Sparse control of alignment models in high dimension

  • Received: 01 August 2014 Revised: 01 December 2014
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a high-dimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.

    Citation: Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf. Sparse control of alignment models in high dimension[J]. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647

    Related Papers:

    [1] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [2] Junjie Wang, Yaping Zhang, Liangliang Zhai . Structure-preserving scheme for one dimension and two dimension fractional KGS equations. Networks and Heterogeneous Media, 2023, 18(1): 463-493. doi: 10.3934/nhm.2023019
    [3] Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano . Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7(3): 429-440. doi: 10.3934/nhm.2012.7.429
    [4] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [5] Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
    [6] Flavia Smarrazzo, Alberto Tesei . Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7(4): 941-966. doi: 10.3934/nhm.2012.7.941
    [7] Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti . Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2(4): 695-715. doi: 10.3934/nhm.2007.2.695
    [8] Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019
    [9] Hyunjin Ahn . Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17(5): 753-782. doi: 10.3934/nhm.2022025
    [10] François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006
  • For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a high-dimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.


    [1] S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628. doi: 10.1142/S0218202513500176
    [2] R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds, Found. Comput. Math., 9 (2009), 51-77. doi: 10.1007/s10208-007-9011-z
    [3] M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces, Netw. Heterog. Media, 9 (2014), 1-31. doi: 10.3934/nhm.2014.9.1
    [4] M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete Contin. Dynam. Systems, 35 (2015), 4071-4094. doi: 10.3934/dcds.2015.35.4071
    [5] J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems, in 51st IEEE Conference on Decision and Control (CDC), 2012, 4320-4327. doi: 10.1109/CDC.2012.6425873
    [6] M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model, Math. Control Relat. Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447
    [7] M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521-564. doi: 10.1142/S0218202515400059
    [8] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394-1407. doi: 10.1109/9.633828
    [9] R. R. Coifman and M. J. Hirn, Diffusion maps for changing data, Appl. Comput. Harmon. Anal., 36 (2014), 79-107. doi: 10.1016/j.acha.2013.03.001
    [10] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842
    [11] F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x
    [12] S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures Algorithms, 22 (2003), 60-65. doi: 10.1002/rsa.10073
    [13] S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory, arXiv:1402.3973, 2014.
    [14] M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension, Multiscale Model. Simul., 9 (2011), 1727-1764. doi: 10.1137/110830617
    [15] M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130400, 21PP. doi: 10.1098/rsta.2013.0400
    [16] M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152. doi: 10.1051/cocv/2014009
    [17] S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113
    [18] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in modern analysis and probability, New Haven, Conn., 1982, Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984, 189-206. doi: 10.1090/conm/026/737400
  • This article has been cited by:

    1. Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5
    2. Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5
    3. Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016
    4. Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5
    5. Dongnam Ko, Enrique Zuazua, Model predictive control with random batch methods for a guiding problem, 2021, 31, 0218-2025, 1569, 10.1142/S0218202521500329
    6. Simone Fagioli, Alic Kaufmann, Emanuela Radici, Optimal control problems of nonlocal interaction equations, 2023, 29, 1292-8119, 40, 10.1051/cocv/2023029
    7. Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172
    8. Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4813) PDF downloads(125) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog