Green's function for elliptic systems: Moment bounds

  • Received: 01 December 2016 Revised: 01 April 2017
  • Primary: 35J08, 35J15; Secondary: 74Q05

  • We study estimates of the Green's function in $\mathbb{R}^d$ with $d ≥ 2$, for the linear second order elliptic equation in divergence form with variable uniformly elliptic coefficients. In the case $d ≥ 3$, we obtain estimates on the Green's function, its gradient, and the second mixed derivatives which scale optimally in space, in terms of the "minimal radius" $r_*$ introduced in [Gloria, Neukamm, and Otto: A regularity theory for random elliptic operators; ArXiv e-prints (2014)]. As an application, our result implies optimal stochastic Gaussian bounds on the Green's function and its derivatives in the realm of homogenization of equations with random coefficient fields with finite range of dependence. In two dimensions, where in general the Green's function does not exist, we construct its gradient and show the corresponding estimates on the gradient and mixed second derivatives. Since we do not use any scalar methods in the argument, the result holds in the case of uniformly elliptic systems as well.

    Citation: Peter Bella, Arianna Giunti. 2018: Green's function for elliptic systems: Moment bounds, Networks and Heterogeneous Media, 13(1): 155-176. doi: 10.3934/nhm.2018007

    Related Papers:

    [1] Jean-Bernard Baillon, Guillaume Carlier . From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7(2): 219-241. doi: 10.3934/nhm.2012.7.219
    [2] Raúl M. Falcón, Venkitachalam Aparna, Nagaraj Mohanapriya . Optimal secret share distribution in degree splitting communication networks. Networks and Heterogeneous Media, 2023, 18(4): 1713-1746. doi: 10.3934/nhm.2023075
    [3] Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
    [4] Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi . Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8(3): 825-842. doi: 10.3934/nhm.2013.8.825
    [5] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [6] Carlos F. Daganzo . On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1(4): 601-619. doi: 10.3934/nhm.2006.1.601
    [7] Leah Anderson, Thomas Pumir, Dimitrios Triantafyllos, Alexandre M. Bayen . Stability and implementation of a cycle-based max pressure controller for signalized traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 241-260. doi: 10.3934/nhm.2018011
    [8] Félicien BOURDIN . Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population. Networks and Heterogeneous Media, 2022, 17(5): 783-801. doi: 10.3934/nhm.2022026
    [9] Anya Désilles . Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Networks and Heterogeneous Media, 2013, 8(3): 707-726. doi: 10.3934/nhm.2013.8.707
    [10] Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio . Numerical approximation of continuous traffic congestion equilibria. Networks and Heterogeneous Media, 2009, 4(3): 605-623. doi: 10.3934/nhm.2009.4.605
  • We study estimates of the Green's function in $\mathbb{R}^d$ with $d ≥ 2$, for the linear second order elliptic equation in divergence form with variable uniformly elliptic coefficients. In the case $d ≥ 3$, we obtain estimates on the Green's function, its gradient, and the second mixed derivatives which scale optimally in space, in terms of the "minimal radius" $r_*$ introduced in [Gloria, Neukamm, and Otto: A regularity theory for random elliptic operators; ArXiv e-prints (2014)]. As an application, our result implies optimal stochastic Gaussian bounds on the Green's function and its derivatives in the realm of homogenization of equations with random coefficient fields with finite range of dependence. In two dimensions, where in general the Green's function does not exist, we construct its gradient and show the corresponding estimates on the gradient and mixed second derivatives. Since we do not use any scalar methods in the argument, the result holds in the case of uniformly elliptic systems as well.



    In this paper, we will are concerned with existence of quasi-periodic solutions for a two-dimensional $ (2D) $ quasi-periodically forced beam equation

    $ utt+Δ2u+εϕ(t)(u+u3)=0,xT2,tR
    $
    (1.1)

    with periodic boundary conditions

    $ u(t,x1,x2)=u(t,x1+2π,x2)=u(t,x1,x2+2π)
    $
    (1.2)

    where $ \varepsilon $ is a small positive parameter, $ \phi(t) $ is a real analytic quasi-periodic function in $ t $ with frequency vector $ \omega = (\omega_1, \omega_2 \ldots, \omega_m) \subset[\varrho, 2\varrho]^m $ for some constant $ \varrho > 0. $ Such quasi-periodic functions can be written in the form

    $ \phi(t) = \varphi(\omega_1 t, \ldots, \omega_m t), $

    where $ \omega_1, \ldots, \omega_m $ are rationally independent real numbers, the "basic frequencies" of $ \phi $, and $ \varphi $ is a continuous function of period $ 2\pi $ in all arguments, called the hull of $ \phi $. Thus $ \phi $ admits a Fourier series expansion

    $ \phi(t) = \sum\limits_{k\in{\mathbb{Z}}^m}\varphi_k e^{{\rm i}k\cdot\omega t}, $

    where $ k\cdot\omega = \sum_{\hat{j} = 1}^m k_{\hat{j}}\cdot\omega_{\hat{j}} $. We think of this equation as an infinite dimensional Hamiltonian system and we study it through an infinite-dimensional KAM theory. The KAM method is a composite of Birkhoff normal form and KAM iterative techniques, and the pioneering works were given by Wayne [25], Kuksin [15] and Pöschel [19]. Over the last years the method has been well developed in one dimensional Hamiltonian PDEs. However, it is difficult to apply to higher dimensional Hamiltonian PDEs. Actually, it is difficult to draw a nice result because of complicated small divisor conditions and measure estimates between the corresponding eigenvalues when the space dimension is greater than one. In [11,12] the authors obtained quasi-periodic solutions for higher dimensional Hamiltonian PDEs by means of an infinite dimensional KAM theory, where Geng and You proved that the higher dimensional nonlinear beam equations and nonlocal Schrödinger equations possess small-amplitude linearly-stable quasi-periodic solutions. In this aspect, Eliasson-Kuksin[9], C.Procesi and M.Procesi[20], Eliasson-Grebert-Kuksin [5] made the breakthrough of obtaining quasi-periodic solutions for more interesting higher dimensional Schrödinger equations and beam equations. However, all of the work mentioned above require artificial parameters, and therefore it cannot be used for classical equations with physical background such as the higher dimensional cubic Schrödinger equation and the higher dimensional cubic beam equation. These equations with physical background have many special properties, readers can refer to [4,16,22,23,24] and references therein.

    Fortunately, Geng-Xu-You[10], in 2011, used an infinite dimensional KAM theory to study the two dimensional nonlinear cubic Schrödinger equation on $ \mathbb{T}^2 $. The main approach they use is to pick the appropriate tangential frequencies, to make the non-integrable terms in normal form as sparse as possible such that the homological equations in KAM iteration is easy to solve. More recently, by the same approach, Geng and Zhou[13] looked at the two dimensional completely resonant beam equation with cubic nonlinearity

    $ utt+Δ2u+u3=0,xT2,tR.
    $
    (1.3)

    All works mentioned above do not conclude the case with forced terms. The present paper study the problem of existence of quasi-periodic solutions of the equation (1.1)+(1.2). Let's look at this problem through the infinite-dimensional KAM theory as developed by Geng-Zhou [13]. So the main step is to convert the equation into a form that the KAM theory for PDE can be applied. This requires reducing the linear part of Hamiltonian system to constant coefficients. A large part of the present paper will be devoted to proving the reducibility of infinite-dimensional linear quasi-periodic systems. In fact, the question of reducibility of infinite-dimensional linear quasi-periodic systems is also interesting itself.

    In 1960s, Bogoliubov-Mitropolsky-Samoilenko [3] found that KAM technique can be applied to study reducibility of non-autonomous finite-dimensional linear systems to constant coefficient equations. Subsequently, the technique is well developed for the reducibility of finite-dimensional systems, and we don't want to repeat describing these developments here. Comparing with the finite-dimensional systems, the reducibility results in infinite dimensional Hamiltonian systems are relatively few. Such kind of reducibility result for PDE using KAM technique was first obtained by Bambusi and Graffi [1] for Schrödinger equation on $ \mathbb{R} $. About the reducibility results in one dimensional PDEs and its applications, readers refer to [2,7,17,18,21] and references therein.

    Recently there have been some interesting results in the case of systems in higher space dimensions. Eliasson and Kuksin [6] obtained the reducibility for the linear d-dimensional Schrödinger equation

    $ \dot{u} = -{\rm i}(\Delta u-\epsilon V(\phi_0+t\omega, x; \omega)u), \quad x\in\mathbb{T}^d. $

    Grébert and Paturel [14] proved that a linear d-dimensional Schrödinger equation on $ \mathbb{R}^d $ with harmonic potential $ |x|^2 $ and small $ t $-quasiperiodic potential

    $ {\rm i}\partial_t u-\Delta u+|x|^2 u+\varepsilon V(t\omega, x)u = 0, \quad x\in\mathbb{R}^d $

    reduced to an autonomous system for most values of the frequency vector $ \omega\in \mathbb{R}^n $. For recent development for high dimensional wave equations, Eliasson-Grébert-Kuksin [8], in 2014, studied reducibility of linear quasi-periodic wave equation.

    However, the reducibility results in higher dimension are still very few. The author Min Zhang of the present paper has studied the two dimensional Schrödinger equations with Quasi-periodic forcing in [27]. However, it would seem that the result cannot be directly applied to our problems because of the difference in the linear part of Hamiltonian systems and the Birkhoff normal forms. As far as we know, the reducibility for the linear part of the beam equation (1.1) is still open. In this paper, by utilizing the measure estimation of infinitely many small divisors, we construct a symplectic change of coordinates which can reduce the linear part of Hamiltonian system to constant coefficients. Subsequently, we construct a symplectic change of coordinates which can transform the Hamiltonian into some Birkhoff normal form depending sparse angle-dependent terms, which can be achieved by choosing the appropriate tangential sites. Lastly, we show that there are many quasi-periodic solutions for the equation (1.1) via KAM theory.

    Remark 1.1. Similar to [13], we introduced a special subset of $ \mathbb{Z}^2 $

    $ Z2odd={n=(n1,n2),n12Z1,n22Z},
    $
    (1.4)

    for the small divisor problem could be simplified. Then we define subspace $ \mathcal{U} $ in $ L^2(\mathbb{T}^2) $ as follows

    $ \mathcal{U} = \{u = \sum\limits_{j\in\mathbb{Z}^2_{odd}}u_j\phi_j, \quad \phi_j(x) = e^{{\rm i} \lt j, x \gt }\}. $

    We only prove the existence of quasi-periodic solutions of the equation ${\rm(1.1)}$ in $ \mathcal{U} $.

    The following definition quantifies the conditions the tangential sites satisfy. It acquired from Geng-Xu-You[10].

    Definition 1.1. A finite set $ S = \{i^*_1 = (\tilde{x}_{1}, \tilde{y}_{1}), \cdots, i^*_n = (\tilde{x}_{n}, \tilde{y}_{n})\}\subset{\mathbb{Z}}^2_{odd} (n\geq 2) $ is called admissible if

    $ \rm(i). $ Any three different points of them are not vertices of a rectangle (if $ n > 2 $) or $ n = 2 $.

    $ \rm(ii). $ For any $ d\in{\mathbb{Z}}^2_{odd}\setminus S $, there exists at most one triplet $ \{i, j, l\} $ with $ i, j\in S, l\in{\mathbb{Z}}^2_{odd}\setminus S $ such that $ d-l+i-j = 0 $ and $ {|i|}^2-{|j|}^2+{|d|}^2-{|l|}^2 = 0 $. If such triplet exists, we say that $ d, l $ are resonant in the first type and denote all such $ d $ by $ \mathcal{L}_1 $.

    $ \rm(iii). $ For any $ d\in{\mathbb{Z}}^2_{odd}\setminus S $, there exists at most one triplet $ \{i, j, l\} $ with $ i, j\in S, l\in{\mathbb{Z}}^2_{odd}\setminus S $ such that $ d+l-i-j = 0 $ and $ {|d|}^2+{|l|}^2-{|i|}^2-{|j|}^2 = 0 $. If such triplet exists, we say that $ d, l $ are resonant in the second type and denote all such $ d $ by $ \mathcal{L}_2 $.

    $ \rm(iv). $ Any $ d\in{\mathbb{Z}}^2_{odd}\setminus S $ should not be in $ \mathcal{L}_1 $ and $ \mathcal{L}_2 $ at the same time. It means that $ \mathcal{L}_1\cap\mathcal{L}_2 = \emptyset. $

    Remark 1.2. We can give an example to show the admissible set $ S $ above is non-empty. For example, for any given positive integer $ n\geq 2 $, the first point $ (\tilde{x}_1, \tilde{y}_1)\in {\mathbb{Z}}^2_{odd} $ is chosen as $ \tilde{x}_{1} > n^2, \tilde{y}_{1} = 2\tilde{x}_{1}^{5^n}, $ and the second one is chosen as $ \tilde{x}_{2} = \tilde{x}_{1}^5, \tilde{y}_{2} = 2\tilde{x}_{2}^{5^n} $, the others are defined inductively by

    $ \tilde{x}_{\hat{j}+1} = \tilde{x}_{\hat{j}}^5\prod\limits_{2\leq{\hat m}\leq{\hat j}, 1\leq {\hat l} \lt {\hat m}}\big({(\tilde{x}_{\hat m}-\tilde{x}_{\hat l})}^2+{(\tilde{y}_{\hat m}-\tilde{y}_{\hat l})}^2+1\big), \quad 2\leq {\hat j}\leq n-1, $
    $ \tilde{y}_{\hat{j}+1} = 2\tilde{x}_{\hat{j}+1}^{5^n}, \quad 2\leq {\hat j}\leq n-1. $

    The choice of the admissible set is same to that in [13], where the proof of such admissible set is given.

    In this paper, we assume that

    $ \rm\bf(H) $ $ \phi(t) $ is a real analytic quasi-periodic function in $ t $ with frequency vector $ \omega, $ and $ [\phi]\neq0 $ where $ [\phi] $ denotes the time average of $ \phi $, coinciding with the space average.

    The main result of this paper in the following. The proof is based on an infinite dimensional KAM theorem inspired by Geng-Zhou[13].

    Theorem 1.1. (Main Theorem) Given $ \varrho $, $ \phi(t) $ as above. Then for arbitrary admissible set $ S\subset{\mathbb{Z}}^2_{odd} $ and for any $ 0 < \gamma < 1, 0 < \rho < 1 $ and $ \gamma' > 0 $ be small enough, there exists $ \varepsilon^*(\rho, \gamma, \gamma') > 0 $ so that for all $ 0 < \varepsilon < \varepsilon^*, $ there exists $ R\subset [\varrho, 2\varrho]^m $ with $ {\rm meas}\, R > (1-\gamma)\varrho^m $ and there exists $ \Sigma_{\gamma'}\subset\Sigma: = R\times [0, 1]^{n} $ with $ {\rm meas}\, (\Sigma\setminus\Sigma_{\gamma'}) = O(\sqrt[4]{\gamma'}) $, so that for $ (\omega, \tilde{\xi}_{i^*_1}, \ldots, \tilde{\xi}_{i^*_n})\in \Sigma_\gamma', $ the beam equation $ \rm(1.1)+(1.2) $ admits a quasi-periodic solution in the following

    $ u(t,x)=jS(1+gj(ωt,ω,ε))3˜ξj16|j|2π2(ei˜ωjtei<j,x>+ei˜ωjtei<j,x>)+O(|˜ξ|3/2),
    $

    where $ g_j(\vartheta, \omega, \varepsilon) = \varepsilon^{\rho}g_j^*(\vartheta, \omega, \varepsilon) $ is of period $ 2\pi $ in each component of $ \vartheta $ and for $ j\in S, \vartheta\in\Theta(\sigma_0/2), \omega\in\Omega $, we have $ |g_j^*(\vartheta, \omega, \varepsilon)|\leq C $. And the solution $ u(t, x) $ is quasi-periodic in terms of $ t $ with the frequency vector $ \tilde{\omega} = (\omega, (\tilde{\omega}_j)_{j\in S}) $, and $ \tilde{\omega}_j = \varepsilon^{-4}|j|^2+O(|\tilde{\xi}|)+O(\varepsilon) $.

    Let's rewrite the beam equation (1.1) as follows

    $ utt+Δ2u+εϕ(t)(u+u3)=0,xT2,tR.
    $
    (2.1)

    Introduce a variable $ v = u_t $, the equation (2.1) is transformed into

    $ {ut=v,vt=Δ2uεϕ(t)(u+u3).
    $
    (2.2)

    Introducing $ q = \frac{1}{\sqrt{2}}({(-\Delta)^{\frac{1}{2}}}u-{\rm i}{(-\Delta)^{-\frac{1}{2}}}v) $ and (2.2) is transformed into

    $ iqt=Δq+12εϕ(t)(Δ)12((Δ)12(q+ˉq2)+((Δ)12(q+ˉq2))3).
    $
    (2.3)

    The equation can be written as the Hamiltonian equation $ \dot{q} = {\rm i}\frac{\partial H}{\partial {\bar q}} $ and the corresponding Hamiltonian functions is

    $ H=T2((Δ)q)ˉqdx+12εϕ(t)T2((Δ)12(q+ˉq2))2dx+14εϕ(t)T2((Δ)12(q+ˉq2))4dx.
    $
    (2.4)

    The eigenvalues and eigenfunctions of the linear operator $ -\Delta $ with the periodic boundary conditions are respectively $ \lambda_j = |j|^2 $ and $ \phi_j(x) = \frac{1}{2\pi}e^{{\rm i} < j, x > } $. Now let's expand $ q $ into a Fourier series

    $ q=jZ2oddqjϕj,
    $
    (2.5)

    the coordinates belong to some Hilbert space $ l^{a, s} $ of sequences $ q = (\cdots, q_j, \cdots)_{j\in{\mathbb{Z}}^2_{odd}} $ that has the finite norm

    $ \|q\|_{a, s} = \sum\limits_{j\in{\mathbb{Z}}^2_{odd}}|q_j||j|^s e^{|j|a} \quad(a \gt 0, s \gt 0). $

    The corresponding symplectic structure is $ {\rm i}\sum_{j\in{{\mathbb{Z}}^2_{odd}}} dq_j\wedge d{\bar q}_j $. In the coordinates, the Hamiltonian equation (2.3) can be written as

    $ ˙qj=iHˉqj,jZ2odd
    $
    (2.6)

    with

    $ H = \Lambda+G $

    where

    $ \Lambda = \sum\limits_{j\in{\mathbb{Z}}^2_{odd}}\big(\lambda_j{|q_j|}^2+\frac{\varepsilon}{4\lambda_j} \phi(t)(q_jq_{-j}+2{|q_j|}^2+{\bar{q}}_j{\bar{q}}_{-j})\big) $
    $ G=164π2εϕ(t)i+j+d+l=0i,j,d,lZ2odd1λiλjλdλl(qiqjqdql+ˉqiˉqjˉqdˉql)+332π2εϕ(t)ij+dl=0i,j,d,lZ2odd1λiλjλdλlqiˉqjqdˉql+116π2εϕ(t)i+j+dl=0i,j,d,lZ2odd1λiλjλdλl(qiqjqdˉql+ˉqiˉqjˉqdql).
    $

    Denote $ \varphi(\vartheta) $ be the shell of $ \phi(t) $, we introduce the action-angle variable $ (J, \vartheta)\in{\Bbb{R}^m\times\Bbb{T}^m}, $ then (2.6) can be written as follows

    $ \label{2.7} \dot{\vartheta} = \omega, \quad \dot{J} = -\frac{\partial H}{\partial \vartheta}, \quad \dot{q_j} = {\rm i}\frac{\partial H}{\partial \bar{q}_j}, \quad j\in{\mathbb{Z}}^2_{odd} $

    and the corresponding Hamiltonian function is

    $ H=ˉH+εG4,
    $
    (2.7)

    where

    $ ˉH=<ω,J>+jZ2odd(λj|qj|2+ε4λjφ(ϑ)(qjqj+2|qj|2+ˉqjˉqj)),
    $
    (2.8)
    $ G4=164π2i+j+d+l=0i,j,d,lZ2odd1λiλjλdλl(G4,0ijdl(ϑ)qiqjqdql+G0,4ijdl(ϑ)ˉqiˉqjˉqdˉql)+332π2ij+dl=0i,j,d,lZ2odd1λiλjλdλlG2,2ijdl(ϑ)qiˉqjqdˉql+116π2i+j+dl=0i,j,d,lZ2odd1λiλjλdλl(G3,1ijdl(ϑ)qiqjqdˉql+G1,3ijdl(ϑ)ˉqiˉqjˉqdql)
    $
    (2.9)

    and

    $ G4,0ijdl(ϑ)=G0,4ijdl(ϑ)={φ(ϑ),i+j+d+l=0, 0,i+j+d+l0,
    $
    (2.10)
    $ G2,2ijdl(ϑ)={φ(ϑ),ij+dl=0, 0,ij+dl0,
    $
    (2.11)
    $ G3,1ijdl(ϑ)=G1,3ijdl(ϑ)={φ(ϑ),i+j+dl=0, 0,i+j+dl0.
    $
    (2.12)

    Now We are going to study the reducibility of the Hamiltonian (2.8). To make this reducibility, we introduce the notations and spaces as follows.

    For given $ \sigma_0 > 0, \Gamma > 0, 0 < \rho < 1 $, define

    $ \sigma_\nu = \sigma_0\left(1-\frac{\sum_{\hat{j} = 1}^{\nu}{\hat{j}}^{-2}}{2\sum_{{\hat{j}} = 1}^{\infty}{\hat{j}}^{-2}}\right), \quad\nu = 1, 2, \ldots $
    $ \Gamma_\nu = \Gamma\left(1+C\sum\limits_{{\hat{j}} = \nu}^{+\infty}\varepsilon_{\hat{j}}^\rho\right), \quad\nu = 0, 1, \ldots $

    where $ C $ is a constant. Let

    $ \varepsilon_0 = \varepsilon, \quad \varepsilon_{\nu} = \varepsilon^{(1+\rho)^{\nu}}, \quad \nu = 1, 2, \ldots $
    $ \Theta(\sigma_\nu) = \left\{\vartheta = (\vartheta_1, \ldots, \vartheta_{m})\in \Bbb{C}^{m}/2\pi\Bbb{Z}^{m}:|{\rm Im} \vartheta_{\hat{j}}| \lt \sigma_\nu, {\hat{j}} = 1, 2, \ldots, m\right\}, \nu = 0, 1, 2, \ldots. $

    and denote

    $ Da,sν={(ϑ,J,q,ˉq)Cm/2πZm×Cm×la,s×la,s:|Imϑ|<σν,|J|<Γ2ν,qa,s<Γν,ˉqa,s<Γν}ν=0,1,2,,
    $
    $ Da,s={(ϑ,J,q,ˉq)Cm/2πZm×Cm×la,s×la,s:|Imϑ|<σ0/2,|J|<Γ2,qa,s<Γ,ˉqa,s<Γ},
    $

    where $ |\cdot| $ stands for the sup-norm of complex vectors and $ l^{a, s} $ stands for complex Hilbert space. For arbitrary four order Whitney smooth function $ F(\omega) $ on closed bounded set $ R^* $, let

    $ \|F\|^*_{R^*} = \sup\limits_{\omega\in R^*}\sum\limits_{0\leq \hat{j}\leq 4}|\partial^{\hat{j}}_\omega F|. $

    Let $ F(\omega) $ is a vector function from $ R^* $ to $ l^{a, s}(or \Bbb{R}^{m_1\times m_2}) $ which is four order whitney smooth on $ R^* $, we denote

    $ \|F\|^*_{a, s, R^*} = \|(\|F_i(\omega)\|^*_{R^*})_i\|_{a, s} \quad\left(or \|F\|^*_{R^*} = \max\limits_{1\leq i_1\leq m_1}\sum\limits_{1\leq i_2\leq m_2}(\|F_{i_1i_2}(\omega)\|^*_{R^*})\right). $

    Given $ \sigma_{D^{a, s}} > 0, \Gamma_{D^{a, s}} > 0, $ we define

    $ Da,s={(ϑ,J,q,ˉq)Cm/2πZm×Cm×la,s×la,s:|Imϑ|<σDa,s,|J|<Γ2Da,s,qa,s<ΓDa,s,ˉqa,s<ΓDa,s}.
    $

    If $ \tilde w = (\vartheta, J, q, \bar{q})\in D^{a, s} $, we define the weighted norm for $ \tilde w $ by

    $ |\tilde w|_{a, s} = |\vartheta|+\frac{1}{\Gamma_{D^{a, s}}^2}|J|+\frac{1}{\Gamma_{D^{a, s}}}\|q\|_{a, s} +\frac{1}{\Gamma_{D^{a, s}}}\|\bar{q}\|_{a, s}. $

    Let $ F(\eta; \omega) $ is a function from $ D^{a, s}\times R^* $ to $ l^{a, s}(or \Bbb{R}^{m_1\times m_2}) $ which is four order whitney smooth on $ \omega $, we denote

    $ \|F\|^*_{a, s, D^{a, s}\times R^*} = \sup\limits_{\eta\in D^{a, s}}\|F\|^*_{a, s, R^*} \quad\left(or \|F\|^*_{D^{a, s}\times R^*} = \sup\limits_{\eta\in D^{a, s}}\|F\|^*_{R^*}\right). $

    For given function $ F $, associate a hamiltonian vector field denoted as $ X_F = \{F_J, -F_\vartheta, {\rm i} F_{\bar{q}}, -{\rm i} F_q\} $, we define the weighted norm for $ X_F $ by

    $ |XF|a,s,Da,s×R=FJDa,s×R+1Γ2Da,sFϑDa,s×R+1ΓDa,sFˉza,s,Da,s×R+1ΓDa,sFza,s,Da,s×R.
    $

    Assume $ w = (q, \bar{q})\in l^{a, s}\times l^{a, s} $ is a doubly infinite complex sequence, and $ A(\eta; \omega) $ be an operator from $ l^{a, s}\times l^{a, s} $ to $ l^{a, s}\times l^{a, s} $ for $ (\eta; \omega)\in D^{a, s}\times R^*, $ then we denote

    $ \|w\|_{a, s} = \|q\|_{a, s}+\|\bar{q}\|_{a, s}, $
    $ {\|A(\eta;\omega)\|}_{a, s, D^{a, s}\times R^*}^{\diamond} = \sup\limits_{(\eta;\omega)\in D^{a, s}\times R^*}\sup\limits_{w\neq0}\frac{\|A(\eta;\omega)w\|_{a, {s}}}{\|w\|_{a, s}}, $
    $ \|A(\eta;\omega)\|^{\star}_{a, s, D^{a, s}\times R^*} = \sum\limits_{0\leq {\hat{j}}\leq 4}\|\partial^{\hat{j}}_\omega A\|^{\diamond}_{a, s, D^{a, s}\times R^*}. $

    Assume $ B(\eta; \omega) $ be an operator from $ D^{a, s} $ to $ D^{a, s} $ for $ (\eta; \omega)\in D^{a, s}\times R^*, $ then we denote

    $ |B(\eta;\omega)|^{\diamond}_{a, s, D^{a, s}\times R^*} = \sup\limits_{(\eta;\omega)\in D^{a, s}\times R^*}\sup\limits_{\tilde w\neq0}\frac{|B(\eta;\omega)\tilde w|_{a, {s}}}{|\tilde w|_{a, s}}, $
    $ |B(\eta;\omega)|^{\star}_{a, s, D^{a, s}\times R^*} = \sum\limits_{0\leq {\hat{j}}\leq 4}|\partial^{\hat{j}}_\omega B|^{\diamond}_{a, s, D^{a, s}\times R^*}. $

    Reducibility of the autonomous Hamiltonian equation corresponding to the Hamiltonian (2.8) will be proved by an KAM iteration which involves an infinite sequence of change of variables. By utilizing the measure estimation of infinitely many small divisors, we will prove that the composition of these infinite many change of variables converges to a symplectic change of coordinates, which can reduce the Hamiltonian equation corresponding to the Hamiltonian (2.8) to constant coefficients.

