above computations, we have assumed implicitly that the
linear application V is invertible, that is, detV 6= 0. This is a natural assumption;
actually, in practice, V will be chosen as the sum between the identity matrix and
a small variation δV . It is also possible to impose a constraint like detV = 1
(by including a projection step in the algorithm); by linearization, this constraint
becomes trδV = 0. See, however, Remark 4 below.

Recall that the matrices A and B are fixed, as well as the elastic tensor C of the
(undeformed) mixture. Thus :

〈δC̃HA,B〉 =
1

|Y |

∫
Y

Cijkl δ
∂w̄iA
∂ym

Wmj
∂w̄kB
∂yp

Wpl dy +

+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

δWmj
∂w̄kB
∂yp

Wpl dy +
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+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

Wmj δ
∂w̄kB
∂yp

Wpl dy +

+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

Wmj
∂w̄kB
∂yp

δWpl dy .

The symbol δ commutes with the partial derivatives, hence

〈δC̃HA,B〉 =
1

|Y |

∫
Y

Cijkl
∂(δw̄iA)

∂ym
Wmj

∂w̄kB
∂yp

Wpl dy +

+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

δWmj
∂w̄kB
∂yp

Wpl dy +

+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

Wmj
∂(δw̄kB)

∂yp
Wpl dy +

+
1

|Y |

∫
Y

Cijkl
∂w̄iA
∂ym

Wmj
∂w̄kB
∂yp

δWpl dy .

Expressing the variation of W = V -1 in terms of the variation of V is a mere exercise
of calculus :

VijWjk = δik =⇒ δVijWjk + Vij δWjk = 0 =⇒ δWij = −Wik δVklWlj

We now localize the computations, that is, we compute the desired derivative around
the point V = Id (the identity matrix). By doing this, W becomes also Id, and

w̃A = w̄A = wA. We shall also switch the notation from δC̃H to DPC
H (the

derivative of CH with respect to periodicity). Thus :

〈DPC
HA,B〉 =

1

|Y |

∫
Y

Cijkl
∂(δw̄iA)

∂yj

∂wkB
∂yl

dy − 1

|Y |

∫
Y

Cijkl
∂wiA
∂ym

δVmj
∂wkB
∂yl

dy +

+
1

|Y |

∫
Y

Cijkl
∂wiA
∂yj

∂(δw̄kB)

∂yl
dy − 1

|Y |

∫
Y

Cijkl
∂wiA
∂yj

∂wkB
∂yp

δVpl dy .

In the first parcel of the expression above, the integral can be seen as the product

between Cijkl
∂wkB
∂yl

, which is a zero-divergence vector field due to the cellular problem

(2), and
∂(δw̄iA)
∂yj

which is a gradient. The third parcel has a similar structure.

Due to a compensated compactness result (e.g. Lemma 1.3.1 in [1] adapted to the
particular case of periodic fields), these parcels (first and third) can be written as
products of averages :

〈DPC
HA,B〉 =

1

|Y |

∫
Y

∂(δw̄iA)

∂yj
dy

1

|Y |

∫
Y

Cijkl
∂wkB
∂yl

dy −

− 1

|Y |

∫
Y

Cijkl
∂wiA
∂ym

∂wkB
∂yl

dy δVmj +

+
1

|Y |

∫
Y

Cijkl
∂wiA
∂yj

dy
1

|Y |

∫
Y

∂(δw̄kB)

∂yl
dy −

− 1

|Y |

∫
Y

Cijkl
∂wiA
∂yj

∂wkB
∂yp

dy δVpl .
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We stress that the second and fourth parcels cannot be written in the same way
because of the extraneous terms δVmj and δVpl, respectively. 1

We now apply two properties already refered in Section 2, equations (4) and (5).
Note that, since w̄A is a linear plus periodic function whose linear part is AV , δw̄A

is a linear plus periodic function whose linear part is AδV . Similarly, the linear
part of δw̄B is B δV , hence

〈DPC
HA,B〉 = Aiα δVαj C

H
ijkl Bkl −

1

|Y |

∫
Y

Cijkl
∂wiA
∂ym

∂wkB
∂yl

dy δVmj +

+ CHijkl Aij Bkα δVαl −
1

|Y |

∫
Y

Cijkl
∂wiA
∂yj

∂wkB
∂yp

dy δVpl . (8)

The above formula is ready for implementation, since it gives the derivative of
the homogenized tensor in terms of computable quantities multiplying (components
of) δV . By choosing the matrices A and B in a basis of symmetric matrices, one
may write equation (8) in a compact form :

DPC
H = P δV , (9)

where P is a sixth order tensor describing the sensitivity of CH with respect to the
periodicity pattern.

Two animations are available at [17], illustrating the process of optimizing prop-
erties of the homogenized elastic tensor by varying the periodicity cell.

cfin cfin cfin

a b c

Figure 6. Three different cells producing the same periodicity pattern

Remark 4. The size of the periodicity cell Y is not relevant. That is, if one
performs a homothety on the cell Y and on the hole T , the homogenized elastic
tensor of the microstructure will remain unchanged, since the formulas defining it
are based on an averaging operation; note the division by the area of Y in formulas
(3), (4) and so on. Attending to this property, the algorithm rescales from time to
time the cell Y in order to prevent extreme increase or decrease in the size of the
cell. However, numerical tests show that this operation is not necessary, because
the derivative (8) of the homogenized tensor with respect to the periodicity is also
scale invariant and thus the algorithm does not change significantly the size of the

1Except when δV is a multiple of the identity matrix, in which case the whole expression
becomes zero.
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cell Y . Actually, it suffices to observe that, in formula (8), if one takes δV to be
a multiple of the identity matrix, the derivative becomes zero. This means that
the steepest descent direction produced by an optimization algorithm will be such
that trδV = 0 (δV orthogonal to the identity matrix). This is roughly equivalent
to imposing detV = 1 (see also Remark 3), so Y will have almost constant area.
However, this does not eliminate the possibility of extreme elongation of the cell
(see Remark 5 below).

Remark 5. Nothing can be done to prevent the cell from becoming a long and
thin rectangle, especially when the example is such that laminates are convenient.
However, one can prevent the cell from becoming sharp-angled. Note that it is
possible for different cells to define the same periodicity pattern, as illustrated in
Figure 6. To prevent extreme sharpening of the angles of the periodicity cell, the
algorithm “normalizes” the cell from time to time, that is, it chooses, among all
possible equivalent cells, the one closest to a rectangle (actually, the one having the
lowest perimeter). For instance, if faced with a cell like the one drawn in Figure 6b
or Figure 6c, the algorithm will choose instead the cell drawn in Figure 6a, leaving
the mesh unchanged.

We state here the formulae of the shape and topology derivatives; the interested
reader may find more details in [5, Sections 5 and 6].

Y

τ

T

Figure 7. Infinitesimal deformation of the model hole T

Consider first shape variations, given by an infinitesimal deformation τ of the
model hole T , see Figure 7. Then, the corresponding variations in the homogenized
tensor are described by

〈DSC
HA,B〉 =

1

|Y |

∫
∂T

[
2µ〈εy(wA), εy(wB)〉+ λtr(εy(wA))tr(εy(wB))

]
〈~τ , n〉 ds ,

(10)
where ds denotes the superficial measure on ∂T , while λ and µ are the Lamé coef-
ficients of the (constant) base material tensor C. See equation (32) in [5].

By choosing the matrices A and B in a basis of symmetric matrices, one may
write equation (10) in a compact form:

DSC
H =

∫
∂T

S(y) 〈~τ , n〉 ds(y) , (11)

where S is a fourth order tensor describing the shape sensitivity of CH .
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The sensitivity of CH with respect to topology variations, that is, with respect
to the nucleation of an infinitesimal hole at an arbitrary location y ∈ Y \ T , is
described by

〈DTC
H(y)A,B〉 = − π

|Y |
λ+ 2µ

λ+ µ

[
4µ〈εy(wA), εy(wB)〉

+
λ2 + 2λµ− µ2

µ
tr(εy(wA)) tr(εy(wB))

]
(y) , (12)

see equation (24) in [5]. See also [16]. This can be again expressed in a compact
form

DTC
H(y) = −T(y) (13)

where T is a fourth order tensor describing the topology sensitivity of CH .

4. Locally periodic microstructures. We call “locally periodic” a microstruc-
ture which, in the neighbourhood of each point of the macroscopic domain, has
a periodic character. This periodic microgeometry can vary from point to point
(at the macroscopic level), as described in [7, Section 3]. Such a microstructure
is sometimes called in the literature “graded structure”, or “functionally graded
material”.

For mixtures of materials, this amounts to letting the pattern tensor field C
depend on both x (the macroscopic variable) and y (the microscopic variable).
Note that in [7] the periodicity cell was kept fixed and thus it did not depend on x.
In the present work the periodicity pattern is allowed to vary from point to point
(at the macroscopic level) and is also varied along the optimization process.

Remark 6. We do not focus here on describing with mathematical rigor the no-
tion of locally periodic structure. The interested reader can find in [8, Chapter 1,
Section 6] a description of a microstructure with fixed periodicity cell and variable
microgeometry. In [9], a rigorous description is given for a microperforation with
variable periodicity cell but identical (spherical) holes. The main goal of the present
paper is to deal with bodies made of pieces of periodic microstructure (these pieces
will be actually the macroscopic finite elements, as explained in Section 6). In each
of these pieces, the microstructure is assumed to be truly infinitesimal and thus
these pieces can be glued together with no difficulty.

The periodicity cell depends on the macroscopic variable x, and is denoted by
Y (x). The cellular problem (2) depends on x as a parameter :{

−divy
(
C(x, y) εy(wA(x, y))

)
= 0 in R2

wA(x, y) = Ay + φA(x, y), with φA(x, ·) Y (x)−periodic,
(14)

The homogenized elastic tensor CH depends now on x and is defined by

〈CH(x)A,B〉 =
1

|Y (x)|

∫
Y (x)

〈C(x, y)εy(wA(x, y)), εy(wB(x, y))〉 dy ,

where A and B are two arbitrary strain matrices.
A locally periodic porous material is described in a similar manner. The model

hole T now varies with x and shall be denoted by T (x).
The corresponding perforated plane will be denoted by R2

perf(x)

R2
perf(x) = R2 \

⋃
~k∈Z2

(T (x) + k1~g1(x) + k2~g2(x))
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The base material C is now considered to be constant. The cellular problem (7)
becomes 

−divy
(
C εy(wA(x, y))

)
= 0 in R2

perf(x)

C εy(wA(x, y)) n = 0 on ∂T (x)
wA(x, y) = Ay + φA(x, y), with φA Y (x)− periodic.

(15)

The homogenized ellastic tensor CH(x) is defined by

〈CH(x)A,B〉 =
1

|Y (x)|

∫
Y (x)\T (x)

〈C εy(wA(x, y)), εy(wB(x, y))〉 dy , (16)

where A and B are two arbitrary strain matrices.
The behaviour of the macroscopic body is described by the homogenized elastic

tensor CH(x). More precisely, suppose that the macroscopic body occupies the
domain Ω ⊂ R2 and that the boundary of Ω is split in two parts (the Neumann
part ΓN and the Dirichlet part ΓD). The body is fixed on ΓD and is subject to the
superficial force g on ΓN . Then, the state of deformation of the body is described
by the solution u of −divx(CHεx(u)) = 0 in Ω

u = 0 on ΓD
(CHεx(u)) n = g on ΓN .

(17)

Remark 7. One may wonder how microstructures with different periodicity pat-
terns can be glued together in order to manufacture a macroscopic body with the
desired properties. This is a pertinent question, but it is outside the scope of the
present paper. See e.g. [13] for an approach to this question. The goal of the present
work is to deal with macroscopic bodies made of “patches”, see Remark 6.

Remark 8. Actually, the objection risen in Remark 7 applies, although to a lesser
extent, even to the context of locally periodic microstructures with constant peri-
odicity pattern, like the ones studied in [7]. Indeed, perforations of different shapes
can sometimes be difficult to glue together. See, e.g., [15]

The expressions of the derivatives of the homogenized elastic coefficients, ob-
tained in Section 3 for periodic microstructures, are directly generalized for locally
periodic microstructures. The only difference is that now a parameter x appears in
the formulae; thus, equations (9), (11) and (13) become :

DPC
H(x) = P(x) δV , (18)

DSC
H(x) =

∫
∂T

S(x, y) 〈~τ , n〉 ds(y) , (19)

DTC
H(x, y) = −T(x, y) (20)

5. Optimization process. The aim of the present paper is to optimize macro-
scopic properties of the body under study, by varying the details of its locally
periodic microstructure, more specifically, by varying the shape and topology of the
holes T (x), as well as their periodicity pattern.

Consider an objective functional Φ depending on the solution u of problem (17).
A typical example is the minimization of the compliance of the body

Φ =
1

2

∫
ΓN

gu =
1

2

∫
Ω

〈CHεx(u), εx(u)〉 =

∫
ΓN

gu− 1

2

∫
Ω

〈CHεx(u), εx(u)〉 (21)
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Usually, there is also a constraint on the volume of material:

V =

∫
Ω

θ , (22)

where

θ(x) =
|Y (x) \ T (x)|
|Y (x)|

= 1− |T (x)|
|Y (x)|

is the local material density.

Remark 9. Note that, in (21), we have chosen the objective functional Φ to be half
of the functional used in [7]. The reason is that the authors have learned meanwhile
that definition (21) is more consistent with the mechanical notion of elastic stored
energy. See also [4].

The optimization process passes through a chain of dependencies :

T 7→ CH 7→ u 7→ Φ , (23)

that is, to a family of cellular holes T (x) one associates the homogenized tensor
CH(x) as defined by (16), then the macroscopic elastic deformation u as defined
by (17) and finally the value of the objective functional Φ. A simpler chain of
dependencies holds for the volume V of material.

Describing the variation δΦ of the objective functional in terms of δCH and δu
is relatively simple. The difficult part is to eliminate δu, thus expressing δΦ in
terms of δCH only, and this is the object of the adjoint method. However, for the
particular case of the compliance functional defined in (21), the problem turns out
to be self-adjoint and one obtains

δΦ = −1

2

∫
Ω

〈δCHεx(u), εx(u)〉

See [7, Section 4] for details, taking into account Remark 9 above.
As for the first part of the chain (23), equations (18), (19) and (20) describe

the variation δCH associated to an infinitesimal variation in each of the structural
parameters : shape of the holes/inclusions, their topology, and their periodic ar-
rangement, respectively.

An optimization algorithm is used which alternates shape, topology and periodic-
ity optimization at the cellular level (the approach of alternating different directions
of optimization was proposed, e.g., in [2]). The macroscopic domain Ω is divided
into finite elements (rectangular ones in our approach, but this is not essential).
In each macroscopic finite element, the microgeometry is supposed to be constant.
Consequently, the homogenized elastic tensor CH and the material density θ are
also constant in each macroscopic finite element.

The cellular geometry describing the periodic microstructure in each macroscopic
finite element is discretized using a (triangular) finite element mesh on the respective
periodicity cell. Some of these triangles are filled with an isotropic elastic material
of Lamé constants λ and µ while others are void, thus defining the model hole.
This mesh is used for solving numerically the cellular problem (15). The periodicity
conditions in (15) are implemented by identifying the opposite sides of Y and by
keeping track of the linear part A of wA. For more details, see [7], [6] and [3].

The computer implementation has three components : a FORTRAN program
which deals with each of the cellular meshes and optimizes the microgeometry,
a C++ program (using the libMesh library) which deals with the mascroscopic
analysis, and a Python script which links these two programs and provides data
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exchange. The computation is strongly parallelized : the Python script connects
to several machines and spreads cellular optimization processes, by using a regular
internet link and the protocol ssh. For more details, see [7, Section 5].

6. Numerical examples. In order to illustrate the method, results for three ex-
amples are shown. A cantilever is considered, ocuppying a rectangle of size 1.5× 1,
clamped on its left side and subject to loads on its right side. This rectangle is
divided in 600 = 30× 20 Lagrange finite elements of type Q9. 2

The base elastic material C is taken to have Young modulus E = 1 and Poisson
coefficient ν = 0.3. More specifically,

Cε = 2µε+ λ(trε)I2×2

with µ = 0.38461538 and λ = 0.576923.
We minimize Φ+ΛV with Φ defined in (21) and V defined in (22). The Lagrange

multiplier is always taken as Λ = 66.66666.

Remark 10. This value of Λ is half of the Lagrange multiplier used in [7, Section
6]. This choice facilitates the comparison of the numerical results, see Remark 9
above.

The 600 cellular meshes (one per macroscopic element), are composed of tri-
angular Lagrange P1 finite elements. The number of elements varies during the
optimization process between 1000 and 2000 triangles per cellular mesh.

Figure 8. Initial guess

The algorithm starts with an initial guess consisting of a periodic microstructure,
that is, having constant (square) periodicity cell Y and constant (circular) hole T ,
as shown in Figure 8. The conventions used in this Figure are: in the center, the
density of material, θ = 0.9079239, is represented as a (constant) function defined
in the macroscopic domain, using the corresponding level of grey; on both sides,
magnifications of the microstructure in 4 chosen points of the body are shown.

Starting with this initial structure, the microgeometry is varied. Shape, topology
and periodicity optimization steps are alternated during the optimization process.
No penalization of intermediate densities is applied.

Each numerical example is illustrated by two Figures. Firstly, Figures 9, 11
and 13 show the configuration of the body, the applied loads, and three graphics

2In [7, Section 6], it was asserted that the macroscopic domain has dimensions 2 × 1. This
statement was incorrect; the numerical results in both [7] and the present work are computed on

a rectangular domain with size 1.5 × 1, divided into 600 finite elements.
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Figure 9. Cantilever with one load in the middle, problem setting
and convergence history

representing the evolution of the Lagrangian Φ + ΛV , of the compliance Φ and of
the volume of material V , as functions of the number of iterations. Note that,
for comparison purposes, we have included in the Figures a dotted line describing
the evolution of the Lagrangian in the previous approach, with no variation of the
periodicity pattern, as in [7] (these values have been rescaled by a factor of 0.5,
in accordance with Remarks 9 and 10 above). Secondly, in Figures 10, 12 and 14
the optimized structure is presented, following the same conventions as in Figure
8 : in the center, the density of material, θ, is drawn as a function defined in the
macroscopic domain, using levels of grey. Around this central zone, magnifications
of the microstructure in 8 chosen macroscopic finite elements are shown. In the
background of each zoom, the periodicity cell is drawn in grey.

Note that it is difficult to represent graphically the homogenized tensor CH of
the optimized structure, since it involves 6 scalar functions. An interactive version
of Figures 10, 12 and 14 is available at [18].

In the first example, a load of intensity 1 is applied in the middle point of the
right side of the cantilever. Figure 9 shows the setting of the problem and the
evolution of the Lagrangian Φ + ΛV , of the compliance Φ and of the volume of
material V , as functions of the number of iterations.

In the graphic of the Lagrangian, the continuous line shows the evolution of the
Lagrangian when varying the periodicity pattern, while the dotted line shows the
evolution in the previous approach, with constant periodicity cell, as described in
[7] (these values have been rescaled by a factor of 0.5, in accordance with Remarks
9 and 10 above). One can see that the present approach is more efficient, reaching a
significantly lower value of the Lagrangian. Note that there are intervals where the
Lagrangian is almost constant, and the volume of material is truly constant. These
are the optimization steps when the periodicity pattern is varied. It is interesting



LOCALLY PERIODIC MICROSTRUCTURES 447

Figure 10. Cantilever with one load in the middle, optimized structure

that these optimization steps, which at first view do not contribute for decreasing
significantly the value of the Lagrangian, actually adjust the structure’s periodicity
pattern and help the subsequent optimization steps (mainly shape optimization) to
decrease the value of the Lagrangian more efficiently.

Figure 10 shows the density of material, in grayscale, and eight zooms of the opti-
mized microstructure in chosen points of the body. Note how very different material
densities are obtained : from a full material (Figure 10, zoom a) to an almost empty
cell (Figure 10, zoom f). Note also the great variety of microgeometries produced
by the algorithm. In Figure 10, zooms c and e, we see structures close to rank-1
laminates, like those already obtained in [7]; however, now the laminates have much
more freedom to orient themselves according to the stress in the macroscopic body.
For instance, the microstructures represented in Figure 10, zooms d and e, exhibit
a privileged direction having a slight slope, wich would be impossible to obtain if
the periodicity cell were kept constant (square).

No symmetry is imposed in either of the examples. The results depicted in Figure
10 present a rather good symmetry, as expected. The symmetry can be observed
even at the microscopic level, as shown in Figure 10, zooms g and h.

In the second example, a load of intensity 1 is applied in the lower right corner of
the rectangle, see Figure 11. The optimized structure is represented in Figure 12.
Some of the microstructures resemble rank-1 laminates (Figure 12, zooms b and c),
others seem to mimic rank-2 laminates (Figure 12, zooms e, f and g), while others
are more difficult to classify (Figure 12, zooms a, d and h).

The approach presented here is not limited to the minimization of the compliance:
other, more complicated, functionals can be dealt with. The third example involves
a multi-load situation. Three loads are considered, as shown in Figure 13, acting
independently of each other. The objective functional is the average of the three
compliances (for the three load cases) :

Φ =
Φ1 + Φ2 + Φ3

3
Results are presented in Figure 14. The optimized microstructures are somewhat
more elaborated than in the previous two examples. Fewer laminates are obtained.
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These microstructures are required to resist well to three different states of (macro-
scopic) stress.

In all examples, one notices more intermediate grayscales when comparing with
the respective results in [7]. Most importantly, a significantly lower value of the
Lagrangian is obtained.

In some cases, the extreme flexibility of the periodicity cell becomes apparent,
like in Figure 14, zoom h, which is a good illustration of Remark 5.
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Figure 11. Cantilever with load in the lower corner, problem set-
ting and convergence history

Figure 12. Cantilever with load in the lower corner, optimized structure
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Remark 11. The topology optimization steps do not contribute significantly to
the optimization process. The authors have observed that, quite often, during a
topology optimization step, a small hole is created and is later destroyed during
subsequent shape optimization steps. Also, in the final, optimized, structures, it is
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Figure 13. Cantilever with three independent loads, problem set-
ting and convergence history

Figure 14. Cantilever with three independent loads, optimized structure
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very rare to see more than one hole in the periodicity cell.3 The only exception is
shown in Figure 14, zoom b, where a very small hole can be seen. If the optimization
process were continued, it is likely that this hole would have been destroyed by
subsequent shape optimization steps.

7. Conclusions and future work. The present paper presents an algorithm for
the optimization of bodies having locally periodic perforations. Shape, topology
and periodicity optimization steps are performed following an alternate directions
approach. The problem in numerically heavy (hundreds of cellullar meshes are opti-
mized, each having thousands of finite elements). The implementation is massively
parallel, in order to alleviate the computational burden.

Our approach is related to free material optimization in the sense that it uses
the derivative of the objective functional with respect to the homogenized elastic
coefficients. The method is general : any objective functional can be treated, as
long as its derivative with respect to the macroscopic material coefficients can be
computed.

The numerical results are encouraging, showing good agreement with results from
the literature.

The upgrade of the algorithm to three-dimensional problems is the object of on-
going work. The main difficulty is the implementation of the finite element mesh on
the cube with its opposite faces identified (which is equivalent to meshing the three-
dimensional torus), especially its deformation and regeneration. Robust algorithms
for mesh deformation and mesh regeneration in R3 are difficult to find.

Other directions for improving the algorithm in the future are: the implemen-
tation of a quasi-Newton algorithm in order to accelerate the convergence and the
implementation of different optimization criteria. For instance, it could be interest-
ing to impose an upper bound on the (microscopic) pointwise stress.

Acknowledgments. Paulo Vieira helped with the implementation of the macro-
scopic analysis code in C++, using the finite element library libMesh.

For graphic creation, the authors have used the open-source softwares xd3d and
xgraphic, by François Jouve, and xfig.
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