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Abstract. We propose a new sufficient non-degeneracy condition for the strong

precompactness of bounded sequences satisfying the nonlinear first-order dif-

ferential constraints. This result is applied to establish the decay property for
periodic entropy solutions to multidimensional scalar conservation laws.

1. Introduction. Let Ω be an open domain in Rn. We consider the sequence
uk(x), k ∈ N, bounded in L∞(Ω), which converges weakly-∗ in L∞(Ω) to some
function u(x): uk ⇀

k→∞
u. Now let ϕ(x, u) ∈ L2

loc(Ω, C(R,Rn)) be a Caratheodory

vector-function (i.e. it is continuous with respect to u and measurable with respect
to x) such that the functions

αM (x) = max
|u|≤M

|ϕ(x, u)| ∈ L2
loc(Ω) ∀M > 0 (1)

(here and below | · | stands for the Euclidean norm of a finite-dimensional vector).
By θ(λ) we shall denote the Heaviside function:

θ(λ) =

{
1, λ > 0,
0, λ ≤ 0.

Suppose that for every p ∈ R the sequence of distributions

divx [θ(uk − p)(ϕ(x, uk)− ϕ(x, p))] is precompact in W−1
d,loc(Ω) (2)

for some d > 1. Recall that W−1
d,loc(Ω) is a locally convex space of distributions

u(x) such that uf(x) belongs to the Sobolev space W−1
d for all f(x) ∈ C∞0 (Ω).

The topology in W−1
d,loc(Ω) is generated by the family of semi-norms u→ ‖uf‖W−1

d
,

f(x) ∈ C∞0 (Ω).
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If the distributions divx ϕ(x, k) are locally finite measures on Ω for all k ∈ R,
then the notion of entropy solutions (in Kruzhkov’s sense) of the equation

div ϕ(x, u) + ψ(x, u) = 0, (3)

with a Caratheodory source function ψ(x, u) ∈ L1
loc(Ω, C(R)), is defined, see [18]

and [19] (in the latter paper the more general ultra-parabolic equations are studied).
We underline that equations like (3) occur in various applications, for instance in
heterogeneous media, and have been widely studied in recent years, see for example
[12] and references therein.

As was shown in [19], assumption (2) is always satisfied for bounded sequences
of entropy solutions of (3).

Our first result is the following strong precompactness property.

Theorem 1.1. Suppose that for almost every x ∈ Ω and all ξ ∈ Rn, ξ 6= 0 the
function λ→ ξ · ϕ(x, λ) is not constant in any vicinity of the point u(x) (here and
in the sequel “·” denotes the inner product in Rn). Then uk(x) →

k→∞
u(x) in L1

loc(Ω)

(strongly).

Theorem 1.1 extends the results of [18], where the strong precompactness prop-
erty was established under the more restrictive non-degeneracy condition: for almost
every x ∈ Ω and all ξ ∈ Rn, ξ 6= 0 the function λ → ξ · ϕ(x, λ) is not constant on
nonempty intervals.

The proof of Theorem 1.1 is based on a new localization principle for H-measure
(with “continuous” indexes) corresponding to the sequence uk, see Theorem 3.2 and
its Corollary 2 below.

Using this theorem and results of [21], we will also derive the more precise crite-
rion for the decay of periodic entropy solutions of scalar conservation laws

ut+ divx ϕ(u) = 0, (4)

u = u(t, x), (t, x) ∈ Π = (0,+∞)× Rn. The flux vector ϕ(u) = (ϕ1(u), . . . , ϕn(u))
is supposed to be merely continuous: ϕ(u) ∈ C(R,Rn). Recall the definition of
entropy solution to equation (4) in the Kruzhkov sense [9].

Definition 1.2. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called an
entropy solution (e.s. for short) of (4) if for all k ∈ R

|u− k|t+ divx [sign(u− k)(ϕ(u)− ϕ(k))] ≤ 0 (5)

in the sense of distributions on Π (in D′(Π)).

As usual, condition (5) means that for all non-negative test functions f =
f(t, x) ∈ C1

0 (Π)∫
Π

[|u− k|ft + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xf ]dtdx ≥ 0.

As was shown in [16] (see also [17]), an e.s. u(t, x) always admits a strong trace
u0 = u0(x) ∈ L∞(Rn) on the initial hyperspace t = 0 in the sense of relation

ess lim
t→0

u(t, ·) = u0 in L1
loc(Rn), (6)

that is, u(t, x) is an e.s. to the Cauchy problem for equation (4) with initial data

u(0, x) = u0(x). (7)
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Remark 1. It was also established in [16, Corollary 7.1] that, after possible cor-
rection on a set of null measure, an e.s. u(t, x) is continuous on [0,+∞) as a map
t 7→ u(t, ·) into L1

loc(Rn). In the sequel we will always assume that this property is
satisfied.

Suppose that the initial function u0 is periodic with a lattice of periods L, i.e.,
u0(x+e) = u0(x) a.e. on Rn for every e ∈ L (we will call such functions L-periodic).
Denote by Tn = Rn/L the corresponding n-dimensional torus, and by L′ the dual
lattice L′ = { ξ ∈ Rn | ξ · x ∈ Z ∀x ∈ L }. In the case under consideration when
the flux vector is merely continuous the property of finite speed of propagation
for initial perturbation may be violated, which, in the multidimensional situation
n > 1, may even lead to the nonuniqueness of e.s. to Cauchy problem (4), (7), see
examples in [10, 11]. But for a periodic initial function u0(x), an e.s. u(t, x) of (4),
(7) is unique (in the class of all e.s., not necessarily periodic) and space-periodic,
the proof can be found in [15]. It is also shown in [15] that the mean value of e.s.
over the period does not depend on time:∫

Tn

u(t, x)dx = I
.
=

∫
Tn

u0(x)dx, (8)

where dx is the normalized Lebesgue measure on Tn. The following theorem gen-
eralizes the previous results of [5, 21].

Theorem 1.3. Suppose that

∀ξ ∈ L′, ξ 6= 0 the function u→ ξ · ϕ(u)

is not affine on any vicinity of I. (9)

Then

lim
t→+∞

u(t, ·) = I =

∫
Tn

u0(x)dx in L1(Tn). (10)

Moreover, condition (9) is necessary and sufficient for the decay property (10).

In the case ϕ(u) ∈ C2(R,Rn) Theorem 1.3 was proved in [5]. As was noticed in
[5, Remark 2.1], decay property (10) holds under the weaker regularity requirement
ϕ(u) ∈ C1(R,Rn) but under the more restrictive assumption that for each ξ ∈ L′
I is not an interior point of the closure of the union of all open intervals, over
which the function ξ · ϕ′(u) is constant. Let us demonstrate that condition (9) is
less restrictive than this assumption even in the case ϕ(u) ∈ C1(R,Rn). Suppose
that n = 1, ϕ(u) ∈ C1(R) is a primitive of the Cantor function, so that ϕ′(u)
is increasing, continuous, and maximal intervals, over which it remains constant,
are exactly the connected component of the complement R \ K of the Cantor set
K ⊂ [0, 1]. Since K has the empty interior the assumption of [5] is never satisfied
while (9) holds for each I ∈ K.

2. Preliminaries. We need the concept of measure valued functions (Young mea-
sures). Recall (see [6, 24]) that a measure-valued function on Ω is a weakly measur-
able map x 7→ νx of Ω into the space Prob0(R) of probability Borel measures with
compact support in R.

The weak measurability of νx means that for each continuous function g(λ) the
function x→ 〈νx, g(λ)〉 .=

∫
g(λ)dνx(λ) is measurable on Ω.

A measure-valued function νx is said to be bounded if there exists M > 0 such
that supp νx ⊂ [−M,M ] for almost all x ∈ Ω.
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Measure-valued functions of the kind νx(λ) = δ(λ− u(x)), where u(x) ∈ L∞(Ω)
and δ(λ − u∗) is the Dirac measure at u∗ ∈ R, are called regular. We identify
these measure-valued functions and the corresponding functions u(x), so that there
is a natural embedding of L∞(Ω) into the set MV(Ω) of bounded measure-valued
functions on Ω.

Measure-valued functions naturally arise as weak limits of bounded sequences in
L∞(Π) in the sense of the following theorem by L. Tartar [24].

Theorem 2.1. Let uk(x) ∈ L∞(Ω), k ∈ N, be a bounded sequence. Then there
exist a subsequence (we keep the notation uk(x) for this subsequence) and a bounded
measure valued function νx ∈ MV(Ω) such that

∀g(λ) ∈ C(R) g(uk) →
k→∞

〈νx, g(λ)〉 weakly-∗ in L∞(Ω). (11)

Besides, νx is regular, i.e., νx(λ) = δ(λ − u(x)) if and only if uk(x) →
k→∞

u(x) in

L1
loc(Ω) (strongly).

We will essentially use in the sequel the variant of H-measures with “continuous
indexes” introduced in [13]. This variant extends the original concept of H-measure
invented by L. Tartar [25] and P. Gerárd [7] and it appears to be an efficient tool
in nonlinear analysis.

Suppose uk(x) is a bounded sequence in L∞(Ω). Passing to a subsequence if
necessary, we can suppose that this sequence converges to a bounded measure valued
function νx ∈ MV(Ω) in the sense of relation (11). We introduce the measures
γkx(λ) = δ(λ−uk(x))−νx(λ) and the corresponding distribution functions Uk(x, p) =
γkx((p,+∞)), u0(x, p) = νx((p,+∞)) on Ω × R. Observe that Uk(x, p), u0(x, p) ∈
L∞(Ω) for all p ∈ R, see [13, Lemma 2]. We define the set

E = E(νx) =

{
p0 ∈ R | u0(x, p) →

p→p0
u0(x, p0) in L1

loc(Ω)

}
.

As was shown in [13, Lemma 4], the complement R \E is at most countable and if
p ∈ E then Uk(x, p) ⇀

k→∞
0 weakly-∗ in L∞(Ω).

Let F (u)(ξ), ξ ∈ Rn, be the Fourier transform of a function u(x) ∈ L2(Rn),
S = Sn−1 = { ξ ∈ Rn | |ξ| = 1 } be the unit sphere in Rn. Denote by u → u,
u ∈ C the complex conjugation.

The next result was established in [13, Theorem 3], [14, Proposition 2, Lemma 2].

Proposition 1. (i) There exists a family of locally finite complex Borel measures
{µpq}p,q∈E in Ω × S and a subsequence Ur(x, p) = Ukr (x, p) such that for all

Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S)

〈µpq,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫
Rn

F (Φ1Ur(·, p))(ξ)F (Φ2Ur(·, q))(ξ)ψ
(
ξ

|ξ|

)
dξ;

(12)
(ii) For any p1, . . . , pl ∈ E the matrix {µpipj}li,j=1 is Hermitian and nonnegative

definite, that is, for all ζ1, . . . , ζl ∈ C the measure

l∑
i,j=1

ζiζjµ
pipj ≥ 0.

We call the family of measures {µpq}p,q∈E the H-measure corresponding to the

subsequence ur(x) = ukr (x).



THE STRONG PRECOMPACTNESS AND THE DECAY PROPERTIES 353

As was demonstrated in [13], the H-measure µpq = 0 for all p, q ∈ E if and only
if the subsequence ur(x) converges as r →∞ strongly (in L1

loc(Ω)).
We denote by |µ| the variation of a Borel measure µ (this is the minimal of

nonnegative Borel measures ν such that |µ(A)| ≤ ν(A) for all Borel sets A). Let
prΩ|µpq| be the projection of the measure |µpq| on the domain Ω. By definition it is a
nonnegative Borel measure determined by the relation prΩ|µpq|(A) = |µpq|(A× S)
for any Borel set A ⊂ Ω. Since |Uk(x, p)| ≤ 1, it readily follows from (12) and
Plancherel’s equality that prΩ|µpq| ≤ meas for p, q ∈ E, where meas is the Lebesgue
measure on Ω. This implies the representation µpq = µpqx dx (the disintegration of
H-measures). More exactly, choose a countable dense subset D ⊂ E. The following
statement was proved in [14, Proposition 3], see also [18, Proposition 3].

Proposition 2. There exists a family of complex finite Borel measures µpqx ∈ M(S)
in the sphere S with p, q ∈ D, x ∈ Ω′, where Ω′ is a subset of Ω of full measure,
such that µpq = µpqx dx, that is, for all Φ(x, ξ) ∈ C0(Ω× S) the function

x→ 〈µpqx (ξ),Φ(x, ξ)〉 =

∫
S

Φ(x, ξ)dµpqx (ξ)

is Lebesgue-measurable on Ω, bounded, and

〈µpq,Φ(x, ξ)〉 =

∫
Ω

〈µpqx (ξ),Φ(x, ξ)〉dx.

Moreover, for p, p′, q ∈ D, p′ > p

Varµpqx
.
= |µpqx |(S) ≤ 1 and Var (µp

′q
x − µpqx ) ≤ 2 (νx((p, p′)))

1/2
. (13)

We choose a non-negative function K(x) ∈ C∞0 (Rn) with support in the unit
ball such that

∫
K(x)dx = 1 and set Km(x) = mnK(mx) for m ∈ N. Clearly, the

sequence Km converges in D′(Rn) to the Dirac δ-function ( that is, this sequence
is an approximate unity ). We define Φm(x) = (Km(x))1/2. As was shown in
[14, Remark 4] (see also [18, Remark 2(b)] ), the measures µpqx can be explicitly
represented by the relation

Φ(x)〈µpqx , ψ(ξ)〉 = lim
m→∞

〈µpqx (y, ξ),Φ(y)Km(x− y)ψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫
Rn

F (ΦΦmUr(·, p))(ξ)F (ΦmUr(·, q))(ξ)ψ
(
ξ

|ξ|

)
dξ (14)

for all ψ(ξ) ∈ C(S), where ΦΦmUr(·, p) = Φ(y)Φm(x − y)Ur(y, p), ΦmUr(·, q) =
Φm(x − y)Ur(y, q), and Φ(y) ∈ L2

loc(Ω) be an arbitrary function such that x is its
Lebesgue point.

From this representation (with Φ ≡ 1) and Proposition 1(ii) it follows that for
all p1, . . . , pl ∈ D, x ∈ Ω′, ζ1, . . . , ζl ∈ C the measure

µ =

l∑
i,j=1

ζiζjµ
pipj
x ≥ 0. (15)

Indeed, for every nonnegative ψ(ξ) ∈ C(S)

< µ(ξ), ψ(ξ) >= lim
m→∞

〈
l∑

i,j=1

ζiζjµ
pipj (y, ξ),Km(x− y)ψ(ξ)

〉
≥ 0.

This, in particular implies, that µppx ≥ 0, µqpx = µpqx , and for every Borel set A ⊂ S

|µpqx |(A) ≤ (µppx (A)µqqx (A))
1/2

(16)



354 EVGENY YU. PANOV

( see [14, 18] ). For completeness we provide below the simple proof of (16). In

view of (15) (with l=2) the matrix M =

(
µppx (A) µpqx (A)
µqpx (A) µqqx (A)

)
is Hermitian and

nonnegative definite. Therefore,

µppx (A)µqqx (A)− |µpqx (A)|2 = µppx (A)µqqx (A)− µpqx (A)µqpx (A) = detM ≥ 0.

By Young’s inequality for any positive constant c and all Borel sets A ⊂ S

|µpqx (A)| ≤ (µppx (A)µqqx (A))
1/2 ≤ c

2
µppx (A) +

1

2c
µqqx (A).

Since µ =
c

2
µppx +

1

2c
µqqx is nonnegative Borel measure, it follows from this inequality

that the variation |µpqx | ≤ µ. This implies that

|µpqx |(A) ≤ c

2
µppx (A) +

1

2c
µqqx (A) ∀c > 0. (17)

It is easily computed that

inf
c>0

(
c

2
µppx (A) +

1

2c
µqqx (A)

)
= (µppx (A)µqqx (A))

1/2

and (16) follows from (17).

3. Localization principles and the strong precompactness property.

Lemma 3.1. For each p, q ∈ R, x ∈ Ω′ there exist one-sided limits in the space
M(S) of finite Borel measures on S (with the standard norm Varµ):

µp
′q′

x → µpq+x as (p′, q′)→ (p, q), p′, q′ ∈ D, p′ > p, q′ > q,

µp
′q′

x → µpq−x as (p′, q′)→ (p, q), p′, q′ ∈ D, p′ < p, q′ < q.

Moreover, Varµpq± ≤ 1 and for every Borel set A ⊂ S and each pi ∈ R, i = 1, . . . , l

the matrices {µpipj±x (A)}li,j=1 are Hermitian and nonnegative definite, that is, the
measures

l∑
i,j=1

ζiζjµ
pipj±
x ≥ 0 (18)

for all complex ζi ∈ C, i = 1, . . . , l.

Proof. Let x ∈ Ω′, p, q ∈ R, p1, q1, p2, q2 ∈ D, p2 > p1 > p, q2 > q1 > q. Then, in

view of (13) and the equality µqpx = µpqx ,

Var (µp2q2x − µp1q1x ) ≤ Var (µp2q2x − µp1q2x ) + Var (µq2p1x − µq1p1x ) ≤
2νx((p1, p2)) + 2νx((q1, q2)) ≤ 2νx((p, p2)) + 2νx((q, q2)) →

(p2,q2)→(p,q)
0.

By the Cauchy criterion, this implies that there exists a limit µpq+x in M(S) of the

measures µp
′q′

x as (p′, q′) → (p, q), p′, q′ ∈ D, p′ > p, q′ > q. Similarly, for each
p1, q1, p2, q2 ∈ D such that p2 < p1 < p, q2 < q1 < q

Var (µp2q2x − µp1q1x ) ≤ 2νx((p2, p1)) + 2νx((q2, q1)) ≤
2νx((p2, p)) + 2νx((q2, q)) →

(p2,q2)→(p,q)
0,

which implies existence of a left-sided limit µpq−x in M(S) of µp
′q′

x as (p′, q′)→ (p, q),

p′, q′ ∈ D, p′ < p, q′ < q. By Proposition 2 Varµp
′q′

x ≤ 1, which implies in the
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limits as p′ → p±, q′ → q± that Varµpq±x ≤ 1. Finally, for every p′i ∈ D, ζi ∈ C,
i = 1, . . . , l the measures

l∑
i,j=1

ζiζjµ
p′ip
′
j±

x ≥ 0.

In the limits as p′i → pi± this implies (18).

Corollary 1. Let p, q ∈ R, x ∈ Ω′. Then for every Borel set A ⊂ S

|µpq+x |(A) ≤
(
µpp+x (A)µqq+x (A)

)1/2
, |µpq−x |(A) ≤

(
µpp−x (A)µqq−x (A)

)1/2
. (19)

Proof. Relations (19) follow from (18) in the same way as in the proof of inequality
(16) above.

Remark 2. By continuity of µpqx with respect to variables p, q ∈ D, we see that for
p ∈ D

µpq±x = lim
q′→q±

lim
p′→p±

µp
′q′

x = lim
q′→q±

µpq
′

x in M(S).

Analogously, if q ∈ D, then

µpq±x = lim
p′→p±

µp
′q
x in M(S).

If the both indices p, q ∈ D, then evidently µpq±x = µpqx .

Now we suppose that f(x, λ) ∈ L2
loc(Ω, C(R,Rn)) is a Caratheodory vector-

function on Ω× R. In particular,

∀M > 0 ‖f(x, ·)‖M,∞ = max
|λ|≤M

|f(x, λ)| = αM (x) ∈ L2
loc(Ω). (20)

Since the space C(R,Rn) is separable with respect to the standard locally convex
topology generated by seminorms ‖ · ‖M,∞, then, by the Pettis theorem (see [8,
Chapter 3]), the map x→ F (x) = f(x, ·) ∈ C(R,Rn) is strongly measurable and in
view of estimate (20) we see that |F (x)|2 ∈ L1

loc(Ω, C(R)). In particular (see again
[8, Chapter 3]), the set Ωf of common Lebesgue points of the maps F (x), |F (x)|2
has full measure. As was demonstrated in [18], for x ∈ Ωf

lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖2M,∞dy = 0 ∀M > 0. (21)

Clearly, each x ∈ Ωf is a common Lebesgue point of all functions y → f(y, λ),
λ ∈ R. Let Ω′′ = Ω′ ∩ Ωf , γry(λ) = δ(λ− ur(y))− νy(λ), where ur(y) = ukr (y).

Suppose that x ∈ Ω′′, p ∈ R, H+, H− are the minimal linear subspaces of Rn,
containing supports of the measures µpp+x , µpp−x , respectively. We fix q ∈ D and
introduce for p′ ∈ D the function

Ir(y, p
′) =

∫
f(y, λ)(θ(λ− p′)− θ(λ− q))dγry(λ) ∈ L2

loc(Ω,Rn). (22)

Proposition 3. Assume that q > p and f(x, λ) ∈ H⊥+ for all λ ∈ R. Then

lim
p′→p+

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmIr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ = 0

(23)
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for all ψ(ξ) ∈ C(S). Analogously, if q < p and f(x, λ) ∈ H⊥− ∀λ ∈ R, then
∀ψ(ξ) ∈ C(S)

lim
p′→p−

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmIr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ = 0.

(24)

Here Φm = Φm(x − y) =
√
Km(x− y) and Ir(y, p

′), Ur(y, p
′) are functions of the

variable y ∈ Ω.

Proof. Note that starting from some indexm the supports of the functions Φm(x−y)
lie in some compact subset B of Ω. Without loss of generality we can assume that
supp Φm ⊂ B for all m ∈ N. Let

Ĩr(y, p
′) =

∫
f(x, λ)(θ(λ− p′)− θ(λ− q))dγry(λ) ∈ L2

loc(Ω,Rn),

M = sup
r∈N
‖ur‖∞. Then supp γry ⊂ [−M,M ], and

|Ir(y, p′)− Ĩr(y, p′)| ≤
∫
|f(y, λ)− f(x, λ)|d|γry |(λ) ≤ 2‖F (y)− F (x)‖M,∞.

By Plancherel’s identity∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmIr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ−∫

Rn

ξ

|ξ|
· F (ΦmĨr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ =∣∣∣∣∫
Rn

ξ

|ξ|
· F (Φm(Ir(·, p′)− Ĩr(·, p′)))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ ≤
‖ψ‖∞‖Φm(Ir(·, p′)− Ĩr(·, p′))‖2‖ΦmUr(·, p′)‖2 ≤

‖ψ‖∞‖Φm(Ir(·, p′)− Ĩr(·, p′))‖2 ≤

2‖ψ‖∞
(∫

Km(x− y)‖F (y)− F (x)‖2M,∞dy

)1/2

.

Here we take account of the equality

‖Φm‖2 =

(∫
Ω

Km(x− y)dy

)1/2

= 1.

From the above estimate and (21) it follows that

lim
m→∞

∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmIr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ−∫

Rn

ξ

|ξ|
· F (ΦmĨr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ = 0 (25)

uniformly in r, p′. Observe that the function f̃(λ) = f(x, λ) ∈ C(R, H⊥+ ) is contin-
uous and does not depend on y. Therefore for any ε > 0 there exists a piece-wise

constant vector-valued function g(λ) of the form g(λ) =
k∑
i=1

viθ(λ − pi), where

vi ∈ H⊥+ , p = p1 < p2 < · · · < pk = q such that ‖f̃χ − g‖∞ ≤ ε on R. Here
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χ(λ) = θ(λ − p) − θ(λ − q). Moreover, by the density of D, we may suppose that
pi ∈ D for i > 1. We define for p′ ∈ D ∩ (p, p2)

Jr(y, p
′) =

∫
g(λ)θ(λ− p′)dγry(λ).

Using again Plancherel’s identity and the fact that

|Ĩr(y, p′)− Jr(y, p′)| =
∣∣∣∣∫ (f̃χ− g)(λ)θ(λ− p′)dγry(λ)

∣∣∣∣ ≤∫
|(f̃ · χ− g)(λ)|d|γry |(λ) ≤ 2ε,

we obtain ∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmĨr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ −∫

Rn

ξ

|ξ|
· F (ΦmJr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ =∣∣∣∣∫
Rn

ξ

|ξ|
· F (Φm(Ĩr(·, p′)− Jr(·, p′)))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ ≤
‖Φm(Ĩr(·, p′)− Jr(·, p′))‖2 · ‖ΦmUr(·, p′)‖2 · ‖ψ‖∞ ≤ 2‖ψ‖∞ε (26)

for all ψ(ξ) ∈ C(S). Since

Jr(y, p
′) =

∫ ( k∑
i=1

viθ(λ− p′i)

)
dγry(λ) =

k∑
i=1

viUr(y, p
′
i),

where p′i = max(pi, p
′) ∈ D, it follows from (14) with account of Remark 2 that

lim
p′→p+

lim
m→∞

lim
r→∞

∫
Rn

ξ

|ξ|
· F (ΦmJr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ =

lim
p′→p+

k∑
i=1

〈µp
′
ip
′

x , (vi · ξ)ψ(ξ)〉 =

k∑
i=1

〈µpip+x , (vi · ξ)ψ(ξ)〉 = 0. (27)

The last equality is a consequence of the inclusion suppµpip+x ⊂ suppµpp+x ⊂ H+

(because of Corollary 1) combined with the relation vi⊥H+. By (25), (26) and (27),
we have

lim
p′→p+

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ξ

|ξ|
· F (ΦmIr(·, p′))(ξ)F (ΦmUr(·, p′))(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ ≤ const·ε,

and it suffices to observe that ε > 0 can be arbitrary to complete the proof of (23).
The proof of relation (24) is similar to the proof of (23) and is omitted.

Now we assume that the sequence uk satisfies constraints (2). We choose a
subsequence ur and the corresponding H-measure µpq = µpqx dx. Assume that x ∈
Ω′′ = Ω′ ∩ Ωϕ, p0 ∈ R. As above, let H+, H− be the minimal linear subspaces of
Rn containing suppµp0p0+

x , suppµp0p0−x , respectively.

Theorem 3.2 (localization principle). There exists a positive δ such that (ϕ(x, λ)−
ϕ(x, p)) · ξ = 0 for all ξ ∈ H+, λ ∈ [p0, p0 + δ] and all ξ ∈ H−, λ ∈ [p0 − δ, p0].

Proof. The proof is analogous to the proof of [18, Theorem 4] (if d = 2), for ar-
bitrary d > 1 see the proof of [19, Theorem 4] (where the more general case of
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ultra-parabolic constraints was treated). For completeness we provide the details.
Observe firstly that in view of (2) the sequence of distributions

Lrp(y) =divy

(∫
θ(λ− p)(ϕ(y, λ)− ϕ(y, p))dγry(λ)

)
→
r→∞

0 in W−1
d,loc(Ω). (28)

For p, q ∈ D, q > p > p0 we consider the sequence of distributions

Lrq − Lrp =divy (Qpr(y)), r ∈ N,

where the vector-valued functions Qpr(y) ( for fixed q ∈ D ) are as follows:

Qpr(y) =

∫
(ϕ(y, λ)− ϕ(y, q))θ(λ− q)dγry(λ)−∫
(ϕ(y, λ)− ϕ(y, p))θ(λ− p)dγry(λ) =∫

(ϕ(y, q)− ϕ(y, λ))χ(λ)dγry(λ)−∫
(ϕ(y, q)− ϕ(y, p))θ(λ− p)dγry(λ) =∫

(ϕ(y, q)− ϕ(y, λ))χ(λ)dγry(λ)− (ϕ(y, q)− ϕ(y, p))Ur(y, p); (29)

here χ(λ) = θ(λ − p) − θ(λ − q) is the indicator function of the interval (p, q]. As
was already noted, divy (Qpr(y)) →

r→∞
0 in W−1

d,loc(Ω) and if Φ(y) ∈ C∞0 (Ω) then

divy (QprΦ(y)) →
r→∞

0 in W−1
d . (30)

Using the Fourier transformation, from (30) we obtain

|ξ|−1ξ · F (QprΦ)(ξ) = F (gr), gr →
r→∞

0 in Ld(Rn) (31)

(see [18, 19] for details).
Let ψ(ξ) ∈ C∞(S). By the known Marcinkiewicz multiplier theorem (cf. [23,

Chapter 4]) ψ(ξ/|ξ|) is a Fourier multiplier in Ls for all s > 1. This implies that

F (Ur(·, p)Φ)(ξ)ψ

(
ξ

|ξ|

)
= F (hr)(ξ), (32)

where the sequence hr is bounded in Ld
′
, d′ = d/(d− 1).

By (31), (32) we obtain∫
Rn

|ξ|−1ξ · F (QprΦ)(ξ)F (Ur(·, p)Φ)(ξ)ψ

(
ξ

|ξ|

)
=

∫
Rn

gr(x)hr(x)dx→ 0

as r →∞, or in view of (29),

lim
r→∞

{∫
Rn

|ξ|−1ξ · F (U(·, p)fΦ)(ξ)F (Ur(·, p)Φ)(ξ)ψ

(
ξ

|ξ|

)
dξ−∫

Rn

|ξ|−1ξ · F (Vr(·, p)Φ)(ξ)F (Ur(·, p)Φ)(ξ)ψ

(
ξ

|ξ|

)
dξ

}
= 0, (33)

where

f(y) = ϕ(y, q)− ϕ(y, p) and Vr(y, p) =

∫
(ϕ(y, q)− ϕ(y, λ))χ(λ)dγry(λ).

Obviously, (33) remains valid for merely continuous ψ(ξ). We set in (33) Φ(y) =
Φm(x− y) , where the functions Φm were defined in section 2, and pass to the limit
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as m → ∞, p → p0+. By (14) with Φ(y) = ϕ(y, q) − ϕ(y, p) and Lemma 3.1, we
obtain

lim
p→p0+

lim
m→∞

lim
r→∞

∫
Rn

|ξ|−1ξ · F (Ur(·, p)fΦm)(ξ)F (Ur(·, p)Φm)(ξ)ψ

(
ξ

|ξ|

)
dξ =

lim
p→p0+

(ϕ(x, q)− ϕ(x, p)) · 〈µppx , ξψ(ξ)〉 = (ϕ(x, q)− ϕ(x, p0)) · 〈µp0p0+
x , ξψ(ξ)〉,

therefore

(ϕ(x, q)− ϕ(x, p0)) · 〈µp0p0+
x , ξψ(ξ)〉 =

lim
p→p0+

lim
m→∞

lim
r→∞

∫
Rn

|ξ|−1ξ · F (Vr(·, p)Φm)(ξ)F (Ur(·, p)Φm)(ξ)ψ

(
ξ

|ξ|

)
dξ. (34)

Let π1 and π2 be the orthogonal projections of Rn onto the subspaces H+ and
H⊥+ , respectively; let ϕ̃(y, λ) = π1(ϕ(y, λ)), ϕ̄(y, λ) = π2(ϕ(y, λ)). Recall that
H+ is the smallest subspace containing suppµp0p0+

x . This readily implies that
〈µp0p0+
x , ξψ(ξ)〉 ∈ H+. Hence

(ϕ(x, q)− ϕ(x, p0)) · 〈µp0p0+
x , ξψ(ξ)〉 = (ϕ̃(x, q)− ϕ̃(x, p0)) · 〈µp0p0+

x , ξψ(ξ)〉. (35)

Further, Vr(y, p) = π1(Vr(y, p)) + π2(Vr(y, p)) and

π1(Vr(y, p)) =

∫
(ϕ̃(y, q)− ϕ̃(y, λ))χ(λ)dγry(λ),

π2(Vr(y, p)) =

∫
(ϕ̄(y, q)− ϕ̄(y, λ))χ(λ)dγry(λ).

Observe that

π2(Vr(y, p)) = Ir(y, p),

where the function Ir(y, p) is defined in (22) (with p′ replaced by p) for a vector-
function f(y, λ) = ϕ̄(y, q)− ϕ̄(y, λ) ∈ H⊥+ . By Proposition 3 we obtain

lim
p→p0+

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

|ξ|−1ξ · F (π2(Vr(y, p))Φm)(ξ)F (Ur(·, p)Φm)(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣=0.

(36)

Let Ṽr(y, p) = π1(Vr(y, p)). From (34), in view of (35) and (36), we see that

|(ϕ̃(x, q)− ϕ̃(x, p0)) · 〈µp0p0+
x , ξψ(ξ)〉| ≤

lim
p→p0+

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

|ξ|−1ξ · F (Ṽr(·, p)Φm)(ξ)F (Ur(·, p)Φm)(ξ)ψ

(
ξ

|ξ|

)
dξ

∣∣∣∣ ,
which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives us the
estimate ∣∣(ϕ̃(x, q)− ϕ̃(x, p0)) · 〈µp0p0+

x , ξψ(ξ)〉
∣∣ ≤

lim
p→p0+

lim
m→∞

lim
r→∞

‖Ṽr(·, p)Φm‖2 · ‖Ur(·, p)Φm‖2 · ‖ψ‖∞ ≤

lim
p→p0+

lim
m→∞

lim
r→∞

‖Ṽr(·, p)Φm‖2 · ‖ψ‖∞. (37)

Next, for Mq(y) = max
λ∈[p0,q]

|ϕ̃(y, q)− ϕ̃(y, λ)|

|Ṽr(y, p)| ≤Mq(y)

∣∣∣∣∫ χ(λ)d (δ(λ− ur(y)) + νy(λ))

∣∣∣∣ =

Mq(y)(ur(y, p)− ur(y, q) + u0(y, p)− u0(y, q)),
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where ur(y, λ) = θ(ur(y) − λ). In view of the elementary inequality (a + b)2 ≤
2(a2 + b2) and the relation 0 ≤ ur(y, p)− ur(y, q) ≤ 1, r ∈ N ∪ {0}, we have

‖Ṽr(·, p)Φm‖22 ≤ 2

∫
Ω

(Mq(y))2
(
(ur(y, p)− ur(y, q))2 +

(u0(y, p)− u0(y, q))2
)
Km(x− y)dy ≤

2

∫
Ω

(Mq(y))2(ur(y, p)− ur(y, q) +

u0(y, p)− u0(y, q))Km(x− y)dy. (38)

Since p, q ∈ D ⊂ E, then

ur(y, p)− ur(y, q) = Ur(y, p)− Ur(y, q) + u0(y, p)− u0(y, q) ⇀ u0(y, p)− u0(y, q)

as r → ∞ in the weak-∗ topology of L∞(Ω) and from (38) we now obtain the
estimate

lim
r→∞

‖Ṽr(·, p)Φm‖22 ≤ 4

∫
Ω

(Mq(y))2(u0(y, p)− u0(y, q))Km(x− y)dy,

from which, passing to the limit as m→∞, we obtain

lim
m→∞

lim
r→∞

‖Ṽr(·, p)Φm‖22 ≤ 4(Mq(x))2(u0(x, p)− u0(x, q)). (39)

Here we bear in mind that by the definition of Ω′ (see, for instance, [18, Proposi-
tion 3]) x is a Lebesgue point of the functions u0(y, p), u0(y, q). It is also used that
x ∈ Ωϕ is a Lebesgue point of the function (Mq(y))2 as well ( this easily follows
from the fact that x is a Lebesgue point of the maps y → ϕ(y, ·), y → |ϕ(y, ·)|2
into the spaces C(R,Rn), C(R), respectively ). From (39) in the limit as p→ p0 it
follows that

lim
p→p0

lim
m→∞

lim
r→∞

‖Ṽr(·, p)Φm‖22 ≤ 4(Mq(x))2(u0(x, p0)− u0(x, q)). (40)

In view of (37) and (40),

|(ϕ̃(x, q)− ϕ̃(x, p0)) · 〈µp0p0+
x , ξψ(ξ)〉| ≤ 2‖ψ‖∞Mq(x)ω(q), (41)

ω(q) = (u0(x, p0)− u0(x, q))1/2 = (νx(p0, q])
1/2 →

q→p0
0.

It is clear that the set of vectors of the form 〈µp0p0+
x , ξψ(ξ)〉, with real ψ(ξ) ∈ C(S)

spans the subspace H+. Hence we can choose functions ψi(ξ) ∈ C(S), i = 1, . . . , l
such that the vectors vi = 〈µp0p0+

x , ξψi(ξ)〉 make up an algebraic basis in H+.
By (41), for ψ(ξ) = ψi(ξ), i = 1, . . . , l, we obtain

|(ϕ̃(x, q)− ϕ̃(x, p0)) · vi| ≤ ciω(q)Mq(x), ci = const,

and since vi, i = 1, . . . , l is a basis in H+, these estimates show that

|ϕ̃(x, q)− ϕ̃(x, p0)| ≤ cω(q)Mq(x) =

cω(q) max
λ∈[p0,q]

|ϕ̃(x, q)− ϕ̃(x, λ)|, c = const. (42)

We take q = p0 + δ, where δ > 0 is so small that 2cω(q) = ε < 1. Then, in view of
(42),

|ϕ̃(x, q)− ϕ̃(x, p0)| ≤ ε

2
max
λ∈[p0,q]

|ϕ̃(x, q)− ϕ̃(x, λ)|, (43)

and since ϕ(x, q) is continuous with respect to q and the set D is dense, the estimate
(43) holds for all q ∈ [p0, p0 + δ].
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We claim that ϕ̃(x, p) = ϕ̃(x, p0) for p ∈ [p0, p0 + δ]. Indeed, assume that for
p′ ∈ [p0, p0 + δ]

|ϕ̃(x, p′)− ϕ̃(x, p0)| = max
λ∈[p0,p0+δ]

|ϕ̃(x, λ)− ϕ̃(x, p0)|.

Then for λ ∈ [p0, p
′] we have

|ϕ̃(x, p′)− ϕ̃(x, λ)| ≤ |ϕ̃(x, λ)− ϕ̃(x, p0)|+
|ϕ̃(x, p′)− ϕ̃(x, p0)| ≤ 2|ϕ̃(x, p′)− ϕ̃(x, p0)|

and
max

λ∈[p0,p′]
|ϕ̃(x, p′)− ϕ̃(x, λ)| ≤ 2|ϕ̃(x, p′)− ϕ̃(x, p0)|.

We now derive from (43) with q = p′ that

|ϕ̃(x, p′)− ϕ̃(x, p0)| ≤ ε|ϕ̃(x, p′)− ϕ̃(x, p0)|,
and since ε < 1, this implies that

|ϕ̃(x, p′)− ϕ̃(x, p0)| = max
λ∈[p0,p0+δ]

|ϕ̃(x, λ)− ϕ̃(x, p0)| = 0.

We conclude that ϕ(x, λ) − ϕ(x, p0) ∈ H⊥+ for all λ ∈ [p0, p0 + δ], i.e., (ϕ(x, λ) −
ϕ(x, p0)) · ξ = 0 on the segment [p0, p0 + δ] for all ξ ∈ H+.

To prove that for some sufficiently small δ > 0 (ϕ(x, λ)−ϕ(x, p0)) · ξ = 0 on the
segment [p0 − δ, p0] for all ξ ∈ H−, we take p, q ∈ D, q < p < p0 and repeat the
reasonings used in the first part of the proof. As a result, we obtain the relation
similar to (41)

|(ϕ̃(x, q)− ϕ̃(x, p0)) · 〈µp0p0−x , ξψ(ξ)〉| ≤ 2‖ψ‖∞Mq(x)ω(q),

where

Mq(x) = max
λ∈[q,p0]

|ϕ̃(y, q)− ϕ̃(y, λ)|,

ω(q) = lim
p→p0−

(u0(x, q)− u0(x, p))1/2 = (νx(q, p0))1/2 →
q→p0

0.

This relation readily implies the desired statement (ϕ(x, λ) − ϕ(x, p0)) · ξ = 0 on
the segment [p0 − δ, p0] for all ξ ∈ H−, where δ is sufficiently small.

The proof is complete.

Corollary 2. Let x ∈ Ω′′, [a, b] be the minimal segment, containing supp νx and
p0 ∈ (a, b). Assume that S+, S− ⊂ S are Borel sets such that

µp0p0+
x (S \ S+) = µp0p0−x (S \ S−) = 0. (44)

Then S+ ∩ S− 6= ∅. In particular, suppµp0p0+
x ∩ suppµp0p0−x 6= ∅ and, in the

notations of Theorem 3.2, for all ξ ∈ H+ ∩ H−, ξ 6= 0 the function ξ · ϕ(x, λ) is
constant in a vicinity of p0.

Proof. First, note that since x ∈ Ω′′ ⊂ Ω′ is a Lebesgue point of the functions u0(·, p)
for all p ∈ D while D is dense, the distribution function u0(x, λ) = νx((λ,+∞))
is uniquely defined by the relation u0(x, λ) = sup

p∈D,p>λ
u0(x, p). In particular, the

measure νx is well-defined at the point x.
The statement that the function λ → ξ · ϕ(x, λ) is constant in a vicinity of p0

for all ξ ∈ H+ ∩ H−, ξ 6= 0 readily follows from the assertion of Theorem 3.2.
Hence, we only need to show that S+ ∩ S− 6= ∅ whenever Borel sets S+, S− satisfy
condition (44). We assume to the contrary that S+ ∩S− = ∅. Denote C+ = S \S+,
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C− = S \ S−, Then S = C+ ∪ C−, µp0p0+
x (C+) = µp0p0−x (C−) = 0. Therefore, by

relation (16), for all p, q ∈ D, p < p0 < q

Varµpqx = |µpqx |(S) ≤ |µpqx |(C+) + |µpqx |(C−) ≤
(µppx (C+)µqqx (C+))

1/2
+ (µppx (C−)µqqx (C−))

1/2 ≤ (µqqx (C+))
1/2

+ (µppx (C−))
1/2

,

where we use that µppx (A) ≤ µppx (S) ≤ 1 for all p ∈ D and every Borel set A ⊂ S,
see (13). It follows from the obtained estimate and Lemma 3.1 that

lim
p→p0−

lim
q→p0+

Varµpqx ≤
(
µp0p0+
x (C+)

)1/2
+
(
µp0p0−x (C−)

)1/2
= 0.

Thus,

µpqx → 0 in M(S) as p→ p0−, q → p0 + . (45)

On the other hand, by (14)

µpqx (S) = lim
m→∞

lim
r→∞

∫
Rn

F (ΦmUr(·, p))(ξ)F (ΦmUr(·, q))(ξ)dξ =

lim
m→∞

lim
r→∞

∫
Rn

Ur(y, p)Ur(y, q)Km(x− y)dy. (46)

Observe that Ur(y, λ) = θ(ur(y)− λ)− u0(y, λ). Since Ur(·, p) ⇀
r→∞

0 for all p ∈ D
and (θ(ur(y)− p)− 1)θ(ur(y)− q) ≡ 0, we find

lim
r→∞

∫
Rn

Ur(y, p)Ur(y, q)Km(x− y)dy =

lim
r→∞

∫
Rn

(Ur(y, p)− 1)Ur(y, q)Km(x− y)dy =

lim
r→∞

∫
Rn

(θ(ur(y)− p)− 1− u0(y, p))(θ(ur(y)− q)− u0(y, q))Km(x− y)dy =

lim
r→∞

∫
Rn

[(1− θ(ur(y)− p))u0(y, q)− u0(y, p)(θ(ur(y)− q)− u0(y, q))]Km(x− y)dy

=

∫
Rn

(1− u0(y, p))u0(y, q)Km(x− y)dy.

In the limit as m→∞ this yields

lim
m→∞

lim
r→∞

∫
Rn

Ur(y, p)Ur(y, q)Km(x− y)dy =

lim
m→∞

∫
Rn

(1− u0(y, p))u0(y, q)Km(x− y)dy = (1− u0(x, p))u0(x, q).

Here we take into account that x is a Lebesgue point of the functions u0(y, p),
u0(y, q). By (45), (46) we find

0 = lim
p→p0−

lim
q→p0+

µpqx (S) =

lim
p→p0−

lim
q→p0+

(1− u0(x, p))u0(x, q) = νx((−∞, p0))νx((p0,+∞)) > 0,

since a < p0 < b and [a, b] is the minimal segment containing supp νx. The obtained
contradiction implies that S+ ∩ S− 6= ∅ and completes the proof.

Remark 3. Let us consider the particular case n = 2, ϕ(u) = (u, f(u)) with
f(u) ∈ C(R). Let Ω ⊂ R2 be an open plain domain. Suppose that a sequence
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uk = uk(t, x) converges weakly-∗ in L∞(Ω) to a function u = u(t, x) and satisfies
restrictions (2), that is, for p ∈ R the sequences

((uk − p)+)t + [θ(uk − p)(f(uk)− f(p))]x

are precompact in W−1
d,loc(Ω) for some d > 1. Here we use the standard notation

v+ = θ(v)v = max(v, 0).
Further, we assume that a subsequence ur = ukr of the sequence uk converges

as r → ∞ to a bounded measure valued function νt,x in the sense of relation (11).
Let [a(t, x), b(t, x)] be the minimal segment containing supp νt,x. By Corollary 2,
for a.e. (t, x) ∈ Ω and each p ∈ (a(t, x), b(t, x)) there is a nonzero vector ξ = (ξ1, ξ2)
such that the function ξ1u + ξ2f(u) = const in a vicinity of p. This simply means
that the function f(u) is affine in a neighborhood of any point p ∈ (a(t, x), b(t, x)).
Obviously, this implies that f(u) is affine on the segment [a(t, x), b(t, x)]. Therefore,
for a.e. (t, x) ∈ Ω∫

f(λ)dνt,x(λ) = f

(∫
λdνt,x(λ)

)
= f(u(t, x)).

In view of (11) we obtain that f(ur) ⇀ f(u) as r → ∞ weakly-∗ in L∞(Ω). Since
the limit function f(u) does not depend on a choice of the subsequence ur, we claim
that the obtained limit relation actually holds for the original sequence as well:

f(uk) ⇀
k→∞

f(u) weakly-∗ in L∞(Ω).

It follows from this relation that

(uk)t + f(uk)x ⇀ ut + f(u)x in D′(Ω)

as k →∞. For instance, if the sequence (uk)t + f(uk)x weakly converges to zero in
D′(Ω), then the limit function u(t, x) is a weak solution of equation

ut + f(u)x = 0. (47)

In particular, this implies the known result that the weak limit of a sequence of
entropy solutions of equation (47) is a weak solution of this equation. This result
is usually proved with the help of compensated compactness theory, see [3, 4, 24].
Here we obtain it again relying only on the localization properties of H-measures.
Observe also that, as it was established in [20], actually a weak limit of the sequence
of entropy solutions of (47) is not only weak but also an entropy solution of this
equation (in the case Ω = (0, T )× R).

Now we are ready to prove Theorem 1.1.

Proof. Let ur = ukr be a subsequence of uk chosen in accordance with Proposition 1.
In particular, this subsequence converges to a measure-valued function νx ∈ MV(Ω).
In view of (11) for a.e. x ∈ Ω

u(x) =

∫
λdνx(λ). (48)

We define the set of full measure Ω′′ ⊂ Ω and the minimal segment [a(x), b(x)],
containing supp νx, x ∈ Ω′′, as is required in Corollary 2. In view of (48) u(x) ∈
(a(x), b(x)) whenever a(x) < b(x). By Corollary 2 the function ξ ·ϕ(x, ·) is constant
in a vicinity of u(x) for some vector ξ 6= 0. But this contradicts to the assumption
of Theorem 1.1. Therefore, a(x) = b(x) = u(x) for a.e. x ∈ Ω. This means that
νx(λ) = δ(λ−u(x)). By Theorem 2.1 the subsequence ur → u as r →∞ in L1

loc(Ω).
Finally, since the limit function u(x) does not depend on the choice of a subsequence
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ur, we conclude that the original sequence uk → u in L1
loc(Ω) as k →∞. The proof

is complete.

4. Decay property. This section is devoted to the proof of Theorem 1.3. Suppose
that u(t, x) is a unique e.s. to problem (4), (7) with the periodic initial data u0(x).
By Remark 1 we can assume that u(t, x) ∈ C([0,+∞), L1(Tn)) (after possible
correction on a set of null measure). We consider the sequence uk(t, x) = u(kt, kx),
k ∈ N, consisting of e.s. of (4). As was firstly shown in [2], the decay property
(10) is equivalent to the strong convergence ur(t, x) →

r→∞
I = const in L1

loc(Π) of a

subsequence ur = ukr (t, x). As follows from [21, Lemma 3.2(i)], ur ⇀ u∗, where

u∗ = u∗(t) is a weak-∗ limit of the sequence a0(krt), where a0(t) =

∫
Tn

u(t, x)dx.

Since u(t, x) is an e.s. of (4), this function is constant: a0(t) ≡ I =

∫
Tn

u0(x)dx, in

view of (8). Therefore, ur ⇀ I as r → ∞ (actually, the original sequence uk ⇀ I
as k →∞).

Let µpq, p, q ∈ E, be the H-measure corresponding to a subsequence ur =
ukr (t, x). Recall that µpq = µpq(t, x, τ, ξ) ∈ Mloc(Π× S), where

S = { ξ̂ = (τ, ξ) ∈ R× Rn | |ξ̂|2 = τ2 + |ξ|2 = 1 }

is a unit sphere in the dual space Rn+1 (the variable τ corresponds to the time
variable t).

By [21, Theorem 3.1] the following localization principle holds

suppµpq ⊂ Π× S0,

where

S0 = { ξ̂/|ξ̂| | ξ̂ = (τ, ξ) 6= 0, τ ∈ R, ξ ∈ L′ }.
As was demonstrated in Proposition 2, µpq = µpqt,xdtdx for all p, q ∈ D, where

D ⊂ E is a countable dense subset and measures µpqt,x ∈ M(S), are defined for all
(t, x) belonging to a set of full measure Π′ ⊂ Π. Obviously, the identity

〈µpp,Φ(t, x, ξ̂)〉 =

∫
Π

〈µppt,x(ξ̂),Φ(t, x, ξ̂)〉dtdx, (49)

Φ(t, x, ξ̂) ∈ C0(Π× S), remains valid also for compactly supported Borel functions

Φ. Taking Φ = φ(t, x)h(ξ̂), where φ(t, x) ∈ C0(Π), φ(t, x) ≥ 0 while h(ξ̂) is an
indicator function of the set S \ S0, we derive from (49) that∫

Π

µppt,x(S \ S0)φ(t, x)dtdx = 0

and since µppt,x ≥ 0 and φ(t, x) ∈ C0(Π) is arbitrary nonnegative function, it follows

from this identity that µppt,x(S \ S0) = 0 for all p ∈ D, (t, x) ∈ Π0, where Π0 ⊂
Π′ is a subset of full measure. By relation (16) we claim that, more generally,
|µpqt,x|(S \ S0) = 0 for all p, q ∈ D, (t, x) ∈ Π0. Finally, in view of Lemma 3.1, we
find that

|µpq±t,x |(S \ S0) = 0 ∀p, q ∈ R, (t, x) ∈ Π0. (50)

Further, ur(t, x) is a sequence of entropy solutions of (4). Therefore ( see for instance
[19] ) the sequences

div [θ(ur − p)(ϕ̂(ur)− ϕ̂(p))] = ((ur − p)+)t+ divx [θ(ur − p)(ϕ(ur)− ϕ(p))]
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are compact in H−1
d,loc(Π) for some d > 1 and all p ∈ R, where ϕ̂(u) = (u, ϕ(u)) ∈

C(R,Rn+1).
Denote by νt,x ∈ MV(Π) the limit measure valued function for a sequence ur,

and by [a(t, x), b(t, x)] the minimal segment containing supp νt,x.
Suppose that (t, x) ∈ Π0, a(t, x) < b(t, x). Then I =

∫
λdνt,x(λ) ∈ (a(t, x), b(t,

x)). Taking (50) into account, we see that the Borel sets S± = suppµII±t,x ∩S0 satisfy

requirement (44). By Corollary 2 we find that suppµII+t,x ∩ suppµII−t,x ∩ S0 6= ∅.
Therefore, there exist ξ̂ = (τ, ξ) ∈ suppµII+t,x ∩ suppµII−t,x ∩ S0 and δ > 0 such that
the function

λ→ ξ̂ · ϕ̂(λ) = τλ+ ξ · ϕ(λ) = c = const (51)

on the interval V = {λ | |λ − I| < δ}. Since ξ̂ ∈ S0, we can assume that ξ ∈ L′
in (51). Evidently, ξ 6= 0 (otherwise, τλ ≡ c on V for τ 6= 0). Hence the function
ξ · ϕ(λ) = c− τλ is affine, which contradicts (9). Thus, a(t, x) = b(t, x) = I for a.e.
(t, x) ∈ Π. We conclude that νt,x(λ) = δ(λ − I) and by Theorem 2.1 the sequence
ur → I as r →∞ strongly (in L1

loc(Π) ). As was mentioned above (one can simply
repeat the conclusive part of the proof of Theorem 1.1 in [21]), this implies (10).

Conversely, if the assumption (9) fails, we can find ξ ∈ L′, ξ 6= 0, and constants
a, b ∈ R such that ξ · ϕ(λ) ≡ aλ + b on a segment [I − δ, I + δ], δ > 0. Then, as is
easily verified, the function

u(t, x) = I + δ sin(2π(ξ · x− at))

is the e.s. of (4), (7) with initial data u0(x) = I + δ sin(2π(ξ · x)). It is clear that
u0(x) is L-periodic and

∫
Tn u0(x)dx = I, but the e.s. u(t, x) does not satisfy the

decay property.

Example. Let n = 1, ϕ(u) = |u|. Let u = u(t, x) be an e.s. of the problem

ut + (|u|)x = 0, u(0, x) = u0(x), (52)

where u0(x) ∈ L∞(R) is a nonconstant periodic function with a period l (for a
constant u0 ≡ c the e.s. u ≡ c and the decay property is evident). Notice that no
previous results [2, 5, 21] can help to answer the question whether the decay prop-

erty is satisfied. However, as follows from Theorem 1.3, if I = 1
l

∫ l
0
u0(x)dx = 0,

then the decay property holds:
∫ l

0
|u(t, x)|dx → 0 as t → ∞. Actually, the

condition
∫ l

0
u0(x)dx = 0 is also necessary for the decay property (10). Indeed,

u(t, x) = u0(x ∓ t) if ±u0(x) ≥ 0 (then ±I > 0), and the decay property is evi-
dently violated. In the remaining case when u0 changes sign we define the functions
u+(t, x) = v+(x − t), u−(t, x) = v−(x + t), where v+(x) = max(u0(x), 0) ≥ 0,
v−(x) = min(u0(x), 0) ≤ 0. Note that these functions take zero values on sets of
positive measures. By the construction, v−(x) ≤ u0(x) ≤ v+(x) and u±(t, x) are
e.s. of (52) with initial data v±(x). In view of the known property of monotone
dependence of e.s. on initial data u−(t, x) ≤ u(t, x) ≤ u+(t, x) a.e. on Π. These
inequality can be written in the form

u(t, x− t) ≥ v−(x), u(t, x+ t) ≤ v+(x). (53)

Assuming that u(t, x) satisfies the decay property, we find, with the help of x-
periodicity of u(t, ·), that∫ l

0

|u(t, x± t)− I|dx =

∫ l

0

|u(t, x)− I|dx→ 0 as t→ +∞,
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that is, the functions u(t, x± t) →
t→+∞

I in L1([0, l]). Passing to the limit as t→ +∞
in (53), we find that v−(x) ≤ I ≤ v+(x) for a.e. x ∈ R. The latter is possible only
if I = 0. We conclude that the decay property holds only in the case I = 0.

Remark 4. Theorem 1.3 can be extended to more general case of almost periodic
initial data (in the Besicovitch sense [1]). Repeating the arguments of [22], we arrive
at the following analogue of Theorem 1.3.

Theorem 4.1. Let M0 be the additive subgroup of Rn generated by the spectrum
of u0. Assume that for all ξ ∈ M0, ξ 6= 0 the function ξ · ϕ(λ) is not affine in
any vicinity of I = −

∫
Rn u0(x). Then the e.s. u(t, x) of (4), (7) satisfies the decay

property

lim
t→+∞

−
∫
Rn

|u(t, x)− I|dx = 0.

Here −
∫
Rn

v(x)dx denotes the mean value of an almost periodic function v(x) (see

[1] ).
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