    At the $ \nu- $step of the iteration, we consider Hamiltonian function of the form

    $ Hν=Hν+Pν
    $
    (3.1)

    where

    $ H^\ast_{\nu}: = \lt \omega, J \gt +\sum\limits_{j\in\mathbb{Z}^2_{odd}}{\lambda}_{j, \nu}q_j\bar{q_j}, $
    $ P_{\nu}: = \varepsilon_{\nu}\sum\limits_{j\in\mathbb{Z}^2_{odd}}[\eta_{j, \nu, 2, 0}(\vartheta, \omega) q_j{q}_{-j}+\eta_{j, \nu, 1, 1}(\vartheta, \omega) q_j\bar{q}_j+\eta_{j, \nu, 0, 2}(\vartheta, \omega) {\bar{q}}_j\bar{q}_{-j}] $

    where $ \eta_{j, \nu, 2, 0} = \eta_{-j, \nu, 2, 0} $, $ \eta_{j, \nu, 0, 2} = \eta_{-j, \nu, 0, 2} $, $ \eta_{j, \nu, n_1, n_2}(\vartheta, \omega) = \sum_{k\in {\Bbb Z}^{m}}\eta_{j, \nu, k, n_1, n_2}(\omega)e^{{\rm i} < k, \vartheta > } $ when $ n_1, n_2 $ $ \in \mathbb{N}, n_1+n_2 = 2 $,

    $ ηj,ν,n1,n2=λ1jηj,ν,n1,n2,ηj,ν,n1,n2Θ(σν)×RνC,n1,n2N,n1+n2=2,
    $
    (3.2)

    and

    $ λj,0=λj,λj,ν=λj+ν1ˆs=0μj,ν,ˆs,
    $
    (3.3)

    with

    $ μj,ν,0=ε2λj[ϕ],μj,ν,ˆs=λ1jεˆsμj,ν,ˆs,μj,ν,ˆsRνC,ˆs=1,2,,ν.
    $
    (3.4)

    We're going to construct a symplectic transformation

    $ T_{\nu}: D_{\nu+1}^{a, s}\times R_{\nu+1}\longmapsto D_{\nu}^{a, s}\times R_{\nu} $

    and

    $ Hν+1=HνTν=Hν+1+Pν+1
    $
    (3.5)

    satisfies all the above iterative assumptions (3.1)–(3.4) marked $ \nu+1 $ on $ D_{\nu+1}^{a, s}\times R_{\nu}. $

    We assume that there is a constant $ C_{*} $ and a closed set $ R_{\nu} $ satisfies

    $ measRνϱm(1γ3γνˆi=0(δ(ˆi)+ˆi)23+ˆi=0(δ(ˆi)+ˆi)2)
    $
    (3.6)

    and for arbitrary $ k\in\mathbb{Z}^m, j\in\mathbb{Z}^2_{odd}, \omega\in R_{\nu}, $

    $ |<k,ω>±(λj,ν+λj,ν)|ϱC(δ(ν)+ν2)(|k|+δ(|k|))m+1,
    $
    (3.7)

    where $ \delta(x) = 1 $ as $ x = 0 $ and $ \delta(x) = 0 $ as $ x\neq0. $ We put its proof in the Lemma 4.1 below.

    Next we will construct a parameter set $ R_{\nu+1}\subset R_{\nu} $ and a symplectic coordinate transformation $ T_{\nu} $ so that the transformed Hamiltonian $ H_{\nu+1} = H^*_{\nu+1}+P_{\nu+1} $ satisfies the above iteration assumptions with new parameters $ \varepsilon_{\nu+1}, \sigma_{\nu+1}, \Gamma_{\nu+1} $ and with $ \omega\in R_{\nu+1} $.

    Let $ X_{{\Psi}_\nu} $ be the Hamiltonian vector field for a Hamiltonian $ {\Psi}_\nu: $

    $ {\Psi}_\nu = \varepsilon_\nu \Upsilon_\nu = \varepsilon_\nu\sum\limits_{j\in{\mathbb{Z}}^2_{odd}} [\varpi_{j, \nu, 2, 0}(\vartheta;\omega)q_j{q}_{-j}+\varpi_{j, \nu, 1, 1}(\vartheta;\omega)q_j\bar{q}_j +\varpi_{j, \nu, 0, 2}(\vartheta;\omega){\bar q}_j\bar{q}_{-j}] $

    where

    $ \varpi_{j, \nu, 2, 0}(\vartheta;\omega) = \varpi_{-j, \nu, 2, 0}(\vartheta;\omega), \quad \varpi_{j, \nu, 0, 2}(\vartheta;\omega) = \varpi_{-j, \nu, 0, 2}(\vartheta;\omega), $
    $ ϖj,ν,n1,n2(ϑ;ω)=kZmϖj,ν,k,n1,n2(ω)ei<k,ϑ>,n1,n2N,n1+n2=2
    $
    (3.8)

    and $ [\varpi_{j, \nu, 1, 1}] = 0. $ Let $ X_{{\Psi}_\nu}^t $ be its time-t map.

    Let $ T_{\nu} = X_{{\Psi}_\nu}^1 $ where $ X_{{\Psi}_\nu}^1 $ denote the time-one map of the Hamiltonian vector field $ X_{{\Psi}_\nu}, $ then the system (3.1)$ (\nu) $ is transformed into the form (3.1)$ (\nu+1) $ and satisfies (3.2)$ (\nu+1) $, (3.3)$ (\nu+1) $ and (3.4)$ (\nu+1) $. More precisely, the new Hamiltonian $ H_{\nu+1} $ can be written as follows by second order Taylor formula

    $ Hν+1:=HνX1Ψν=Hν+Pν+{Hν,Ψν}+εν10(1t){{Hν,Ψν},Υν}XtΨνdt+εν10{Pν,Υν}XtΨνdt.
    $
    (3.9)

    The Hamiltonian $ \Psi_\nu $ is satisfies the homological equation

    $ P_{\nu}+\{H^*_{\nu}, {\Psi}_\nu\} = \varepsilon_\nu\sum\limits_{j\in{\mathbb{Z}}^2_{odd}}[\eta_{j, \nu, 1, 1}]q_j\bar{q}_j, $

    which is equivalent to

    $ {<ω,ϑϖj,ν,1,1(ϑ;ω)>+ηj,ν,1,1(ϑ;ω)=[ηj,ν,1,1],i(λj,ν+λj,ν)ϖj,ν,0,2(ϑ;ω)<ω,ϑϖj,ν,0,2(ϑ;ω)>+ηj,ν,0,2(ϑ;ω)=0,i(λj,ν+λj,ν)ϖj,ν,2,0(ϑ;ω)<ω,ϑϖj,ν,2,0(ϑ;ω)>+ηj,ν,2,0(ϑ;ω)=0.
    $
    (3.10)

    Let's inserting (3.8) into (3.10)

    $ \left\{ i<k,ω>ϖj,ν,k,1,1(ω)=ηj,ν,k,1,1(ω),k0,i(<k,ω>+λj,ν+λj,ν)ϖj,ν,k,2,0(ω)=ηj,ν,k,2,0(ω),i(<k,ω>λj,νλj,ν)ϖj,ν,k,0,2(ω)=ηj,ν,k,0,2(ω).
    \right. $

    Thus

    $ {ϖj,ν,1,1(ϑ;ω)=0kZmηj,ν,k,1,1(ω)i<k,ω>ei<k,ϑ>,ϖj,ν,2,0(ϑ;ω)=kZmηj,ν,k,2,0(ω)i(<k,ω>+λj,ν+λj,ν)ei<k,ϑ>,ϖj,ν,0,2(ϑ;ω)=kZmηj,ν,k,0,2(ω)i(<k,ω>λj,νλj,ν)ei<k,ϑ>.
    $
    (3.11)

    Now we're going to estimate $ {\Psi}_\nu $ and $ X_{{\Psi}_\nu}^1 $. By Cauchy's estimate and $ (3.2)(\nu) $

    $ |ηj,ν,k,n1,n2|ηj,ν,n1,n2Θ(σν)×Rνe|k|σνCλ1je|k|σν,n1,n2N,n1+n2=2
    $
    (3.12)

    and

    $ |ˆiωηj,ν,k,n1,n2|ηj,ν,n1,n2Θ(σν)×Rνe|k|σνCλ1je|k|σν,ˆi=1,2,3,4
    $
    (3.13)

    can be obtained. By $ \omega\in R_{\nu} $ and $ (3.7)({\nu}), $

    $ \sup\limits_{(\vartheta;\omega)\in \Theta(\sigma_{\nu+1})\times R_{\nu}}|\varpi_{j, \nu, 1, 1}|\leq CC_*\lambda_j^{-1}\varrho^{-1}\sum\limits_{0\neq k\in {\Bbb Z}^{m}}|k|^{m+1}e^{-\sigma_\nu |k|}e^{\sigma_{\nu+1} |k|} $

    and

    $ \sup\limits_{(\vartheta;\omega)\in \Theta(\sigma_{\nu+1})\times R_{\nu}}|\varpi_{j, \nu, n_1, n_2}|\leq CC_*\lambda_j^{-1}\varrho^{-1}(\delta(\nu)+\nu^2)(1+\sum\limits_{0\neq k\in {\Bbb Z}^{m}}|k|^{m+1}e^{-\sigma_\nu |k|}e^{\sigma_{\nu+1} |k|}) $

    for $ n_1 = 0, n_2 = 2 $ or $ n_1 = 2, n_2 = 0 $. According to Lemma 3.3 in [26], for $ (\vartheta; \omega)\in \Theta(\sigma_{\nu+1})\times R_{\nu} $,

    $ |ϖj,ν,1,1|,|ϖj,ν,2,0|,|ϖj,ν,0,2|CCλ1jϱ1(ν+1)4m+4Cλ1j(ν+1)12m+28,
    $
    (3.14)

    where $ C: = CC_*\varrho^{-1}. $ Moreover, in view of $ (3.3)({\nu}) $ and $ (3.4)({\nu}) $,

    $ |ˆiωλj,ν|Cελ1j,ˆi=1,2,3,4.
    $
    (3.15)

    Similarly

    $ |ˆiωϖj,ν,n1,n2|Cλ1j(ν+1)12m+28,ˆi=1,2,3,4,n1,n2N,n1+n2=2.
    $
    (3.16)

    By (3.14) and (3.16), we have

    $ ϖj,ν,n1,n2Θ(σν+1)×RνCλ1j(ν+1)12m+28.
    $
    (3.17)

    Similar to the above discussion, the following estimates can be obtained

    $ ϑϖj,ν,n1,n2Θ(σν+1)×RνCλ1j(ν+1)12m+30,
    $
    (3.18)
    $ ϑϑϖj,ν,n1,n2Θ(σν+1)×RνCλ1j(ν+1)12m+32.
    $
    (3.19)

    Now let's estimate the flow $ X^t_{{\Psi}_\nu}, $ denote

    $ Mj,ν(ϑ;ω)=(ϖj,ν,2,0+ϖj,ν,2,0ϖj,ν,1,1ϖj,ν,1,1ϖj,ν,0,2+ϖj,ν,0,2),J2=i(0110).
    $

    By (3.17)–(3.19),

    $ \|M_{j, \nu}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C\lambda_j^{-1}{(\nu+1)}^{12m+28}, $
    $ \|\partial_\vartheta M_{j, \nu}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C\lambda_j^{-1}{(\nu+1)}^{12m+30}, $
    $ \|\partial_{\vartheta\vartheta} M_{j, \nu}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C\lambda_j^{-1}{(\nu+1)}^{12m+32}. $

    The vector field $ X_{{\Psi}_\nu} $ is as follows

    $ {˙ϑ=0ddt(qjˉqj)=ενJ2Mj,ν(ϑ;ω)(qjˉqj),jZ2odd˙J=ενjZ2odd[ϑϖj,ν,2,0(ϑ;ω)qjqj+ϑϖj,ν,1,1(ϑ;ω)qjˉqj+ϑϖj,ν,0,2(ϑ;ω)ˉqjˉqj].
    $

    The integral from $ 0 $ to $ t $ of the above equation, we have $ X_{{\Psi}_\nu}^t: $

    $ {ϑ=ϑCw(t)=exp(ενJMν(ϑC;ω)t)w(0)J(t)=J(0)+t0ενjZ2oddϑϖj,ν,2,0(ϑC;ω)qj(t)qj(t)dt+t0ενjZ2odd[ϑϖj,ν,1,1(ϑC;ω)qj(t)ˉqj(t)+ϑϖj,ν,0,2(ϑC;ω)ˉqj(t)ˉqj(t)]dt.
    $
    (3.20)

    where $ (\vartheta^\mathcal {C}, J(0), w(0)) $ is the initial value,

    $ J=i(0˜EטE×0),
    $

    and $ M_{\nu}(\vartheta; \omega) $ are the corresponding matrices. According to $ \varepsilon_\nu = \varepsilon^{(1+\rho)^\nu} $, then

    $ |ε1ρν(ν+1)12m+32(Cϱ1)5ν|C,ν=0,1,
    $
    (3.21)

    as $ \varepsilon < 1, $ where $ C $ is an absolute constant. In view of (3.17), for $ \vartheta\in \Theta(\sigma_{\nu+1}) $,

    $ \varepsilon_\nu{\mathcal {J}_2}M_{j, \nu}(\vartheta;\omega ) = \lambda_j^{-1}\varepsilon_\nu{(\nu+1)}^{12m+28}M_{j, \nu}^{*1}(\vartheta;\omega ) = \lambda_j^{-1}\varepsilon_\nu^{\rho}M_{j, \nu}^{*}(\vartheta;\omega), \|M_{j, \nu}^*(\vartheta;\omega)\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C, $

    then

    $ ενJMν(ϑ;ω)a,s,Θ(σν+1)×RνCερν.
    $
    (3.22)

    In view of (3.18),

    $ ϑ(ενJ2Mj,ν(ϑ;ω)(qjˉqj))=ερνϑ(Mj,ν(ϑ;ω)(qjˉqj))
    $

    where

    $ \left\|\partial_\vartheta \left(M_{j, \nu}^{*}(\vartheta;\omega )\cdot\big(qjˉqj
    \big)\right)\right\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C(|q_j|+|{\bar q}_{-j}|) $

    then

    $ ϑ(ενJMν(ϑ;ω)w)Da,sν+1×RνCερνΓν+1.
    $
    (3.23)

    By (3.22) and (3.23),

    $ exp(ενJMν(ϑ;ω)t)=Id+gν(ϑ;ω,t)
    $
    (3.24)

    and for $ t\in[0, 1] $,

    $ gν(ϑ;ω,t)a,s,Θ(σν+1)×RνCερν,ϑ(gν(ϑ;ω,t)w)Da,sν+1×RνCερνΓν+1.
    $
    (3.25)

    Let's define $ J(t) $ in (3.20) as

    $ J(t)=J+gJ,ν(ϑ,w;ω,t).
    $
    (3.26)

    By (3.18), (3.25) and (3.21),

    $ gJ,ν(ϑ,w;ω,t)Da,sν+1×RνCερνΓ2ν,t[0,1],
    $
    (3.27)

    and for any $ w'\in l^{a, s}\times l^{a, s} $,

    $ w(gJ,ν(ϑ,w;ω,t))wDa,sν+1×RνCερνΓνwa,s,t[0,1].
    $
    (3.28)

    By (3.19), (3.25) and (3.21),

    $ ϑ(gJ,ν(ϑ,w;ω,t))Da,sν+1×RνCερνΓ2ν,t[0,1].
    $
    (3.29)

    Denote

    $ XtΨν=ΠZ+gν(ω,t):Da,sν+1×Rν+1Da,sν
    $
    (3.30)

    from (3.20), (3.24) and (3.26),

    $ {ΠϑXtΨν(ϑ,J,w)=ϑ:Da,sν+1×Rν+1Θ(σν),ΠwXtΨν(ϑ,J,w)=(Id+gν(ϑ;ω,t))w:Da,sν+1×Rν+1la,s×la,sΠJXtFν(ϑ,J,w)=J+gJ,ν(ϑ,w;ω,t):Da,sν+1×Rν+1Cm
    $
    (3.31)

    where $ \Pi_\mathcal {Z}, \Pi_\omega $ denote the projectors

    $ \Pi_\mathcal {Z}:\mathcal {Z}^{a, s}\times R_{0}\longmapsto\mathcal {Z}^{a, s}, \quad\Pi_\omega:\mathcal {Z}^{a, s}\times R_{0}\longmapsto R_{0}, $

    and $ \Pi_\vartheta, \Pi_J, \Pi_w $ denote the projectors of $ \mathcal {Z}^{a, s} = \mathbb{C}^m/2\pi\mathbb{Z}^m\times\mathbb{C}^m\times l^{a, s}\times l^{a, s} $ on the first, second and third factor respectively. According to the first equation of (3.25), (3.27) and (3.31),

    $ |XtΨνΠZ|a,s,Da,sν+1×Rν+1Cερν.
    $
    (3.32)

    By (3.31), we have

    $ DXtΨν=(Idm×m00ϑ(gν(ϑ;ω,t)w)Id×+gν(ϑ;ω,t)0ϑ(gJ,ν(ϑ,w;ω,t))w(gJ,ν(ϑ,w;ω,t))Idm×m)
    $

    where $ D $ is the differentiation operator with respect to $ (\vartheta, w, J). $ In view of (3.25), (3.28) and (3.29), for $ \tilde w = (\vartheta', w', J'), (\vartheta, w, J)\in D^{a, s}_{\nu+1}, $

    $ |(DXtΨνId)˜w|a,sCερν|˜w|a,s.
    $

    Thus

    $ |DX_{{\Psi}_\nu}^t - Id|^{\diamond}_{a, s, D_{\nu+1}^{a, s}\times R_{\nu+1}} \lt C\varepsilon_\nu^\rho. $

    Similarly

    $ |\partial_\omega^{\hat{i}}(DX_{{\Psi}_\nu}^t - Id)|^{\diamond}_{a, s, D_{\nu+1}^{a, s}\times R_{\nu+1}} \lt C\varepsilon_\nu^\rho, \quad {\hat{i}} = 1, 2, 3, 4 $

    and

    $ |DXtΨνId|a,s,Da,sν+1×Rν+1<Cερν.
    $
    (3.33)

    Let

    $ {\lambda }_{j, \nu+1} = {\lambda }_{j, \nu}+\varepsilon_\nu[\eta_{j, \nu, 1, 1}], $

    then by $ (3.2)(\nu) $, it is obvious that $ {\lambda }_{j, \nu+1} $ satisfies the conditions $ (3.3)(\nu+1) $ and $ (3.4)(\nu+1) $.

    Now let's estimate the smaller terms of (3.9). Notice that those terms are polynomials of $ q_j {q}_{-j} $, $ q_j \bar{q}_j $ and $ \bar{q}_j {\bar{q}}_{-j}. $ So we can write it

    $ εν10(1t){{H2ν,Ψν},Υν}XtΨνdt+εν10{Pν,Υν}XtΨνdt=ε2νjZ2odd[˜ηj,ν+1,2,0(ϑ;ω)qjqj+˜ηj,ν+1,1,1(ϑ;ω)qjˉqj+˜ηj,ν+1,0,2(ϑ;ω)ˉqjˉqj],
    $

    where from

    $ \{H^*_{\nu}, {\Psi}_\nu\} = \varepsilon_\nu\sum\limits_{j\in\mathbb{Z}^2_{odd}}[\eta_{j, \nu, 1, 1}]q_j\bar{q}_j-P_{\nu}, $

    we know that $ {{\tilde{\eta}}_{j, \nu+1, n_1, n_2}(\vartheta; \omega)} $ is a linear combination of the product of $ \varpi_{j, \nu, n_1, n_2} $ and $ {\eta_{j, \nu, m_1, m_2}} $. By (3.17) and $ (3.2)(\nu) $,

    $ \varpi_{j, \nu, n_1, n_2}(\vartheta;\omega) = \lambda_j^{-1}{(\nu+1)}^{12m+28}\varpi^*_{j, \nu, n_1, n_2}(\vartheta;\omega), \quad \|\varpi^*_{j, \nu, n_1, n_2}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C $

    and

    $ \eta_{j, \nu, n_1, n_2}(\vartheta;\omega) = \lambda_j^{-1}\eta_{j, \nu, n_1, n_2}^{*}(\vartheta;\omega), \quad \|\eta_{j, \nu, n_1, n_2}^{*}(\vartheta;\omega)\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C $

    respectively. Thereby, we have

    $ \tilde\eta_{j, \nu+1, n_1, n_2}(\vartheta;\omega) = \lambda_j^{-1}{(\nu+1)}^{12m+28}\tilde\eta^*_{j, \nu+1, n_1, n_2}(\vartheta;\omega), \quad \|\tilde\eta_{j, \nu+1, n_1, n_2}^{*}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C. $

    According to $ \varepsilon_\nu^{1-\rho}{(\nu+1)}^{12m+28}\leq1 $ as $ \varepsilon < 1, $ then

    $ \eta_{j, \nu+1, n_1, n_2}: = \varepsilon_\nu^{1-\rho}\tilde{\eta}_{j, \nu+1, n_1, n_2} = \lambda_j^{-1}\eta_{j, \nu+1, n_1, n_2}^{*}, \quad\|\eta_{j, \nu+1, n_1, n_2}^{*}\|^*_{\Theta(\sigma_{\nu+1})\times R_{\nu}}\leq C. $

    From $ \varepsilon_\nu^{2-(1-\rho)} = \varepsilon_{\nu+1}, $ we have $ (3.1)(\nu+1) $ is defined in $ D_{\nu+1}^{a, s} $ and $ {\lambda}_{j, \nu+1} $ satisfies $ (3.3)(\nu+1), (3.4)(\nu+1) $ and $ {\eta_{j, \nu+1, n_1, n_2}} $ satisfies $ (3.2)(\nu+1) $.

    The reducibility of the linear Hamiltonian systems can be summarized as follows.

    Theorem 3.1. Given $ \sigma_0 > 0, $ $ 0 < \gamma < 1, 0 < \rho < 1. $ Then there is a $ \varepsilon^*(\gamma) > 0 $ such that for any $ 0 < \varepsilon < \varepsilon^*(\gamma) $, there exists a set $ \underline { R}\subset [\varrho, 2\varrho]^{m}, \varrho > 0 $ with $ \rm meas\underline R\geq(1-\frac{2\gamma}{3})\varrho^m $ and a symplectic transformation $ \Sigma_\infty^0 $ defined on $ D^{a}_\infty\times\underline R $ changes the Hamiltonian $ (\rm {2.8}) $ into

    $ \bar{H}\circ \Sigma_\infty^0 = \lt \omega, J \gt +\sum\limits_{j\in\mathbb{Z}^2_{odd}}\mu_j|{q}_j|^2, $

    where

    $ \mu_j = \lambda_{j}+\frac{\varepsilon}{2\lambda_{j}} [\phi]+\frac{1}{\lambda_{j}}\varepsilon^{(1+\rho)}\mu_j^*, \quad \|\mu_j^*\|_{\underline R}^*\leq C, \quad j\in\mathbb{Z}^2_{odd}. $

    Moreover, there exists a constant $ C > 0 $ such that

    $ |\Sigma_\infty^0-id|^*_{a, s, D^{a, s}_\infty\times\underline R}\leq C\varepsilon^{\rho}, $

    where $ id $ is identity mapping.

    Proof. Let $ \eta_{j, 0, 2, 0} = \eta_{j, 0, 0, 2} = \frac{1}{4\lambda_j}\varphi(\vartheta) $, $ \eta_{j, 0, 1, 1} = \frac{1}{2\lambda_j}\varphi(\vartheta) $, we have that $ H_{0} = \bar{ H} $ and $ \eta_{j, 0, n_1, n_2} = \lambda_j^{-1}\eta_{j, 0, n_1, n_2}^{*}, \|\eta_{j, 0, n_1, n_2}^{*}\|^*_{\Theta(\sigma_0)\times R_{0}}\leq C, n_1, n_2\in\mathbb{N}, n_1+n_2 = 2 $ where $ C $ is an absolute constant. i.e., the assumptions (3.1), (3.2), (3.3), (3.4) of the iteration are satisfied when $ \nu = 0 $.

    We obtain the following sequences:

    $ R_\infty\subset\cdots\subset R_{\nu}\subset\cdots\subset R_1\subset R_{0}\subset {[\varrho, 2\varrho]}^m, $
    $ D_{0}^{a, s}\supset D_{1}^{a, s}\supset\cdots\supset D_{\nu}^{a, s}\supset\cdots\supset D^{a, s}_\infty. $

    From (3.30), (3.32) and (3.33), denote

    $ Tν=X1Fν=ΠZ+gν(ω,1):Da,sν+1×Rν+1Da,sν
    $
    (3.34)

    then

    $ |TνΠZ|a,s,Da,sν+1×Rν+1Cερν,|DTνId|a,s,Da,sν+1×Rν+1Cερν.
    $
    (3.35)

    Similar to [27], it can be seen that the limiting transformation $ T_0\circ T_1\circ\cdots $ converges to a symplectic coordinate transformation $ \Sigma_\infty^0. $ And there exists an absolute constant $ C > 0 $ independent of $ j $ such that

    $ |Σ0id|a,s,Da,s×R_Cερ,
    $
    (3.36)

    with $ id $ is identity mapping.

    In view of the Hamiltonian (2.8) satisfies the conditions $ (3.1)-(3.4), (3.6), (3.7) $ with $ \nu = 0, $ the above iterative procedure can run repeatedly. Thus the transformation $ \Sigma_\infty^0 $ changes the Hamiltonian $ (\rm {2.8}) $ to

    $ ˉHΣ0=<ω,J>+jZ2oddμj|qj|2,
    $
    (3.37)

    with

    $ μj=λj+ε2λj[ϕ]+1λjε(1+ρ)μj,μjR_C,jZ2odd.
    $
    (3.38)

    We present the following lemma which has been used in the above iterative procedure. The proof is similar to Lemma 3.1 in [15].

