Citation: Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws[J]. Networks and Heterogeneous Media, 2016, 11(2): 349-367. doi: 10.3934/nhm.2016.11.349
[1] | Evgeny Yu. Panov . On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 349-367. doi: 10.3934/nhm.2016.11.349 |
[2] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[3] | Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029 |
[4] | Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203 |
[5] | Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163 |
[6] | Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015 |
[7] | Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024 |
[8] | . Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda . Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2(1): 127-157. doi: 10.3934/nhm.2007.2.127 |
[9] | Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018 |
[10] | Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617 |
[1] | A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932. |
[2] |
G.-Q. Chen and H. Frid, Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal., 146 (1999), 95-127. doi: 10.1007/s002050050138
![]() |
[3] | G.-Q. Chen and Y.-G. Lu, The study on application way of the compensated compactness theory, Chinese Sci. Bull., 34 (1989), 15-19. |
[4] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1
![]() |
[5] |
C. M. Dafermos, Long time behavior of periodic solutions to scalar conservation laws in several space dimensions, SIAM J. Math. Anal., 45 (2013), 2064-2070. doi: 10.1137/130909688
![]() |
[6] |
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270. doi: 10.1007/BF00752112
![]() |
[7] |
P. Gerárd, Microlocal defect measures, Comm. Partial Diff. Equat., 16 (1991), 1761-1794. doi: 10.1080/03605309108820822
![]() |
[8] | E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Providence, 1957. |
[9] | S. N. Kruzhkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228-255, English transl. in Math. USSR Sb., 10 (1970), 217-243. |
[10] | S. N. Kruzhkov and E. Yu. Panov, First-order conservative quasilinear laws with an infinite domain of dependence on the initial data, Dokl. Akad. Nauk SSSR, 314 (1990), 79-84, English transl. in Soviet Math. Dokl., 42 (1991), 316-321. |
[11] | S. N. Kruzhkov and E. Yu. Panov, Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31-54. |
[12] |
S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media, Comp. GeoSci., 14 (2010), 105-124. doi: 10.1007/s10596-009-9135-0
![]() |
[13] |
E. Yu. Panov, On sequences of measure-valued solutions of first-order quasilinear equations, Mat. Sb., 185 (1994), 87-106, English transl. in Russian Acad. Sci. Sb. Math., 81 (1995), 211-227. doi: 10.1070/SM1995v081n01ABEH003621
![]() |
[14] |
E. Yu. Panov, Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation, Mat. Sb., 190 (1999), 109-128, English transl. in Russian Acad. Sci. Sb. Math., 190 (1999), 427-446. doi: 10.1070/SM1999v190n03ABEH000395
![]() |
[15] |
E. Yu. Panov, A remark on the theory of generalized entropy sub- and supersolutions of the Cauchy problem for a first-order quasilinear equation, Differ. Uravn., 37 (2001), 252-259, English transl. in Differ. Equ., 37 (2001), 272-280. doi: 10.1023/A:1019273927768
![]() |
[16] |
E. Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 885-908. doi: 10.1142/S0219891605000658
![]() |
[17] |
E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770. doi: 10.1142/S0219891607001343
![]() |
[18] |
E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643-673. doi: 10.1007/s00205-009-0217-x
![]() |
[19] |
E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property, J. Math. Sci., 159 (2009), 180-228. doi: 10.1007/s10958-009-9434-y
![]() |
[20] |
E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law, SIAM J. Math. Anal., 41 (2009), 26-36. doi: 10.1137/080724587
![]() |
[21] |
E. Yu. Panov, On decay of periodic entropy solutions to a scalar conservation law, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 997-1007. doi: 10.1016/j.anihpc.2012.12.009
![]() |
[22] | arXiv:1406.4838. |
[23] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. |
[24] | L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics, Heriot. Watt Symposium, vol. 4 (Edinburgh 1979), Res. Notes Math., 39 (1979), 136-212. |
[25] |
L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh. Sect. A., 115 (1990), 193-230. doi: 10.1017/S0308210500020606
![]() |
1. | Evgeny Yu. Panov, 2018, Chapter 30, 978-3-319-91547-0, 391, 10.1007/978-3-319-91548-7_30 | |
2. | E. Panov, , On the decay of viscosity solutions to Hamilton–Jacobi equations with almost periodic initial data, 2021, 32, 1061-0022, 767, 10.1090/spmj/1669 | |
3. | Evgeny Yu. Panov, Decay of periodic entropy solutions to degenerate nonlinear parabolic equations, 2020, 269, 00220396, 862, 10.1016/j.jde.2019.12.019 | |
4. | Evgeny Yu. Panov, On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property, 2016, 13, 0219-8916, 633, 10.1142/S0219891616500168 | |
5. | E. Yu. Panov, The Long Time Behavior of Periodic Entropy Solutions to Degenerate Nonlinear Parabolic Equations, 2019, 242, 1072-3374, 308, 10.1007/s10958-019-04479-4 | |
6. | Евгений Юрьевич Панов, Eugeny Yur'evich Panov, Об асимптотике при больших временах периодических обобщенных энтропийных решений скалярных законов сохранения, 2016, 100, 0025-567X, 133, 10.4213/mzm11123 | |
7. | E. Yu. Panov, Strong Precompactness of Bounded Sequences Under Nonlinear Ultraparabolic Differential Constraints, 2018, 232, 1072-3374, 516, 10.1007/s10958-018-3884-z | |
8. | Evgeniy Y. Panov, On Decay of Entropy Solutions to Multidimensional Conservation Laws, 2020, 52, 0036-1410, 1310, 10.1137/19M1256385 | |
9. | Evgeny Yu. Panov, On some properties of entropy solutions of degenerate non-linear anisotropic parabolic equations, 2021, 275, 00220396, 139, 10.1016/j.jde.2020.11.042 | |
10. | Evgeny Yu. Panov, On decay of entropy solutions to multidimensional conservation laws in the case of perturbed periodic initial data, 2022, 19, 0219-8916, 141, 10.1142/S0219891622500023 | |
11. | E. Yu. Panov, Long time asymptotics of periodic generalized entropy solutions of scalar conservation laws, 2016, 100, 0001-4346, 113, 10.1134/S0001434616070105 |