    Lemma 3.1. For any given $ k\in\Bbb{Z}^m, j\in\mathbb{Z}^2_{odd}, \hat{l}\in\mathbb{N}, $ denote

    $ \mathcal{I}_k^1 = \left\{\omega\in[\varrho, 2\varrho]^m:| \lt k, \omega \gt |\leq\frac{\varrho}{C_*|k|^{m+1}}\right\}, \quad k\neq 0, $
    $ I2,+k,j,ˆl={ω[ϱ,2ϱ]m:|<k,ω>+λj,ˆl+λj,ˆl|<ϱC(δ(ˆl)+ˆl2)(|k|+δ(|k|))m+1},
    $
    $ I2,k,j,ˆl={ω[ϱ,2ϱ]m:|<k,ω>λj,ˆlλj,ˆl|<ϱC(δ(ˆl)+ˆl2)(|k|+δ(|k|))m+1},
    $
    $ R1=0kZmI1k,R2ˆl=jZ2oddkZm(I2,+k,j,ˆlI2,k,j,ˆl)
    $

    where $ \delta(x) = 1 $ as $ x = 0 $ and $ \delta(x) = 0 $ as $ x\neq0. $ Then the sets $ R^1, R_{\hat{l}}^2 $ is measurable and

    $ measR113γϱm,measR2ˆlγ(δ(ˆl)+ˆl)23+ˆi=0(δ(ˆi)+ˆi)2ϱm
    $
    (3.39)

    if $ C_*\gg1 $ large enough.

    Let

    $ R00=[ϱ,2ϱ]mR1,R0=R00R20,Rˆl+1=RˆlR2ˆl+1,ˆl=0,1,.
    $
    (3.40)

    Then we have $ (3.6) $ and $ (3.7) $. Denote

    $ R_=ˆl=1Rˆl
    $
    (3.41)

    then by $ (3.6) $,

    $ measR_>(12γ3)ϱm.
    $
    (3.42)

    In view of the symplectic coordinate transformation $ \Sigma_\infty^0 $ is linear, and (3.36), then

    $ q_j\circ \Sigma_\infty^0 = q_j+\lambda_j^{-1}\varepsilon^{\rho}\tilde g_{j, 1, \infty}^*(\vartheta;\omega)q_j +\lambda_j^{-1}\varepsilon^{\rho}\tilde g_{j, 2, \infty}^*(\vartheta;\omega){\bar{q}}_{-j} $

    where

    $ \|\tilde g_{j, \hat{l}, \infty}^*(\vartheta;\omega)\|^*_{\Theta(\sigma_0/2)\times\underline R}\leq C, \quad \hat{l} = 1, 2. $

    Thus from (3.37), the Hamiltonian (2.8) is transformed into by $ \Sigma_\infty^0 $

    $ H00:=ˉHΣ0=<ω,J>+jZ2oddμjqjˉqj,
    $
    (3.43)

    and the Hamiltonian (2.9) is transformed into

    $ ˜G4=G4Σ0=332π2ij+dl=0i,j,d,lZ2odd1λiλjλdλl˜G2,2ijdl(ϑ;ω)qiˉqjqdˉql+164π2i+j+d+l=0i,j,d,lZ2odd1λiλjλdλl(˜G4,0ijdl(ϑ;ω)qiqjqdql+˜G0,4ijdl(ϑ;ω)ˉqiˉqjˉqdˉql)+116π2i+j+dl=0i,j,d,lZ2odd1λiλjλdλl(˜G3,1ijdl(ϑ;ω)qiqjqdˉql+˜G1,3ijdl(ϑ;ω)ˉqiˉqjˉqdql)
    $
    (3.44)

    where

    $ ˜Gn1,n2ijdl(ϑ;ω)=Gn1,n2ijdl(ϑ)(1+ερGn1,n2,ijdl(ϑ;ω)min(|i|2,|j|2,|d|2,|l|2)),Gn1,n2,ijdl(ϑ;ω)Θ(σ0/2)×R_C,
    $
    (3.45)

    with $ n_1, n_2\in\mathbb{N}, n_1+n_2 = 4, n_1, n_2 = 0, 1, 2, 3, 4 $.

    This means that the transformation $ \Sigma_\infty^0 $ changes the Hamiltonian (2.7) into

    $ H=H00+ε˜G4.
    $
    (3.46)

    The following Lemma gives a regularity result, the proof is similar to [13] and is omitted.

    Lemma 3.2. For $ a\geq0 $ and $ s > 0 $, the gradients $ \tilde{G}_q^{4}, \tilde{G}_{\bar q}^{4} $ are real analytic as maps from some neighborhood of origin in $ l^{a, s}\times l^{a, s} $ into $ l^{a, s} $ with $ \|\tilde{G}_q^{4}\|_{a, s} = O(\|q\|^3_{a, s}) $, $ \|\tilde{G}_{\bar q}^{4}\|_{a, s} = O(\|q\|^3_{a, s}) $.

    As in [13], Let $ S $ is an admissible set. We define $ \mathbb{Z}_*^2 = \mathbb{Z}^2_{odd}\setminus S $. For simplicity, we define the following three sets:

    $ S1={(i,j,d,l)(Z2odd)4:ij+dl=0,|i|2|j|2+|d|2|l|20,#(S{i,j,d,l})2}
    $
    (4.1)

    and

    $ S2={(i,j,d,l)(Z2odd)4:i+j+d+l=0,|i|2+|j|2+|d|2+|l|20,#(S{i,j,d,l})2}
    $
    (4.2)
    $ S3={(i,j,d,l)(Z2odd)4:i+j+dl=0,|i|2+|j|2+|d|2|l|20,#(S{i,j,d,l})2.}.
    $
    (4.3)

    Obviously, the set

    $ {(i,j,d,l)(Z2odd)4:i+j+d+l=0,|i|2+|j|2+|d|2+|l|2=0,}
    $

    is empty. Similar to [13], the set

    $ {(i,j,d,l)(Z2odd)4:i+j+dl=0,|i|2+|j|2+|d|2|l|2=0,}
    $

    is empty.

    For Proposition 4.1, we give the following lemma that will be proved in the "Appendix".

    Lemma 4.1. Given $ \varrho > 0, 0 < \gamma < 1, $ and $ C_* $ large enough, $ \varepsilon $ small enough, then there is a subset $ \overline R\subset{[\varrho, 2\varrho]}^m $ with

    $ meas¯R>(1γ3)ϱm
    $
    (4.4)

    so that the following statements hold:

    $ \rm(i) $ If $ (i, j, d, l)\in S_1 $ or $ i-j+d-l = 0, |i|^2-|j|^2+|d|^2-|l|^2 = 0, \#(S\cap\{i, j, d, l\}) = 2 $ and $ k\neq 0 $, then for any $ \omega\in\overline R, $

    $ |μiμj+μdμl+<k,ω>|ϱC(|k|+δ(|k|))m+1,kZm;
    $
    (4.5)

    $ \rm(ii) $ If $ (i, j, d, l)\in S_2 $, then for any $ \omega\in\overline R, $

    $ |μi+μj+μd+μl+<k,ω>|ϱC(|k|+δ(|k|))m+1,kZm;
    $
    (4.6)

    $ \rm(iii) $ If $ (i, j, d, l)\in S_3 $, then for any $ \omega\in\overline R, $

    $ |μi+μj+μdμl+<k,ω>|ϱC(|k|+δ(|k|))m+1,kZm;
    $
    (4.7)

    where $ \delta(x) = 1 $ as $ x = 0 $ and $ \delta(x) = 0 $ as $ x\neq0. $

    Let

    $ R = \underline R\cap\overline R, $

    then

    $ {\rm meas} R\geq(1-\gamma)\varrho^m. $

    Next we transform the Hamiltonian (3.46) into some partial Birkhoff form of order four.

    Proposition 4.1. For each admissible set $ S $ there exists a symplectic change of coordinates $ X_F^1 $ that changes the hamiltonian $ H = H_{00}+\varepsilon \tilde{G}^{4} $ with nonlinearity ${\rm(3.44) }$ into

    $ HX1F=N+A+B+ˉB+P,
    $
    (4.8)

    with

    $ N=ε4<ω,J>+ε4jSμjIj+ε4jZ2μj|zj|2+316π2iS1λ2i[˜G2,2iiii]˜ξiIi+38π2i,jS,ij1λiλj[˜G2,2iijj]˜ξiIj+38π2iS,jZ21λiλj[˜G2,2iijj]˜ξi|zj|2
    $
    (4.9)
    $ A=38π2dL11λiλjλdλl[˜G2,2ijdl]˜ξi˜ξjei(θiθj)zdˉzl
    $
    (4.10)
    $ B=38π2dL21λiλjλdλl[˜G2,2dilj]˜ξi˜ξjei(θi+θj)zdzl
    $
    (4.11)
    $ ˉB=38π2dL21λiλjλdλl[˜G2,2idjl]˜ξi˜ξjei(θi+θj)ˉzdˉzl.
    $
    (4.12)
    $ P=O(ε2|I|2+ε2|I|z2a,s+ε|˜ξ|12z3a,s+ε2z4a,s+ε2|˜ξ|3+ε3|˜ξ|52za,s+ε4|˜ξ|2z2a,s+ε5|˜ξ|32z3a,s).
    $
    (4.13)

    Proof. Denote

    $ ˜Gn1,n2ijdl(ϑ,ω)=kZmGn1,n2ijdl,k(ω)ei<k,ϑ>,n1,n2=0,1,2,3,4,n1+n2=4.
    $
    (4.14)

    We find a Hamiltonian

    $ F=332π2iSk01λ2iG2,2iiii,ki<k,ω>ei<k,ϑ>|qi|4+38π2i,jS,ijk01λiλjG2,2iijj,ki<k,ω>ei<k,ϑ>|qi|2|qj|2+38π2iS,jZ2k01λiλjG2,2iijj,ki<k,ω>ei<k,ϑ>|qi|2|qj|2+38π2dL1k01λiλjλdλlG2,2ijdl,ki(μiμj+μdμl+<k,ω>)ei<k,ϑ>qiˉqjqdˉql+38π2dL2k01λiλjλdλlG2,2dilj,ki(μd+μlμiμj+<k,ω>)ei<k,ϑ>ˉqiˉqjqdql+38π2dL2k01λiλjλdλlG2,2idjl,ki(μiμd+μjμl+<k,ω>)ei<k,ϑ>qiqjˉqdˉql+38π2(i,j,d,l)S1kZm1λiλjλdλlG2,2ijdl,ki(μiμj+μdμl+<k,ω>)ei<k,ϑ>qiˉqjqdˉql+164π2(i,j,d,l)S2kZm1λiλjλdλlG4,0ijdl,ki(μi+μj+μd+μl+<k,ω>)ei<k,ϑ>qiqjqdql+164π2(i,j,d,l)S2kZm1λiλjλdλlG0,4ijdl,ki(μiμjμdμl+<k,ω>)ei<k,ϑ>ˉqiˉqjˉqdˉql+116π2(i,j,d,l)S3kZm1λiλjλdλlG3,1ijdl,ki(μi+μj+μdμl+<k,ω>)ei<k,ϑ>qiqjqdˉql+116π2(i,j,d,l)S3kZm1λiλjλdλlG1,3ijdl,ki(μiμjμd+μl+<k,ω>)ei<k,ϑ>ˉqiˉqjˉqdql.
    $
    (4.15)

    Let $ X_{F}^1 $ be the time-1 map of the Hamiltonian vector field of $ \varepsilon F $ and denote variables as follows

    $ q_j = \left\{ qj,jS,zj,jZ2,
    \right. $

    then it satisfies

    $ ˆH=HX1F=H00+ε˜G4+ε{H00,F}+ε2{˜G4,F}+ε210(1t){{H,F},F}XtFdt=<ω,J>+jSμj|qj|2+jZ2μj|zj|2+3ε32π2iS1λ2i[˜G2,2iiii]|qi|4+3ε8π2i,jS,ij1λiλj[˜G2,2iijj]|qi|2|qj|2+3ε8π2iS,jZ21λiλj[˜G2,2iijj]|qi|2|qj|2+3ε8π2dL11λiλjλdλl[˜G2,2ijdl]qiˉqjqdˉql+3ε8π2dL21λiλjλdλl[˜G2,2dilj]ˉqiˉqjqdql+3ε8π2dL21λiλjλdλl[˜G2,2idjl]qiqjˉqdˉql+O(ε|q|z3a,s+εz4a,s+ε2|q|6+ε2|q|5za,s+ε2|q|4z2a,s+ε2|q|3z3a,s).
    $

    Now we introduce the parameter vector $ \tilde{\xi} = (\tilde{\xi}_j)_{j\in S} $ and the action-angle variable by setting

    $ qj=Ij+˜ξjeiθj,ˉqj=Ij+˜ξjeiθj,jS.
    $
    (4.16)

    From the symplectic transformation (4.16), the Hamiltonian $ \widehat{H} $ is changed into

    $ ˆH=<ω,J>+jSμjIj+jZ2μj|zj|2+3ε16π2iS1λ2i[˜G2,2iiii]˜ξiIi+3ε8π2i,jS,ij1λiλj[˜G2,2iijj]˜ξiIj+3ε8π2iS,jZ21λiλj[˜G2,2iijj]˜ξi|zj|2+3ε8π2dL11λiλjλdλl[˜G2,2ijdl]˜ξi˜ξjei(θiθj)zdˉzl+3ε8π2dL21λiλjλdλl[˜G2,2dilj]˜ξi˜ξjei(θi+θj)zdzl+3ε8π2dL21λiλjλdλl[˜G2,2idjl]˜ξi˜ξjei(θi+θj)ˉzdˉzl+O(ε|I|2+ε|I|z2a,s+ε|˜ξ|12z3a,s+εz4a,s+ε2|˜ξ|3+ε2|˜ξ|52za,s+ε2|˜ξ|2z2a,s+ε2|˜ξ|32z3a,s)
    $

    Through scaling variables

    $ \tilde{\xi}\rightarrow\varepsilon^{3}\tilde{\xi}, \quad J\rightarrow\varepsilon^{5}J , \quad I\rightarrow\varepsilon^{5}I , \quad \vartheta\rightarrow\varepsilon^{4}\vartheta, \quad \theta\rightarrow\theta, \quad z\rightarrow\varepsilon^{\frac{5}{2}}z , \quad \bar{z}\rightarrow\varepsilon^{\frac{5}{2}}\bar{z}, $

    and scaling time $ t\rightarrow \varepsilon^{9}t $, the rescaled Hamiltonian can be obtained

    $ H=ε9ˆH(ε3˜ξ;ε9J,ε5I,ϑ,θ,ε52z,ε52ˉz).
    $

    Then $ H $ satisfies the equation (4.8)–(4.13).

    Now let's give the estimates of the perturbation $ P. $ For this purpose, we need to introduce the notations which are taken from [13]. Let $ l^{a, s} $ is now the Hilbert space of all complex sequence $ w = {(\ldots, w_j, \ldots)}_{j\in \mathbb{Z}^2_*} $ with

    $ \|w\|_{a, s} = \sum\limits_{j\in \mathbb{Z}^2_*}|w_j|e^{a|j|}\cdot|j|^s \lt \infty, \quad a \gt 0, s \gt 0. $

    Let $ x = \vartheta\oplus\theta $ with $ \theta = (\theta_j)_{j\in S}, y = J\oplus I, $ $ z = (z_j)_{j\in \mathbb{Z}^2_*} $ and $ \zeta = \omega\oplus (\tilde{\xi}_j)_{j\in S}, $ and let's introduce the phase space

    $ {\mathcal P}^{a, s} = \widehat{{\Bbb T}}^{m+n}\times {\Bbb C}^{m+n}\times l^{a, s}\times l^{a, s}\ni (x, y, z, \bar{z}) $

    where $ \widehat{{\Bbb T}}^{m+n} $ is the complexiation of the usual $ (m+n) $-torus $ {\Bbb T}^{m+n}. $ Let

    $ D_{a, s}(s', r): = \{(x, y, z, \bar{z})\in {\mathcal P}^{a, s}: |{\rm Im}x| \lt s', |y| \lt r^2, \|z\|_{a, s}+\|\bar{z}\|_{a, s} \lt r\}, $

    and

    $ |W|_r = |x|+\frac{1}{r^2}|y|+\frac{1}{r}\|z\|_{a, s}+\frac{1}{r}\|\bar{z}\|_{a, s} $

    for $ W = (x, y, z, \bar{z})\in {\mathcal P}^{a, s} $. Set $ \alpha\equiv(\ldots, \alpha_j, \ldots)_{j\in \mathbb{Z}^2_*} $, $ \beta\equiv(\ldots, \beta_j, \ldots)_{j\in \mathbb{Z}^2_*} $, $ \alpha_j $ and $ \beta_j\in \mathbb{N} $ with finitely many nonzero components of positive integers. The product $ z^\alpha {\bar z}^\beta $ denotes $ \prod_jz_j^{\alpha_j} {\bar z}_j^{\beta_j} $. Let

    $ P(x, y, z, \bar z) = \sum\limits_{\alpha, \beta}P_{\alpha\beta}(x, y)z^\alpha{\bar z}^\beta, $

    where $ P_{\alpha\beta} = \sum_{k, b}P_{kb\alpha\beta} y^b e^{{\rm i} < k, x > } $ are $ C_{W}^4 $ functions in parameter $ \zeta $ in the sense of Whitney. Let

    $ \|P\|_{D_{a, s}(s', r), \underline{\Sigma}}\equiv\sup\limits_{\|z\|_{a, s} \lt r, \|\bar z\|_{a, s} \lt r}\sum\limits_{\alpha, \beta}\|P_{\alpha\beta}\||z^\alpha||\bar z^\beta|, $

    where, if $ P_{\alpha, \beta} = \sum_{k\in \mathbb{Z}^{m+n}, b\in \mathbb{N}^{m+n}}P_{kb\alpha\beta}(\zeta) y^b e^{{\rm i} < k, x > }, $ $ P_{\alpha\beta} $ is short for

    $ \|P_{\alpha\beta}\|\equiv\sum\limits_{k, b}|P_{kb\alpha\beta}|_{\underline{\Sigma}}r^{2|b|}e^{|k|s'}, \quad |P_{kb\alpha\beta}|_{\underline{\Sigma}}\equiv\sup\limits_{\zeta\in\underline{\Sigma}}\sum\limits_{0\leq s\leq 4}|\partial_\zeta^s P_{kb\alpha\beta}| $

    the derivatives with respect to $ \zeta $ are in the sense of Whitney. Denote by $ X_P $ the vector field corresponding the Hamiltonian $ P $ with respect to the symplectic structure $ dx\wedge dy+{\rm i}dz\wedge d\bar{z}, $ namely,

    $ X_P = (\partial_yP, -\partial_xP, {\rm i}\nabla_{\bar{z}}P, -{\rm i}\nabla_zP). $

    Its weighted norm is defined by

    $ XPDa,s(s,r),Σ_PyDa,s(s,r),Σ_+1r2PxDa,s(s,r),Σ_+1r(jZ2PzjDa,s(s,r),Σ_e|j|a+jZ2PˉzjDa,s(s,r),Σ_e|j|a).
    $

    The following Lemma can be obtained and the proof is similar to Lemma 3.2 in [27].

    Lemma 4.2. For given $ s', r > 0 $, the perturbation $ P(x, y, z, \bar{z}; \zeta) $ is real analytic for $ (x, y, z, \bar{z})\in D_{a, s} $ $ (s', r) $ and Lipschitz in the parameters $ \zeta\in \underline{\Sigma}, $ and for any $ \zeta\in \underline{\Sigma} $, its gradients with respect to $ z, \bar{z} $ satisfy

    $ \partial_zP, \quad\partial_{\bar{z}}P\in {\mathcal A}(l^{a, s}, l^{a, s}), $

    and

    $ \|X_P\|_{D_{a, s+1}(s', r), \underline{\Sigma}}\leq C\varepsilon, $

    where $ s' = \sigma_0/3 $ and $ r = \sqrt{\varepsilon}. $

    In order to prove our main result (Theorem 1.1), we need to state a KAM theorem which was proved by Geng-Zhou [13]. Here we recite the theorem from [13].

    Let us consider the perturbations of a family of Hamiltonian

    $ H_{00} = N+\mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}, $

    where

    $ N = \sum\limits_{j\in S}\widehat{\omega}_j(\xi)y_j+\sum\limits_{j\in \mathbb{Z}^2_*}\widehat{ \Omega}_j(\xi)z_j\bar{z}_j $
    $ \mathcal{A} = \sum\limits_{d\in \mathcal{L}_1}a_d(\xi)e^{{\rm i}(x_i-x_j)} z_d\bar z_l $
    $ \mathcal{B} = \sum\limits_{d\in \mathcal{L}_2}a_d(\xi)e^{-{\rm i}(x_i+x_j)} z_dz_l $
    $ \bar{\mathcal{B}} = \sum\limits_{d\in \mathcal{L}_2}\bar a_d(\xi)e^{{\rm i}(x_i+x_j)} \bar z_d\bar z_l. $

    in $ n $-dimensional angle-action coordinates $ (x, y) $ and infinite-dimensional coordinates $ (z, \bar z) $ with symplectic structure

    $ \sum\limits_{j\in S}dx_j\wedge dy_j+{\rm i}\sum\limits_{j\in \mathbb{Z}^2_*} dz_j\wedge d{\bar z}_j. $

    The tangent frequencies $ \widehat{\omega} = (\widehat{\omega}_j)_{j\in S} $ and normal ones $ \widehat{ \Omega} = (\widehat{\Omega}_{j})_{j\in \mathbb{Z}^2_*} $ depend on $ n $ parameters

    $ \xi\in \Pi\subset {\Bbb R}^n, $

    with $ \Pi $ a closed bounded set of positive Lebesgue measure.

    For each $ \xi $ there is an invariant $ n $-torus $ {\mathcal T}_0^n = {\Bbb T}^n\times \{0, 0, 0\} $ with frequencies $ \widehat{\omega}(\xi). $ The aim is to prove the persistence of a large portion of this family of rotational torus under small perturbations $ H = H_{00}+P $ of $ H_{00}. $ To this end the following assumptions are made.

    Assumption A1. (Non-degeneracy): The map $ \xi\mapsto \widehat{\omega}(\xi) $ is a $ C_W^4 $ diffeomorphism between $ \Pi $ and its image.

    Assumption A2. (Asymptotics of normal frequencies):

    $ ˆΩj=ες|j|2+˜Ωj,ς>0
    $

    where $ \widetilde{\Omega}_j $ is a $ C_W^4 $ functions of $ \xi $ and $ \widetilde{\Omega}_j = O(|j|^{-\iota}), \iota > 0 $.

    Assumption A3. (Melnikov conditions): Let $ B_d = \widehat{\Omega}_d $ for $ d\in \mathbb{Z}^2_*\setminus(\mathcal{L}_1\cup\mathcal{L}_2), $ and let

    $ Bd=(ˆΩd+ˆωiadalˆΩl+ˆωj),dL1
    $
    $ Bd=(ˆΩdˆωiadˉalˆΩlˆωj),dL2
    $

    there exist $ \gamma', \tau > 0 $ (here $ I_2 $ is $ 2\times 2 $ identity matrix) such that

    $ | \lt k, \widehat{\omega} \gt |\geq\frac{\gamma'}{|k|^\tau}, \quad k\neq 0, $
    $ |{\rm det}( \lt k, \widehat{\omega} \gt I+B_d)|\geq\frac{\gamma'}{|k|^\tau}, $
    $ |{\rm det}( \lt k, \widehat{\omega} \gt I\pm B_d\otimes I_2\pm I_2\otimes B_{d'})|\geq\frac{\gamma'}{|k|^\tau}, \quad k\neq 0, $

    where $ I $ means the identity matrix.

    Assumption A4. (Regularity): $ \mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}+P $ is real analytic in $ x, y, z, \bar z $ and Whitney smooth in $ \xi $; and we have

    $ \|X_\mathcal{A}\|_{D_{a, s}(s', r), \Pi}+\|X_\mathcal{B}\|_{D_{a, s}(s', r), \Pi}+\|X_{\bar{\mathcal{B}}}\|_{D_{a, s}(s', r), \Pi} \lt 1, \quad\|X_P\|_{D_{a, s}(s', r), \Pi} \lt \varepsilon. $

    Assumption A5. (Zero-momentum condition): The normal form part $ \mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}+P $ satisfies the following condition

    $ A+B+ˉB+P=kZn,bNn,α,β(A+B+ˉB+P)kbαβ(ξ)ybei<k,x>zαˉzβ
    $

    and we have

    $ (\mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}+P)_{kb\alpha\beta}\neq 0\Rightarrow\sum\limits_{\hat{s} = 1}^n k_{\hat{s}} i_{\hat{s}}+\sum\limits_{d\in\mathbb{Z}^2_*}(\alpha_d-\beta_d)d = 0. $

    Now we state the basic KAM theorem which is attributed to Geng-Zhou [13], and as a corollary, we get Theorem 1.1.

    Theorem 5.1. ([13] Theorem 2) Assume that the Hamiltonian $ H = N+\mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}+P $ satisfies $ \rm (\bf{A1})-(\bf{A5}) $. Let $ \gamma' > 0 $ be sufficiently small, then there exists $ \varepsilon > 0 $ and $ a, s > 0 $ such that if $ \|X_P\|_{D_{a, s}(s', r), \Pi} < \varepsilon $, the following holds: there exists a Cantor subset $ \Pi_{\gamma'}\subset\Pi $ with $ {\rm meas}(\Pi\setminus\Pi_{\gamma'}) = O({\gamma'}^{\varsigma}) $ ($ \varsigma $ is a positive constant) and two maps which are analytic in $ x $ and $ C_W^4 $ in $ \xi $,

    $ \Psi:\mathbb{T}^n\times\Pi_{\gamma'}\rightarrow D_{a, s}(s', r), \quad \tilde\omega: \Pi_{\gamma'}\rightarrow\mathbb{R}^n, $

    where $ \Psi $ is $ \frac{\varepsilon}{{(\gamma')}^{16}} $-close to the trivial embedding $ \Psi_0:\mathbb{T}^n\times\Pi\rightarrow\mathbb{T}^n\times\{0, 0, 0\} $ and $ \tilde\omega $ is $ \varepsilon $-close to the unperturbed frequency $ \widehat\omega $, such that for any $ \xi\in\Pi_{\gamma'} $ and $ x\in\mathbb{T}^n $, the curve $ t\rightarrow\Psi(x+\tilde\omega(\xi)t, \xi) $ is a quasi-periodic solution of the Hamiltonian equations governed by $ H = N+\mathcal{A}+\mathcal{B}+\bar{\mathcal{B}}+P. $

    In order to apply the above theorem to our problem, we need to introduce a new parameter $ \bar{\omega} $ below.

    Given $ \omega_-\in { R} $, for $ \omega\in \bar{\bar{ R}}: = \{\omega\in R\mid |\omega-\omega_-|\leq\varepsilon\}, $ we introduce new parameter $ \bar{\omega} $ by

    $ ω=ω+εˉω,ˉω[0,1]m.
    $
    (5.1)

    Then the Hamiltonian (4.8) is changed into

    $ H=<ˆω(ξ),ˆy>+<ˆΩ(ξ),ˆz>+A+B+ˉB+P
    $
    (5.2)

    where $ \widehat{\omega}(\xi) = (\varepsilon^{-4}\omega)\oplus\breve{\omega}, \xi = \bar{\omega}\oplus \tilde{\xi}, \hat{z} = (|z_j|^2)_{j\in\mathbb{Z}^2_*}, \hat{x} = \vartheta\oplus\theta, \hat y = J\oplus I $ with

    $ ˘ωi=ε4μi+316π21λ2i[˜G2,2iiii]˜ξi+38π2jS1λiλj[˜G2,2iijj]˜ξj,iS,
    $
    (5.3)
    $ ˆΩd=ε4μd+38π2jS1λjλd[˜G2,2jjdd]˜ξj,dZ2.
    $
    (5.4)

    Denote $ \breve{\omega}(\xi) = \varepsilon^{-4}\tilde{\alpha}+A\tilde{\xi}, $ $ \widehat{\Omega}(\xi) = \varepsilon^{-4}\tilde{\beta}+B\tilde{\xi}, $ where

    $ \quad\tilde{\alpha} = (\ldots, \mu_i, \ldots)_{i\in S}, \quad\tilde{\beta} = (\ldots, \mu_{d}, \ldots)_{d\in \mathbb{Z}^2_*}, $
    $ A=(˜Gij)i,jS,B=(˜Gij)iZ2,jS,
    $
    (5.5)

    with

    $ ˜Gij=3(2δij)16π2λiλj[˜G2,2iijj],δij={1,i=j,0,ij.
    $
    (5.6)

    Lemma 5.1. Let $ \Pi = [0, 1]^{m+n}, $ for any $ \varepsilon > 0 $ sufficiently small, $ r = \sqrt{\varepsilon} $, then we have

    $ \|X_P\|_{D_{a, s+1}(s', r)\times \Pi}\leq C\varepsilon. $

    The proof of the above lemma is the same as one of Lemma 4.2.

    In this section, we prove that the Hamiltonian (5.2) satisfies the assumptions $ \rm (\bf{A1})-(\bf{A5}) $. In view of (5.5), (5.6), (2.10) and (3.45),

    $ \lim\limits_{\varepsilon\rightarrow0}A = \frac{3[\phi]}{16\pi^2}\left(1λ212λ1λ22λ1λn2λ2λ11λ222λ2λn2λnλ12λnλ21λ2n
    \right)_{n\times n}: = \widetilde{A} = :[\phi]\widehat A, $

    Verifying $ \rm (A1): $ From (5.3),

    $ ˆωξ=(ε3Im0ε3˜αω+ε(A˜ξ)ωA),forξΠ,
    $

    where $ I_m $ denotes the unit $ m\times m $-matrix. It is obvious that $ {\rm det}{\widetilde A}\neq0. $ So $ {\rm det}A\neq0 $ can be obtained by assuming $ 0 < \varepsilon\ll1. $ Thus assumption $ \rm (A1) $ is verified.

    Verifying $ \rm (A2): $ Take $ \varsigma = 4, \iota = 4, $ the proof is obvious.

    Verifying $ \rm (A3): $ For (5.2), $ B_d $ is defined as follows,

    $ B_d = \widehat{\Omega}_d\quad d\in \mathbb{Z}^2_*\setminus(\mathcal{L}_1\cup\mathcal{L}_2), $

    and

    $ Bd=(ˆΩd+˘ωi3[˜G2,2ijdl]˜ξi˜ξj8π2λiλjλdλl3[˜G2,2ijdl]˜ξi˜ξj8π2λiλjλdλlˆΩl+˘ωj),dL1
    $
    $ Bd=(ˆΩd˘ωi3[˜G2,2dilj]˜ξi˜ξj8π2λiλjλdλl3[˜G2,2idjl]˜ξi˜ξj8π2λiλjλdλlˆΩl˘ωj),dL2
    $

    where $ (i, j, l) $ is uniquely determined by $ d $. In the following, we only prove $ \rm (A3) $ for $ {\rm det}[ < k, \widehat\omega(\xi) > I\pm B_d\otimes I_2\pm I_2\otimes B_{d'}] $ which is the most complicated case. For $ k\in{\mathbb{Z}}^{m+n}, b\in{\mathbb{N}}^{m+n} $, denote

    $ k=(k1,k2),b=(b1,b2),k1Zm,k2Zn,b1Nm,b2Nn.
    $

    Let

    $ Z(ξ)=<k,ˆω(ξ)>I±BdI2±I2Bd=(ε4<k1,ω>+ε4<k2,˜α>+<k2,A˜ξ>)I±BdI2±I2Bd.
    $

    We need to prove that $ |{\mathcal Z}(\xi)|\geq \frac{\gamma'}{|k|^\tau}, (k\neq 0). $ For this purpose, we need to divide into the following two cases.

    Case 1. When $ k_1\neq0, $ notice that

    $ \frac{\partial{\left((\varepsilon^{-4} \lt k_2, \tilde{\alpha} \gt + \lt k_2, A\tilde{\xi} \gt )I\pm B_d\otimes I_2\pm I_2\otimes B_{d'}\right )}}{\partial\bar{\omega}} = \varepsilon^{-3}\cdot O(\varepsilon^{1+\rho}), $

    and from

    $ \frac{\partial{ \lt k_1, \varepsilon^{-4}\omega \gt }}{\partial \bar{\omega}}+\varepsilon^{-3}\cdot O(\varepsilon^{1+\rho}) = \varepsilon^{-3} \big(k_1+O(\varepsilon^{1+\rho})\big)\neq0, \quad 0 \lt \varepsilon\ll 1 $

    then all the eigenvalues of $ {\mathcal Z}(\xi) $ are not identically zero.

    Case 2. When $ k_1 = 0, $ then

    $ Z(ξ)=(ε4<k1,ω>+ε4<k2,˜α>+<k2,A˜ξ>)I±BdI2±I2Bd=(ε4<k2,˜α>+<k2,A˜ξ>)I±BdI2±I2Bd,
    $

    We assert that all the eigenvalues of $ {\mathcal Z}(\xi) $ are not identically zero. Here we're just proving it for $ d, d'\in\mathcal{L}_1 $, and everything else is similar. Let

    $ B_d = \varepsilon^{-4} B_d^1+B_d^2, \quad \forall d\in\mathcal{L}_1 $

    where

    $ B1d=(μd+μi00μl+μj),
    $
    $ B2d=(3[˜G2,2iiii]˜ξi16π2λ2i+3κS([˜G2,2κκii]λiλκ+[˜G2,2κκdd]λκλd)˜ξκ8π23[˜G2,2ijdl]˜ξi˜ξj8π2λiλjλdλl3[˜G2,2ijdl]˜ξi˜ξj8π2λiλjλdλl3[˜G2,2jjjj]˜ξj16π2λ2j+3κS([˜G2,2κκjj]λκλj+[˜G2,2κκll]λκλl)˜ξκ8π2).
    $

    Then

    $ Z(ξ)=ε4(<k2,˜α>I±B1dI2±I2B1d)+(<k2,A˜ξ>I±B2dI2±I2B2d).
    $

    In view of $ |i|^2+|d|^2 = |j|^2+|l|^2 $ and (2.10), (3.45),

    $ \lim\limits_{\varepsilon\rightarrow0}B_d^1 = \left(|i|2+|d|200|i|2+|d|2
    \right): = \widehat {B_d^1}, $
    $ limε0B2d=(3[ϕ]˜ξi16π2λ2i+3[ϕ]κS(1λκλi+1λκλd)˜ξκ8π23[ϕ]˜ξi˜ξj8π2λiλjλdλl3[ϕ]˜ξi˜ξj8π2λiλjλdλl3[ϕ]˜ξj16π2λ2j+3[ϕ]κS(1λκλj+1λκλl)˜ξκ8π2):=~B2d:=[ϕ]^B2d,
    $

    Thus,

    $ limε0Z(ξ)=ε4(<k2,ˆα>I±^B1dI2±I2^B1d)+[ϕ](<k2,ˆA˜ξ>I±^B2dI2±I2^B2d)=ε4(<k2,ˆα>±(|i|2+|d|2)±(|i|2+|d|2))I+[ϕ]<ˆAk2±(1λi+1λd)ˆβ±(1λj+1λl)ˆβ,˜ξ>I±(3[ϕ]˜ξi16π2λ2i3[ϕ]˜ξi˜ξj8π2λiλj3[ϕ]˜ξi˜ξj8π2λiλj3[ϕ]˜ξj16π2λ2j)I2±I2(3[ϕ]˜ξi16π2λ2i3[ϕ]˜ξi˜ξj8π2λiλj3[ϕ]˜ξi˜ξj8π2λiλj3[ϕ]˜ξj16π2λ2j):=ˆZ(ξ)
    $

    with $ \hat{\alpha} = (\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_n}) $, $ \hat{\beta} = (\frac{3}{8\pi^2\lambda_{i_1}}, \frac{3}{8\pi^2\lambda_{i_2}}, \ldots, \frac{3}{8\pi^2\lambda_{i_n}}) $ and $ \tilde\xi = (\tilde\xi_{i_1}, \tilde\xi_{i_2}, \ldots, \tilde\xi_{i_n}) $. The eigenvalues of $ \widehat{\mathcal Z}(\xi) $ are

    $ ε4(<k2,ˆα>±(|i|2+|d|2)±(|i|2+|d|2))+[ϕ]<ˆAk2±(1λi+1λd)ˆβ±(1λj+1λl)ˆβ,˜ξ>±3[ϕ]32π2[(˜ξiλ2i˜ξjλ2j±˜ξi2λ4i+14˜ξi˜ξjλ2iλ2j+˜ξj2λ4j)±(˜ξiλ2i˜ξjλ2j±˜ξi2λ4i+14˜ξi˜ξjλ2iλ2j+˜ξj2λ4j)].
    $

    Similar to [10], we know that all the eigenvalues are not identically zero. Thus all the eigenvalues of $ {\mathcal Z}(\xi) $ are not identically zero as $ 0 < \varepsilon\ll1. $ Moreover, they are similar to $ d\in\mathcal{L}_1, d'\in\mathcal{L}_2 $ or $ d\in\mathcal{L}_2, d'\in\mathcal{L}_2 $, and omit them here.

    Hence all eigenvalues of $ {\mathcal Z}(\xi) $ are not identically zero for $ k\neq 0. $ According to Lemma 3.1 in [10], $ {\rm det}({\mathcal Z}(\xi)) $ is polynomial function in $ \xi $ of order at most four. Thus

    $ \left|\partial_{\xi}^4({\rm det}({\mathcal Z}(\xi)))\right|\geq\frac{1}{2}|k|\neq 0. $

    By excluding some parameter set with measure $ O(\sqrt[4]{\gamma'}) $, we get

    $ \left|{\rm det}({\mathcal Z}(\xi))\right|\geq\frac{\gamma'}{|k|^\tau}, \quad k\neq 0. $

    $ \rm (A3) $ is verified.

    Verifying $ \rm (A4): $ Assumption $ \rm (A4) $ can be verified easily fulfilled by Lemma 5.1.

    Verifying $ \rm (A5): $ The proof is similar to [27].

    By applying Theorem 5.1([13] Theorem 2), we get Theorem 1.1.

    Proof of Lemma 4.1. Case 1. Similar to Lemma 3.1 in [27], there exists a set $ R^{3, 1} $ so that $ \forall \omega\in [\varrho, 2\varrho]^m\setminus R^{3, 1} $, Lemma 4.1$\rm(i)$ is true, and $ {\rm meas} R^{3, 1}\leq\frac{\gamma}{9}\varrho^{m} $. We omit the proof.

    Case 2. Assume $ i+j+d+l = 0, |i|^2+|j|^2+|d|^2+|l|^2\neq0 $ and $ \#(S\cap\{i, j, d, l\})\geq 2 $. First of all, we have $ \left||i|^2+|j|^2+|d|^2+|l|^2\right|\geq 1. $ Denote $ f(\varepsilon) = \mu_i+\mu_j+ \mu_d+\mu_l, $ then by $ \mu_j = \lambda_j+\frac{\varepsilon}{2\lambda_j}[\phi]+\frac{1}{\lambda_j}\varepsilon^{(1+\rho)}\mu_j^* $ we have

    $ f(\varepsilon) = |i|^2+|j|^2+|d|^2+|l|^2+\varepsilon[\phi] (\frac{1}{2\lambda_i}+\frac{1}{2\lambda_j}+\frac{1}{2\lambda_d}+\frac{1}{2\lambda_l})+\varepsilon^{(1+\rho)} (\frac{\mu_i^*}{\lambda_i}+\frac{\mu_j^*}{\lambda_j}+\frac{\mu_d^*}{\lambda_d}+\frac{\mu_l^*}{\lambda_l}). $

    Case 1.1. For $ k = 0, $ then

    $ |f(\varepsilon)+ \lt k, \omega \gt | = |f(\varepsilon)|\geq 1-C\varepsilon\geq \frac{\varrho}{C_*} $

    when $ \varepsilon $ small enough and $ C_* $ large enough.

    Case 1.2. For $ k\neq0, $ denote

    $ {\mathcal I}_{ijdl, k}^{3, 2} = \left\{\omega\in [\varrho, 2\varrho]^{m}:|f(\varepsilon)+ \lt k, \omega \gt | \lt \frac{\varrho }{C_*|k|^{m+1}}\right\}, $

    and

    $ R^{3, 2} = \bigcup\limits_{0\neq k\in\Bbb{Z}^m}\bigcup\limits_{i, j, d, l}{\mathcal I}_{ijdl, k}^{3, 2}. $

    Case 1.2.1. When $ \#(S\cap\{i, j, d, l\}) = 4 $. Denote

    $ {\mathcal I}_{ijdl, k}^{3, 2, 1} = \left\{\omega\in [\varrho, 2\varrho]^{m}:|f(\varepsilon)+ \lt k, \omega \gt | \lt \frac{\varrho }{C_*|k|^{m}}\right\}, $
    $ R^{3, 2, 1} = \bigcup\limits_{0\neq k\in\Bbb{Z}^m}\bigcup\limits_{i\in S, j\in S, d\in S, l\in S}{\mathcal I}_{ijdl, k}^{3, 2, 1}, $

    we have

    $ {\rm meas}{\mathcal I}_{ijdl, k}^{3, 2, 1}\leq \frac{2\varrho^m }{C_*|k|^{m+1}}. $

    Let

    $ |k|_{\infty} = \max\{|k_1|, |k_{2}|, \ldots, |k_{m}|\}, $

    in view of

    $ \sum\limits_{|k|_\infty = p}1\leq 2m(2p+1)^{m-1}, $
    $ |k|_\infty\leq |k|\leq m|k|_\infty, $

    we have

    $ measR3,2,1=meas0kZmiS,jS,dS,lSI3,2,1ijdl,k0kZmn42ϱmC|k|m+1C1Cϱm0kZm1|k|m+1C1Cϱmp=1(2p+1)m1p(m+1)C1Cϱm
    $

    where the constant $ C_1 $ depends on $ n, m. $ Thus

    $ {\rm meas} R^{3, 2, 1}\leq\frac{\gamma}{27}\varrho^m $

    provided $ C_* $ large enough.

    Case 1.2.2. When $ \#(S\cap\{i, j, d, l\}) = 3 $. Assume $ i, j, d\in S, l\in\mathbb{Z}_*^2 $ without loss of generality. Then $ l = -i-j-d $ is at most $ n^3 $ different values. Denote

    $ {\mathcal I}_{ijdl, k}^{3, 2, 2} = \left\{\omega\in [\varrho, 2\varrho]^{m}:|f(\varepsilon)+ \lt k, \omega \gt | \lt \frac{\varrho }{C_*|k|^{m}}\right\}, $
    $ R^{3, 2, 2} = \bigcup\limits_{0\neq k\in\Bbb{Z}^m}\bigcup\limits_{i\in S, j\in S, d\in S, l = -i-j-d}{\mathcal I}_{ijdl, k}^{3, 2, 2}, $

    then

    $ {\rm meas}{\mathcal I}_{ijdl, k}^{3, 2, 2}\leq \frac{2\varrho^m }{C_*|k|^{m+1}}. $

    We obtain

    $ {\rm meas} R^{3, 2, 2} = {\rm meas}\bigcup\limits_{ 0\neq k\in {\Bbb Z}^{m}}\bigcup\limits_{i\in S, j\in S, d\in S, l = -i-j-d}{\mathcal I}_{ijdl, k}^{3, 2, 2}\leq\sum\limits_{0\neq k\in {\Bbb Z}^{m}}n^6\frac{2\varrho^m }{C_*|k|^{m+1}}\leq \frac{C_2}{C_*}\varrho^m $

    where the constant $ C_2 $ depends on $ n, m. $ Thus

    $ {\rm meas} R^{3, 2, 2}\leq\frac{\gamma}{27}\varrho^m $

    provided $ C_* $ large enough.

    Case 1.2.3. When $ \#(S\cap\{i, j, d, l\}) = 2 $. Assume $ i, j\in S, d, l\in\mathbb{Z}_*^2 $ without loss of generality. Then we have $ l = -i-j-d $ and

    $ f(ε)=|i|2+|j|2+|d|2+|i+j+d|2+ε[ϕ](12λi+12λj+12λd+12λl)+ε(1+ρ)(μiλi+μjλj+μdλd+μlλl)=g+ε[ϕ](12λi+12λj+12λd+12λl)+ε(1+ρ)(μiλi+μjλj+μdλd+μlλl)
    $

    where $ g = |i|^2+|j|^2+|d|^2+|i+j+d|^2\in\mathbb{Z}^{+}. $ Denote

    $ {\mathcal I}_{ijdl, k}^{3, 2, 3} = \left\{\omega\in [\varrho, 2\varrho]^{m}:|f(\varepsilon)+ \lt k, \omega \gt | \lt \frac{\varrho }{C_*|k|^{m+1}}\right\}, $
    $ R^{3, 2, 3} = \bigcup\limits_{0\neq k\in\Bbb{Z}^m}\bigcup\limits_{i\in S, j\in S, d\in\mathbb{Z}^2_*, l = -i-j-d}{\mathcal I}_{ijdl, k}^{3, 2, 3}. $

    For given $ i, j, g, $ denote

    $ d^*_{ijg} = \left\{d\in\mathbb{Z}^2_*: g = |i|^2+|j|^2+|d|^2+|i+j+d|^2\right\} $
    $ \mu^*_{ijg, 1} = \sup\limits_{d\in{d^*_{ijg}}}\left\{\frac{\mu^*_d}{\lambda_d}+\frac{\mu^*_{-i-j-d}}{\lambda_{-i-j-d}}\right\}, \quad\quad\mu^*_{ijg, 2} = \inf\limits_{d\in{d^*_{ijg}}}\left\{\frac{\mu^*_d}{\lambda_d}+\frac{\mu^*_{-i-j-d}}{\lambda_{-i-j-d}}\right\} $
    $ g^{*} = g+\varepsilon[\phi] (\frac{1}{2\lambda_i}+\frac{1}{2\lambda_j}+\frac{1}{2\lambda_d}+\frac{1}{2\lambda_l}) $
    $ {\mathcal I}_{ijg, k}^{3, 2, 3, 1} = \left\{\omega\in [\varrho, 2\varrho]^{m}:| \lt k, \omega \gt +g^{*}+\varepsilon^{(1+\rho)}(\frac{\mu_i^*}{\lambda_i}+\frac{\mu_j^*}{\lambda_j}+\mu_{ijg, 1}^*)| \lt \frac{\varrho } {C_*|k|^{m+1}}\right\}, $
    $ {\mathcal I}_{ijg, k}^{3, 2, 3, 2} = \left\{\omega\in [\varrho, 2\varrho]^{m}:| \lt k, \omega \gt +g^{*}+\varepsilon^{(1+\rho)}(\frac{\mu_i^*}{\lambda_i}+\frac{\mu_j^*}{\lambda_j}+\mu_{ijg, 2}^*)| \lt \frac{\varrho } {C_*|k|^{m+1}}\right\}, $

    then for $ l = -i-j-d, d\in d^*_{ijg}, $ from $ \varepsilon^{(1+\rho)}(\frac{\mu^*_d}{\lambda_d}+\frac{\mu^*_{-i-j-d}}{\lambda_{-i-j-d}}) $ is sufficiently small,

    $ {\mathcal I}_{ijdl, k}^{3, 2, 3}\subset{\mathcal I}_{ijg, k}^{3, 2, 3, 1}\bigcup{\mathcal I}_{ijg, k}^{3, 2, 3, 2}. $

    Thus

    $ \bigcup\limits_{l = -i-j-d}\bigcup\limits_{d\in {d^*_{ijg}}}{\mathcal I}_{ijdl, k}^{3, 2, 3}\subset({\mathcal I}_{ijg, k}^{3, 2, 3, 1}\bigcup{\mathcal I}_{ijg, k}^{3, 2, 3, 2}). $

    We get

    $ {\rm meas}{\mathcal I}_{ijg, k}^{3, 2, 3, 1}\leq\frac{2\varrho^{m}}{C_*|k|^{m+2}}, \quad {\rm meas}{\mathcal I}_{ijg, k}^{3, 2, 3, 2}\leq\frac{2\varrho^{m}}{C_*|k|^{m+2}}. $

    When $ |g| > |k|\varrho+4 $, the sets $ {\mathcal I}_{ijg, k}^{3, 2, 3, 1}, {\mathcal I}_{ijg, k}^{3, 2, 3, 2} $ are empty. So let

    $ R^{3, 2, 3} = \bigcup\limits_{ 0\neq k\in {\Bbb Z}^{m}}\bigcup\limits_{i\in S, j\in S}\bigcup\limits_{d\in \mathbb{Z}^2_*}\bigcup\limits_{l = -i-j-d}{\mathcal I}_{ijdl, k}^{3, 2, 3} \subset\bigcup\limits_{ 0\neq k\in {\Bbb Z}^{m}}\bigcup\limits_{i\in S, j\in S}\bigcup\limits_{g\in\mathbb{Z}}({\mathcal I}_{ijg, k}^{3, 2, 3, 1}\bigcup{\mathcal I}_{ijg, k}^{3, 2, 3, 2}), $

    then

    $ measR3,2,3meas0kZmiS,jSgZ(I3,2,3,1ijg,kI3,2,3,2ijg,k)=meas0kZmiS,jS1|g||k|ϱ+4(I2,3,1ijg,kI2,3,2ijg,k)0kZm4n2(|k|ϱ+4)2ϱmC|k|m+2C3Cϱm,
    $

    where the constant $ C_3 $ depends on $ n, m. $ Thus

    $ {\rm meas} R^{3, 2, 3}\leq\frac{\gamma}{27}\varrho^m $

    provided $ C_* $ large enough. Denote

    $ R^{3, 2} = R^{3, 2, 1}\cup R^{3, 2, 2}\cup R^{3, 2, 3}, $

    then we have $ {\rm meas} R^{3, 2}\leq\frac{\gamma}{9}\varrho^{m} $.

    Case 3. Similar to Case 2, there exists a set $ R^{3, 3} $ so that $ \forall\omega\in [\varrho, 2\varrho]^m\backslash R^{3, 3} $, Lemma 4.1$(\rm {iii})$ is true, and $ {\rm meas} R^{3, 3}\leq\frac{\gamma}{9}\varrho^{m} $. We omit the proof.

    Denote

    $ \overline R = [\varrho, 2\varrho]^m\setminus\Big( R^{3, 1}\cup R^{3, 2}\cup R^{3, 3}\Big), $

    then it satisfies as required and

    $ {\rm meas}\overline R\geq(1-\frac{\gamma}{3})\varrho^m. $

    $ \mathbb{N} $ is the set of natural Numbers, $ \mathbb{Z} $ is the set of integers, $ \mathbb{Z}^n $ is an n-dimensional integer space, $ \mathbb{R} $ is the set of real Numbers, $ \mathbb{R}^n $ is an n-dimensional Euclidean space, $ \mathbb{T}^n $ is an n-dimensional torus.

    We would like to thank the referees for their valuable comments and suggestions to improve our paper. This paper is partially supported by the National Natural Science Foundation of China (Grant Nos.11701567, 11601270) and the Fundamental Research Funds for the Central Universities(Grant Nos.19CX02048A, 17CX02048).

    The authors declare that they have no competing interests in this paper.

    [1] Mesoscopic higher regularity and subadditivity in elliptic homogenization. Comm. Math. Phys. (2016) 347: 315-361.
    [2]

    _______, The additive structure of elliptic homogenization, Invent. Math., 208 (2017), 999-1154.

    [3] Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. (2016) 219: 255-348.
    [4] Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) (2016) 49: 423-481.
    [5] Compactness methods in the theory of homogenization. Comm. Pure Appl. Math. (1987) 40: 803-847.
    [6]

    P. Bella, B. Fehrman and F. Otto, A Liouville theorem for elliptic systems with degenerate ergodic coefficients, To appear in Annals of App. Probabiliy, arXiv e-prints (2016).

    [7]

    P. Bella, A. Giunti and F. Otto, Effective multipoles in random media, arXiv e-prints (2017).

    [8]

    P. Bella, A. Giunti and F. Otto, Quantitative stochastic homogenization: Local control of homogenization error through corrector, Mathematics and Materials, IAS/Park City Math. Ser., Amer. Math. Soc., Providence, RI, 23 (2017), 301-327.

    [9] Corrector estimates for elliptic systems with random periodic coefficients. Multiscale Model. Simul. (2016) 14: 1434-1462.
    [10]

    J. G. Conlon, A. Giunti and F. Otto, Green's function for elliptic systems: Existence and Delmotte-Deuschel bounds, Calc. Var. Partial Differential Equations, 56 (2017), Art. 163, 51 pp.

    [11] Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4) (1968) 1: 135-137.
    [12] On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nablaφ$ interface model. Probab. Theory Related Fields (2005) 133: 358-390.
    [13] A higher-order large-scale regularity theory for random elliptic operators. Comm. Partial Differential Equations (2016) 41: 1108-1148.
    [14]

    _______, Sublinear growth of the corrector in stochastic homogenization: Optimal stochastic estimates for slowly decaying correlations, Stoch. Partial Differ. Equ. Anal. Comput., 5(2017), 220-255.

    [15] Annealed estimates on the green functions and uncertainty quantification. Ann. Inst. H. Poincaré Anal. Non Linéaire (2016) 33: 1153-1197.
    [16]

    A. Gloria, S. Neukamm and F. Otto, A regularity theory for random elliptic operators, arXiv e-prints (2014).

    [17]

    _______, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math., 199 (2015), 455-515.

    [18]

    A. Gloria and F. Otto, The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations, arXiv e-prints (2015).

    [19]

    _______, Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS), 19 (2017), 3489-3548.

    [20] The averaging of random operators. Mat. Sb. (N.S.) (1979) 109: 188-202,327.
    [21] Annealed estimates on the Green function. Probab. Theory Related Fields (2015) 163: 527-573.
    [22] On annealed elliptic Green's function estimates. Math. Bohem. (2015) 140: 489-506.
    [23]

    G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields, Vol. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, 1981,835-873.

  • This article has been cited by:

    1. Nguyen Thi Thu Thuy, Tran Thanh Tung, Strong convergence of one-step inertial algorithm for a class of bilevel variational inequalities, 2025, 0233-1934, 1, 10.1080/02331934.2024.2448737
    2. Nguyen Thi Thu Thuy, Tran Thanh Tung, Le Xuan Ly, Strongly convergent two-step inertial algorithm for a class of bilevel variational inequalities, 2025, 44, 2238-3603, 10.1007/s40314-024-03078-7
    3. Le Xuan Ly, Nguyen Thi Thu Thuy, Nguyen Quoc Anh, Relaxed two-step inertial method for solving a class of split variational inequality problems with application to traffic analysis, 2025, 0233-1934, 1, 10.1080/02331934.2025.2459191
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7564) PDF downloads(353) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog