Research article

Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods

  • Received: 18 October 2020 Accepted: 21 January 2021 Published: 02 February 2021
  • MSC : 62G07, 62C05, 62E20

  • An alternative measure of uncertainty related to residual lifetime function is the dynamic cumulative residual entropy which plays a significant role in reliability and survival analysis. This article deals with estimating dynamic cumulative residual Rényi entropy (DCRRE) for Lomax distribution using maximum likelihood and Bayesian methods of estimation. The maximum likelihood estimates and approximate confidence intervals of DCRRE are derived. Bayesian estimates and Bayesian credible intervals are derived based on gamma priors for the DCRRE under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distributions. The Bayes estimates are compared through Monte Carlo simulations. Regarding simulation results, we observe that the maximum likelihood and Bayesian estimates of the DCRRE are decreasing function on time. Further, maximum likelihood and Bayesian estimates of the DCRRE perform well as the sample size increases. Bayesian estimate of the DCRRE under LINEX loss function is more convenient than the other estimates in the most of the situations. Real data set is analyzed for clarifying purposes.

    Citation: Abdulhakim A. Al-Babtain, Amal S. Hassan, Ahmed N. Zaky, Ibrahim Elbatal, Mohammed Elgarhy. Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods[J]. AIMS Mathematics, 2021, 6(4): 3889-3914. doi: 10.3934/math.2021231

    Related Papers:

    [1] Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133
    [2] Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy . Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics, 2023, 8(9): 20283-20304. doi: 10.3934/math.20231034
    [3] M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
    [4] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052
    [5] Haiping Ren, Ziwen Zhang, Qin Gong . Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434
    [6] Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy . Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution. AIMS Mathematics, 2024, 9(11): 32646-32673. doi: 10.3934/math.20241563
    [7] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [8] Ehab M. Almetwally, Ahlam H. Tolba, Dina A. Ramadan . Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application. AIMS Mathematics, 2025, 10(4): 9171-9201. doi: 10.3934/math.2025422
    [9] Mansour Shrahili, Mohamed Kayid . Rényi entropy of past lifetime from lower $ k $-record values. AIMS Mathematics, 2024, 9(9): 24401-24417. doi: 10.3934/math.20241189
    [10] Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed . Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881
  • An alternative measure of uncertainty related to residual lifetime function is the dynamic cumulative residual entropy which plays a significant role in reliability and survival analysis. This article deals with estimating dynamic cumulative residual Rényi entropy (DCRRE) for Lomax distribution using maximum likelihood and Bayesian methods of estimation. The maximum likelihood estimates and approximate confidence intervals of DCRRE are derived. Bayesian estimates and Bayesian credible intervals are derived based on gamma priors for the DCRRE under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distributions. The Bayes estimates are compared through Monte Carlo simulations. Regarding simulation results, we observe that the maximum likelihood and Bayesian estimates of the DCRRE are decreasing function on time. Further, maximum likelihood and Bayesian estimates of the DCRRE perform well as the sample size increases. Bayesian estimate of the DCRRE under LINEX loss function is more convenient than the other estimates in the most of the situations. Real data set is analyzed for clarifying purposes.



    Entropy is a fundamental uncertainty measure of a random variable. Shannon [1] provided a quantitative measure of uncertainty as a measure of information. A flexible extension of Shannon entropy was introduced by Rényi [2]. The Rényi entropy is one parameter generalization of the Shannon entropy and can be used as a measure of randomness. Applications of Rényi entropy can be found in many fields, such as biology, genetics, electrical engineering, computer science, economics, chemistry and physics.

    The Rényi entropy has been widely used in analysis of the quantum systems. It can be employed in the analysis of quantum communication protocols (Renner et al. [3]), quantum correlations (Lévay et al. [4]). Also it can be used to characterize the number of reads needed to reconstruct a DNA sequences (see, Motahari et al. [5]). Rényi entropy has numerous issues as a data analysis tools in many practical applications, especially in data that dealing with time-frequency representations. Gabarda and Cristobal [6] applied the Rényi entropy to an image fusion method and identified which pixels have a higher amount of information among the given input images. Rényi entropy can be used to calculate the risk measure of portfolio.

    Entropy concepts can be related to informational market efficiency. Martina et al. [7] studied the complexity of crude oil prices using entropy measures to monitor the evolution of crude oil price movements. They found that the methods based on entropy concepts can shed light on the structure of crude oil markets as well as on its link to macroeconomic conditions and socio-political extreme events. Resconi et al. [8] provided a new suggestive reading of quantum mechanics by starting from the superposition of different Boltzmann entropies. They suggested that a quantum entropy space can be used as the fundamental arena that describing the quantum effects. Another measure of uncertainty deals with residual lifetime function is dynamic cumulative residual entropy (DCRE) which can be attractive in many fields like reliability and survival analysis. Recently, there are considerable literatures assigned to the applications, generalizations and properties of Rényi's measure of entropy.

    Recently, there are many literatures studied the estimation procedure for the entropy measures. Kayal and Kumar [9] considered Bayesian estimation of entropy for exponential distribution under LINEX loss function. Seo et al. [10] produced an entropy estimate using upper record values from the generalized half-logistic distribution. Based on generalized progressive hybrid censoring scheme, Bayesian estimates of entropy for Weibull distribution were discussed by Cho et al. [11]. Based on record values, Chacko and Asha [12] studied the estimation of the entropy for generalized exponential distribution. Patra et al. [13] estimated a function of scale parameter of an exponential population under general loss function. Maximum likelihood (ML) estimate of Shannon entropy for inverse Weibull distribution under multiple censored data was discussed by Hassan and Zaky [14]. Petropoulos et al. [15] provided improved estimators of the entropy for the scale mixture of exponential distributions. Estimation of entropy for inverse Lomax distribution under multiple censored has been studied by Bantan et al. [16]. Bayesian estimate of the entropy for Lomax distribution based on upper record values has been studied by Hassan and Zaky [17].

    If X is an absolutely continuous random variable with probability density function (PDF) f (x), then the corresponding Rényi entropy of order β is defined as:

    IR(β)=11βlog(fβ(x)dx),β>0andβ1. (1)

    Recently, measurements of uncertainty for probability distributions became more interested. Sunoj and Linu [18] defined the cumulative residual Rényi entropy (CRRE) for residual lifetime Xt = (Xt | X > t) based on survival function instead of using PDF as follows:

    γR(β)=11βlog(0ˉFβ(x)dx),β>0andβ1, (2)

    where, ˉF(t)=P(X>t)=1F(t) is the survival (reliability) function. The main features of the CRRE are always non-negative as well as it has consistent definitions in both the continuous and discrete domains. Furthermore it can be easily computed from sample data and these computations asymptotically converge to the true values (see, Rao et al. [19]). Sunoj and Linu [18] defined the DCRRE as a dynamic form of uncertainty as follows:

    γR(β)=11βlog(tˉFβ(x)ˉFβ(t)dx),β>0andβ1. (3)

    Therefore, when t = 0, the DCRRE tends to CRRE. In the literature, few studies had been done concerning the inferential procedures of the entropy measures incorporating DCRRE for lifetime distributions. Kamari [20] produced some properties of the DCRRE based on order statistics. Kundu et al. [21] presented the cumulative residual and past inaccuracy measures which are extensions of the corresponding cumulative entropies for truncated random variables. Renjini et al. [22] discussed the Bayesian estimates of the DCRRE for the Pareto distribution using Type II right censored data. Renjini et al. [23] discussed the Bayesian estimates of the DCRRE for Pareto distribution of the first kind under upper record values. Renjini et al. [24] obtained Bayesian estimate of the DCRRE for Pareto distribution based on complete data. Bayesian estimate of dynamic cumulative residual Shannon entropy for Pareto II distribution has been studied by Ahmadini et al. [25].

    Lomax [26] proposed a very good alternative to the common lifetime distributions such as exponential, Weibull, or gamma when the experimenter presumes that the population distribution may be heavy-tailed. Lomax distribution can be applied in a variety of fields such as a business failure data model, income and wealth inequality, computer science, risk analysis and economics, actuarial science and reliability. Corbellini et al. [27] used it to model firm size and queuing problems. As an important lifetime distribution, the Lomax distribution with shape parameter α and scale parameter λ has the following PDF

    f(x;α,λ)=αλα(x+λ)(α+1),x,α,λ>0. (4)

    The cumulative distribution function (CDF) corresponding to (4) is given by,

    F(x;α,λ)=1λα(x+λ)α,x,α,λ>0. (5)

    At λ=1,α1, Lomax distribution reduces to the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind). At α=1,λ1, Lomax distribution reduces to a log-logistic distribution. At α=λ=1, the Lomax distribution reduces to F-distribution, F (2, 2). The reliability and hazard rate functions of Lomax distribution are given, respectively, by

    ˉF(x;α,λ)=λα(x+λ)α,

    and,

    h(x;α,λ)=α(x+λ)1.

    The hazard rate function of Lomax distribution takes different shapes according to values of shape parameter α. It is a constant at α=1, and it is continuously decreasing at α>1, which represents early failures.

    Studies about the Lomax distribution have been provided by many authors. For instance, Abd-Elfattah et al. [28] obtained the Bayesian and non-Bayesian estimates of the sample size for the Lomax distribution in case of Type-I censored samples. Record values of Lomax distribution were discussed by Ahsanullah [29]. Balakrishnan and Ahsanullah [30] introduced some recurrence relations between the moments of record values from Lomax distribution. Hassan and Al-Ghamdi [31] determined the optimum test plan for simple step stress accelerated life testing. Hassan et al. [32] discussed the optimal times of changing stress level for k-level step stress accelerated life tests based on adaptive Type-II progressive hybrid censoring with product's life time following Lomax distribution. For more application about Lomax distribution, the reader can refer to [33,34,35,36,37,38].

    From the above, it is evident that the Lomax distribution has been received greatest attention from theoretical and statisticians primarily due to its use in various fields. In the literature, there are no reports about the statistical inference of the DCRRE for Lomax distribution. So we need to estimate the DCRRE for Lomax distribution in view of Bayesian and non-Bayesian procedures based on complete samples. The ML estimates and approximate confidence intervals of the DCRRE are obtained. The Bayesian estimate is calculated using gamma priors under squared error (SE), LINEX and precautionary (PRE) loss functions. According to the complicated forms of the DCRRE Bayesian estimate, we employ the Markov Chain Monte Carlo (MCMC) simulation technique for numerical study.

    This article can be organized as follows. Section 2 gives the DCRRE of Lomax distribution as well as obtains the ML and approximate confidence intervals of DCRRE. Section 3 presents Bayesian estimate of the DCRRE for Lomax distribution under symmetric and asymmetric loss functions. The MCMC technique is given in Section 4. A real data application is illustrated in Section 5. The paper ends with some conclusions based on the results of the numerical studies.

    This section provides an explicit expression of the DCRRE for Lomax distribution. Then, the ML estimate of the DCRRE is derived based on complete random sample.

    The DCRRE of Lomax distribution is obtained by substituting (5) in (3) as follows:

    γR(β)=11βlog(t(x+λ)αβ(t+λ)αβdx). (6)

    Hence, after simplification the DCRRE takes the form

    γR(β)=11βlog(t+λαβ1),β>0,β1andαβ>1. (7)

    This is the required expression of the DCRRE for Lomax distribution. To obtain the ML estimate of γR(β), we must obtain the ML estimate of the model parameters α and λ.

    Consider a simple random sample of size n drawn from PDF (4) and CDF (5), where α and λ are unknown. Then, given the sample x_=(x1,x2,...,xn), the likelihood function of Lomax distribution can be written as follows

    L(α,λ|x_)=αnλnαni=1(xi+λ)(α+1). (8)

    It is usually easier to maximize the natural logarithm of the likelihood function rather than the likelihood function itself. Therefore, the logarithm of likelihood function, say ln, is

    ln=nlogα+nαlogλ(α+1)ni=1log(xi+λ).

    The partial derivatives of the log-likelihood function with respect to α and λ, are obtained as follows:

    lnα=nα+nlogλni=1log(xi+λ), (9)

    and

    lnλ=nαλ(α+1)ni=1(xi+λ)1. (10)

    The ML estimates of α and λ are determined by solving the equations ln/lnαα=0, and ln/lnλλ=0, simultaneously. Further the resulting equations cannot be solved analytically, so, numerical technique must be applied to solve these equations, simultaneously, to obtain ˆαML and ˆλML. The existence and uniqueness of ˆαML and ˆλML can be checked by solving, algebraically, ln/lnαα=0 and ln/lnλλ=0, simultaneously and checking that, the second derivative is negative which is a maximum point.

    Hence, by using the invariance property of ML estimate, then ML estimates of the DCRRE denoted by ˆγR,ML(β) becomes

    ˆγR,ML(β)=11βlog(t+ˆλMLˆαMLβ1),β>0,β1andˆαMLβ>1. (11)

    Furthermore, a confidence interval of the DCRRE is the probability that a real value of the entropy will fall between an upper and lower bounds of a probability distribution. For large sample size, the ML estimates, under appropriate regularity conditions, are consistent and asymptotically normally distributed. Therefore, the two-sided approximate confidence limits for ˆγR,ML(β) can be constructed, such that

    p[zη/η22ˆγR,ML(β)γR,ML(β)σ(ˆγR,ML(β))zη/η22]=1η, (12)

    where, zη/η22 is 100 (1η) the standard normal percentile, and η is the significant level. Therefore, the lower (L) and upper (U) confidence limits for ˆγR,ML(β) can be obtained as

    L=ˆγR,ML(β)zη2σ(ˆγR,ML(β)) and U=ˆγR,ML(β)+zη2σ(ˆγR,ML(β)), (13)

    where σ(ˆγR,ML(β)) is the standard deviation. The two-sided approximate confidence limits for DCRRE will be constructed with confidence level 95 %.

    In this section, the Bayesian estimates of γR(β) under symmetric (SE) and asymmetric (LINEX and PRE) loss functions are obtained by assuming the priors of parameters α and λ have gamma distributions. As reported by Kayal and Kumar [9], the SE loss function is used when weights of error caused by observation and underestimation are equal. But asymmetric loss function is used when the overestimation may have more serious than underestimation or vice versa. To compute the Bayesian estimate of γR(β), we proceed as follows. Firstly, the Bayesian estimates of α and λ are obtained and then the DCRRE estimate will be calculated by substituting the parameter estimates in (7). Additionally, the width of the Bayesian credible interval (BCI) estimates is obtained.

    In Bayesian method, there are many methods that can be used in selection of prior. There are two types of the prior distributions, non-informative and informative prior (IP) distributions. The prior of parameters may be selected as independent or dependent priors. In this paper, we assume the prior of parameters α and λ, denoted by π1(α) and π2(λ) are independent. Following Pak and Mahmoudi [39], we take π1(α) and π2(λ) to be gamma distributions with parameters (a, b) and (c, d) as follows

    π1(α)=abΓ(b)αb1eαa,π2(λ)=cdΓ(c2)λc1eλd, (14)

    where a, b, c and d are known and non-negative. So, the joint posterior for parameters, denoted by π1,2(α,λ), is

    π1,2(α,λ|x_)=L(α,λ|x_)π1(α)π2(λ)00L(α,λ|x_)π1(α)π2(λ)dαdλ=S1αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1),where,S=00αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ. (15)

    So, the marginal posterior PDF of parameters α and λ is given respectively by:

    π1(α|x_)=0αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dλ00αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ, (16)

    and

    π2(λ|x_)=0αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dα00αn+b1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ. (17)

    Therefore, the Bayesian estimates of α and λ under SE loss function, say ˆαSE, and ˆλSE can be obtained as posterior mean as follows:

    ˆαSE=S100αn+bλnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ, (18)

    and,

    ˆλSE=S100αn+b1λnα+de(αa+λc)ni=1(xi+λ)(α+1)dαdλ. (19)

    While, the Bayesian estimates of parameters α and λ under LINEX loss function, say ˆαLINEX, and ˆλLINEX are obtained as follows:

    ˆαLINEX=1νlog[0eανπ2(α|x_)dα],ν0=1νlog(S100αn+b1λnα+d1e(να+αa+λc)ni=1(xi+λ)(α+1)dαdλ), (20)

    and

    ˆλLINEX=1νlog[0eλνπ2(λ|x_)dλ],ν0=1νlog(S100αn+b1λnα+d1e(νλ+αa+λc)ni=1(xi+λ)(α+1)dαdλ), (21)

    where, ν is a real number. Additionally, the Bayesian estimates of parameters α and λ under PRE loss function say ˆαPRE and ˆλPRE are given as follows:

    ˆαPRE=[0α2π1(α|x_)dα]12=(S100αn+b+1λnα+d1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ)12, (22)

    and

    ˆλPRE=[0λ2π2(λ|x_)dλ]12=(S100αn+b1λnα+d+1e(αa+λc)ni=1(xi+λ)(α+1)dαdλ)12. (23)

    Integrals (18)–(23) do not take a closed form, so the Metropolis-Hastings (M-H) and random-walk Metropolis algorithms are employed to generate the MCMC samples from posterior density functions (16) and (17), respectively. Hence, the Bayesian estimates of α and λ under SE, LINEX and PRE loss functions are obtained as the mean of the simulated samples from their posteriors. Further, once the Bayes estimates of α and λ are obtained. Therefore, the Bayesian estimate of the DCRRE, denoted by ˆγR,BE(β)SE, under SE loss function is obtained, by using (7), as follows:

    ˆγR,BE(β)SE=11βlog(t+ˆλSEˆαSEβ1). (24)

    By similar way, we obtain the Bayesian estimate of γR(β) for Lomax distribution under LINEX, and PRE loss functions. Furthermore, the BCI is a useful summary of the posterior distribution which reflects its variation that is used to quantify the statistical uncertainty. An approximate highest posterior density interval of γR(β) is obtained by using the same algorithm of Chen and Shao [40].

    This section evaluates the performance of the ML and Bayes estimates (BEs) based on simulation study.

    The maximum likelihood estimates (MLEs) of the DCRRE for various sample sizes are computed by using Equations (9) and (10). Criteria measures include mean square error (MSE), average length (AL) and coverage probability (CP) are computed to investigate the performance of MLEs. Simulation procedures can be described as follows:

    ●  1000 random samples of sizes n = 30, 50, 70 and 100 are generated from Lomax distribution.

    ●  The values of parameters are selected as α=(1.5,2.5), λ=(0.5,1.5,4) and β=(3,5).

    ●  The true values of the DCRRE measure are selected as γR(β)= 0.2798, 0.6264 and 0.9359 at t = 0.5, while γR(β)= 0.077075, 0.2798 and 0.58932 at t = 1.5.

    ●  The MLEs of α and λ are obtained from (9) and (10), then the MLE of γR(β) is obtained by substituting ˆαML and ˆλML in (11). The approximate confidence interval of ˆγR,ML(β) using (12) are constructed with confidence level at η=0.05.

    ●  Compute the average MLEs of the DCRRE, MSEs, CPs, and ALs.

    The M-H algorithm is one of the most famous subclasses of the MCMC method in Bayesian literature used to simulate the deviates from the posterior density and produce the good approximate results. The relative absolute biases (RABs), estimated risks (ERs) and the width of the BCI are computed to assess the behavior of the Bayesian estimates. A simulation study is done via R 3.1.2. Additionally, tables of simulation results are given. To compare the DCRRE Bayes estimates, the MCMC simulations are designed for different sample sizes under SE, LINEX and PRE loss functions. The values of parameters are selected as α=(1.5,2.5), λ=(0.5,1.5,4) and β=(3,5). The true values of the DCRRE measure are selected as γR(β)= 0.2798, 0.6264 and 0.9359 at t = 0.5, while γR(β)= 0.077075, 0.2798 and 0.58932 at t = 1.5. The hyper-parameters for gamma distribution are selected as a = c = 1 and b = d = 4. Also, we take (v = −2, 2) for LINEX loss function. Take N = 5000 random samples of sizes n, where each sample size (n) = 10, 30, 50, 70 and 100 are generated from Lomax distribution.

    The M-H algorithm is described as follows:

    Step 1: Let g(.) be the PDF of subject distribution;

    Step 2: Initialize a starting value x0 and determine the number of samples N;

    Step 3: for i = 2 to N set x=xi1;

    Step 4: Generate u from uniform (0, 1) and generate y from g(.);

    Step 5: if uπα(y)g(x)πα(x)g(y) then set xi=y else set xi=x;

    Step 6: Set i=i+1 and return to step 2 and repeat the previous steps N times.

    Numerical observations for DCRRE estimates using ML method at β=3 and β=5 are presented in Tables 14 and represented in Figures 14. Some observations related to the behavior of the DCRRE estimates are outlined as follows:

    Table 1.  MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 0.5 and β=3.
    n (α=1.5,λ=1.5) (α=1.5,λ=0.5) (α=2.5,λ=0.5)
    γR(β)= 0.2798 γR(β)=0.626382 γR(β)=0.9359
    Estimate MSE AL CP% Estimate MSE AL CP% Estimate MSE AL CP%
    30 0.269 0.012 0.422 91.0 0.655 0.029 0.657 90.0 1.029 0.04 0.697 92.0
    50 0.263 0.01 0.387 94.0 0.619 0.012 0.436 92.0 0.985 0.022 0.552 94.0
    70 0.278 0.006486 0.316 94.5 0.635 0.011 0.424 92.5 0.955 0.013 0.444 96.0
    100 0.272 0.005312 0.284 95.5 0.632 0.0095 0.328 94.0 0.964 0.0098 0.372 97.0

     | Show Table
    DownLoad: CSV
    Table 2.  MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 1.5 and β=3.
    n (α=1.5,λ=1.5) (α=1.5,λ=0.5) (α=2.5,λ=0.5)
    γR(β) = 0.077075 γR(β) = 0.2798 γR(β) = 0.589328
    Estimate MSE AL CP% Estimate MSE AL CP% Estimate MSE AL CP%
    30 0.113 0.028 0.643 92.5 0.334 0.046 0.81 94.0 0.754 0.124 1.217 92.0
    50 0.087 0.012 0.412 94.0 0.276 0.026 0.628 94.5 0.648 0.061 0.943 93.0
    70 0.074 0.009483 0.382 96.0 0.293 0.025 0.619 96.0 0.622 0.023 0.583 96.0
    100 0.08 0.004798 0.271 96.5 0.315 0.014 0.436 97.0 0.613 0.021 0.56 96.5

     | Show Table
    DownLoad: CSV
    Table 3.  MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 0.5 and β=5.
    n (α=1.5,λ=4) (α=1.5,λ=1.5)
    γR(β) = 0.0919312 γR(β) = 0.2946637
    Estimate MSE AL CP% Estimate MSE AL CP%
    30 0.08684 0.004623 0.266 92.0 0.29513 0.0034 0.230 92.0
    50 0.08846 0.002675 0.202 92.5 0.29149 0.0015 0.152 93.5
    70 0.08373 0.002024 0.173 94.0 0.28849 0.0013 0.138 94.0
    100 0.08853 0.001050 0.126 96.0 0.29245 0.0007 0.102 96.0

     | Show Table
    DownLoad: CSV
    Table 4.  MSE, MSE, AL and CP of 95% CI for DCRRE estimates of Lomax distribution at t = 1.5 and β=5.
    n (α=1.5,λ=4) (α=1.5,λ=1.5)
    γR(β) = 0.04176352 γR(β) = 0.1932975
    Estimate MSE AL CP% Estimate MSE AL CP%
    30 0.04377 0.002594 0.200 91.0 0.213 0.0047 0.259 94.0
    50 0.04585 0.001368 0.144 94.0 0.207 0.0020 0.167 95.0
    70 0.03971 0.001263 0.139 97.0 0.194 0.0018 0.165 96.0
    100 0.04078 0.000712 0.105 98.0 0.190 0.0007 0.106 96.5

     | Show Table
    DownLoad: CSV
    Figure 1.  MSEs of DCREE estimates of Lomax under different sample size at t = 0.5 and β=3.
    Figure 2.  MSEs of DCREE estimates of Lomax under different sample size at t = 1.5 and β=3.
    Figure 3.  MSEs of DCREE estimates of Lomax under different sample size at t = 0.5 and β=5.
    Figure 4.  MSEs of DCREE estimates of Lomax under different sample size at t = 1.5 and β=5.

    ●  The value of MLE, ˆγR,ML(β), decreases as the value of λ increases for fixed value of α (see Tables 1 and 2)

    ●  The value of MLE, ˆγR,ML(β), decreases as α decreases for fixed value of λ (see Tables 1 and 2).

    ●  The value of MLE, ˆγR,ML(β), at α=1.5,λ=4 has the smallest value compared with the corresponding estimates of the other sets of parameters (see Tables 3 and 4).

    ●  The MSE of ˆγR,ML(β) decreases as the sample size increases.

    ●  For fixed value of λ, the MSE of ˆγR,ML(β) decreases as the value of α decreases.

    ●  For fixed value of α, the MSE of ˆγR,ML(β) decreases as the value of λ increases.

    ●  The MSE of the DCRRE estimates gets the smallest value at γR(β)=0.2798, where (α=1.5,λ=1.5), t = 0.5 and β=3, compared to the MSE of MLE of DCRRE measure for the corresponding other sets of parameters (see Figure 1).

    ●  The MSE of the DCRRE estimates takes the smallest value at γR(β)=0.077075, where (α=1.5,λ=1.5), t = 1.5 and β=3, compared to MSE of MLE of DCRRE for the corresponding other sets of parameters (see Figure 2).

    ●  At β=5, (α=1.5,λ=1.5), where the true value of γR(β)= 0.2946637 the MSE of ˆγR,ML(β) has the smallest value compared to the MSE of MLEs for the corresponding other sets of parameters at t = 0.5 (see Figure 3).

    ●  At t = 1.5, the MSE of ˆγR,ML(β) at (α=1.5,λ=4.0), has the smallest value compared to the MSE of MLEs for the corresponding other sets of parameters (see Figure 4).

    Generally as seen from Tables 14 that the CP is very close to their corresponding nominal levels in approximately most of the cases. Also, the CP increases as the sample size increases for all values of DCRRE.

    ●  The MLE of the DCRRE decreases as the value of λ increases.

    ●  Regarding the AL of estimates, it can be observed that, as n increases the AL of DCRRE estimates decreases.

    Tables 510 and Figures 58, list the numerical outcomes for different estimates of the DCRRE under different loss functions at β=3. Tables 1114 and Figures 912, list and describe the simulation outcomes for different estimates of the DCRRE under different loss functions at β=5. Some observations related to the behavior of the DCRRE estimates are provided as follows:

    Table 5.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,1.5), t = 0.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.2798
    SE Estimate 0.279848 0.279552 0.2806298 0.27934 0.280126
    RAB 0.000144 0.000915 0.00293722 0.001667 0.001137
    ER 3.25E-10 8.31E-11 5.35E-11 4.35E-11 2.02E-11
    width 0.001472 0.000947 0.00087111 0.000796 0.000724
    LINEX (v = 2) Estimate 0.278984 0.279733 0.2796395 0.279823 0.279787
    RAB 0.002946 0.000269 0.00060188 5.38E-05 7.39E-05
    ER 1.36E-10 7.13E-11 5.67E-11 4.54E-11 2.54E-11
    width 0.001345 0.000973 0.00094541 0.000679 0.000662
    LINEX (v = −2) Estimate 0.279733 0.279778 0.2797087 0.279568 0.280088
    RAB 0.000268 0.000106 0.00035463 8.57E-04 0.001003
    ER 1.12E-10 2.76E-11 1.97E-11 1.15E-11 1.07E-11
    width 0.000561 0.000561 0.00054634 0.000536 0.000472
    PRE Estimate 0.279394 0.280666 0.280191 0.279949 0.280287
    RAB 0.001481 0.003065 0.00136909 0.000506 0.001712
    ER 3.43E-10 1.47E-10 9.35E-11 5.00E-11 4.59E-11
    width 0.001647 0.001361 0.00080719 0.000736 0.000583
    Note: E-a: stands for 10^-a.

     | Show Table
    DownLoad: CSV
    Table 6.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,0.5), t = 0.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.626382
    SE Estimate 0.625732 0.626659 0.626228 0.626467 0.625982
    RAB 0.001037 0.000444 0.00024498 0.000137 0.000638
    ER 8.44E-11 1.54E-11 4.71E-12 1.48E-12 1.20E-12
    width 0.001835 0.001319 0.00104168 0.000972 0.000502
    LINEX (v = 2) Estimate 0.626174 0.626484 0.6265369 0.627062 0.626144
    RAB 0.000331 0.000164 0.00024813 0.001086 3.78E-04
    ER 9.60E-11 6.10E-11 4.83E-11 2.26E-11 1.12E-11
    width 0.001325 0.001109 0.00099334 0.00081 0.000508
    LINEX (v = −2) Estimate 0.627234 0.626271 0.6259601 0.626251 0.626457
    RAB 0.001361 0.000176 0.00067277 2.09E-04 0.00012
    ER 1.45E-10 8.44E-11 3.55E-11 3.43E-11 1.14E-12
    width 0.001266 0.001016 0.00086437 0.000702 0.000117
    PRE Estimate 0.625288 0.625784 0.6261617 0.626237 0.626146
    RAB 0.001746 0.000954 0.00035083 0.00023 0.000376
    ER 2.39E-10 7.15E-11 9.66E-12 4.16E-12 3.11E-12
    width 0.001837 0.001343 0.00114911 0.000824 0.00082

     | Show Table
    DownLoad: CSV
    Table 7.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(2.5,0.5), t = 0.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.9359
    SE Estimate 0.936015 0.934584 0.9365256 0.935385 0.936073
    RAB 0.000122 0.001408 0.00066734 0.000551 0.000183
    ER 3.60E-10 3.47E-10 7.80E-11 5.33E-11 5.90E-12
    width 0.001936 0.001746 0.00107773 0.001034 0.000659
    LINEX(v = 2) Estimate 0.935164 0.936662 0.9367184 0.93566 0.936114
    RAB 0.000787 0.000813 0.00087327 0.000257 2.27E-04
    ER 2.09E-10 1.16E-10 1.34E-11 1.16E-11 9.02E-12
    width 0.001624 0.001553 0.00131565 0.000524 0.000389
    LINEX(v = −2) Estimate 0.935344 0.936219 0.936625 0.936369 0.93571
    RAB 0.000595 0.000339 0.00077348 5.00E-04 0.000204
    ER 6.21E-11 2.01E-11 1.05E-11 1.04E-11 2.31E-12
    width 0.001493 0.001299 0.00127713 0.001012 0.000529
    PRE Estimate 0.936634 0.935286 0.9360099 0.935828 0.93604
    RAB 0.000783 0.000657 0.00011624 7.85E-05 0.000149
    ER 1.07E-10 7.56E-11 2.37E-11 1.08E-11 3.87E-12
    width 0.001758 0.001388 0.00107289 0.00069 0.000441

     | Show Table
    DownLoad: CSV
    Table 8.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,1.5), t = 1.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.077075
    SE Estimate 0.077262 0.077398 0.077325 0.077533 0.076672
    RAB 0.002417 0.004186 0.003244 0.005942 0.005238
    ER 6.94E-10 2.08E-10 1.25E-10 4.20E-11 3.26E-11
    width 0.001643 0.001076 0.000615 0.000435 0.000163
    LINEX (v = 2) Estimate 0.077368 0.07687 0.077353 0.076739 0.076884
    RAB 0.003801 0.002665 0.003607 0.004367 2.48E-03
    ER 1.72E-10 8.44E-11 3.55E-11 2.27E-11 7.30E-12
    width 0.00185 0.001784 0.001598 0.001233 0.000677
    LINEX(v = −2) Estimate 0.076874 0.076719 0.076915 0.077031 0.077594
    RAB 0.002615 0.004622 0.002079 5.75E-04 0.006729
    ER 8.12E-10 8.54E-11 5.14E-11 3.93E-11 3.38E-11
    width 0.002806 0.002218 0.001715 0.00049 0.000182
    PRE Estimate 0.077163 0.077424 0.076188 0.077563 0.077528
    RAB 0.001138 0.00452 0.011519 0.006324 0.00587
    ER 1.54E-10 8.43E-11 5.58E-11 4.75E-11 4.09E-11
    width 0.001674 0.001589 0.001174 0.001131 0.000737
    Note: E-a: stands for 10^-a.

     | Show Table
    DownLoad: CSV
    Table 9.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,0.5), t = 1.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.2798
    SE Estimate 0.279169 0.279561 0.279304 0.280159 0.280308
    RAB 0.002282 0.000881 0.0018 0.001255 0.001789
    ER 8.15E-11 5.22E-11 5.08E-11 2.47E-11 1.05E-11
    width 0.00136 0.001081 0.001017 0.000798 0.000601
    LINEX(v = 2) Estimate 0.280571 0.279532 0.279477 0.28019 0.27874
    RAB 0.002726 0.000985 0.001182 0.001366 3.82E-03
    ER 1.16E-10 4.52E-11 2.99E-11 2.92E-11 2.28E-11
    width 0.001565 0.001479 0.001097 0.000783 0.000508
    LINEX(v = −2) Estimate 0.279694 0.280018 0.279733 0.280045 0.279167
    RAB 0.000408 0.000752 0.000268 8.46E-04 0.00229
    ER 2.61E-10 8.85E-11 1.53E-11 1.42E-11 1.02E-11
    width 0.001084 0.000861 0.000847 0.000589 0.000319
    PRE Estimate 0.279514 0.279666 0.280726 0.280197 0.279577
    RAB 0.001052 0.000509 0.003281 0.001391 0.000826
    ER 7.73E-11 4.05E-11 3.69E-11 3.03E-11 1.07E-11
    width 0.004765 0.00427 0.001586 0.001122 0.001051

     | Show Table
    DownLoad: CSV
    Table 10.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(2.5,0.5), t = 1.5 and β=3.
    Sample size (n) 10 30 50 70 100
    Exact value 0.589328
    SE Estimate 0.589175 0.589863 0.589255 0.589763 0.589058
    RAB 0.000259 0.000909 0.000123 0.000739 0.000457
    ER 4.64E-10 5.74E-11 5.06E-11 3.80E-11 1.45E-11
    width 0.002794 0.001951 0.001437 0.001061 0.000778
    LINEX(v = 2) Estimate 0.589211 0.588931 0.589119 0.589373 0.588959
    RAB 0.000197 0.000673 0.000354 7.76E-05 6.26E-04
    ER 2.71E-10 9.15E-11 8.69E-11 4.18E-11 2.72E-11
    width 0.001371 0.000745 0.000648 0.000597 0.000505
    LINEX(v = −2) Estimate 0.589027 0.58976 0.588746 0.589024 0.589068
    RAB 0.00051 0.000734 0.000986 5.15E-04 0.00044
    ER 1.80E-10 9.75E-11 6.76E-11 1.84E-11 1.35E-11
    width 0.000917 0.000791 0.000773 0.000513 0.000497
    PRE Estimate 0.5895 0.589154 0.58915 0.589319 0.589044
    RAB 0.000292 0.000295 0.000301 1.37E-05 0.000481
    ER 5.93E-10 6.56E-11 6.28E-11 3.31E-11 1.61E-11
    width 0.000964 0.000738 0.000682 0.000653 0.000638
    Note: E-a: stands for 10^-a.

     | Show Table
    DownLoad: CSV
    Figure 5.  ERs of the DCREE estimates of Lomax under different loss functions at n = 10 and t = 0.5.
    Figure 6.  ERs of the DCREE estimates of Lomax under different loss functions at n = 100 and t = 0.5.
    Figure 7.  ERs of DCREE estimates of Lomax under different loss functions at n = 10 and t = 1.5.
    Figure 8.  ERs of DCREE estimates of Lomax under different loss functions at n = 100 and t = 1.5.
    Table 11.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,1.5), t = 1.5 and β=5.
    Sample size (n) 10 30 50 70 100
    Exact value 0.2946637
    SE Estimate 0.2949246 0.2941664 0.2944852 0.2946671 0.2944438
    RAB 0.0008853 0.001688 0.0006058 1.146E-05 0.0007465
    ER 8.36E-11 6.95E-11 6.37E-11 2.28E-11 9.68E-12
    width 0.0008959 0.0007143 0.0003279 7.09E-04 6.50E-04
    LINEX(v = 2) Estimate 0.2944942 0.294638 0.2947687 0.2946398 0.2946735
    RAB 0.0005754 8.75E-05 3.56E-04 8.12E-05 3.297E-05
    ER 5.75E-11 4.33E-11 2.20E-11 1.14E-11 6.89E-12
    width 0.0005808 0.000417 0.0001934 2.38E-04 1.98E-04
    LINEX(v = −2) Estimate 0.2946357 0.2949186 0.2944051 0.2948607 0.2947952
    RAB 9.51E-05 8.65E-04 8.78E-04 0.0006685 0.0004462
    ER 1.57E-11 1.30E-11 1.24E-11 7.76E-12 3.46E-12
    width 0.0007348 0.0006429 0.0004368 3.10E-04 3.09E-04
    PRE Estimate 0.2946924 0.2944634 0.2946297 0.2949081 0.2948708
    RAB 9.71E-05 6.80E-04 1.16E-04 0.0008293 0.0007028
    ER 9.64E-11 8.02E-11 2.32E-11 1.19E-11 8.58E-12
    width 0.0007787 0.0006513 0.0004081 3.89E-04 3.34E-04

     | Show Table
    DownLoad: CSV
    Table 12.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,1.5), t = 1.5 and β=5.
    Sample size (n) 10 30 50 70 100
    Exact value 0.1932975
    SE Estimate 0.1926608 0.1932249 0.1934313 0.1934544 0.1936084
    RAB 0.003293922 0.000375191 0.000692228 0.000811845 0.001608503
    ER 8.10791E-11 7.05193E-11 5.5808E-11 4.92526E-11 1.93342E-11
    width 0.001063817 0.000370056 0.000275823 0.000269164 0.000212478
    LINEX(v = 2) Estimate 0.193455 0.1935514 0.1934634 0.192997 0.1933625
    RAB 0.000814895 0.001313584 0.000858663 0.001554319 0.000336461
    ER 4.96233E-11 3.28943E-11 2.50969E-11 1.80536E-11 8.45965E-12
    width 0.000505376 0.000465587 0.000360505 0.000317531 0.000307002
    LINEX(v = −2) Estimate 0.1931554 0.1933025 0.1931548 0.193335 0.1933076
    RAB 0.000734896 2.60011E-05 0.000738031 0.000194103 5.24576E-05
    ER 4.03584E-11 5.05E-12 4.07035E-12 2.81544E-12 2.06E-12
    width 0.000434745 0.000405183 0.000352976 0.000276217 0.000245961
    PRE Estimate 0.1932864 0.193166 0.1934755 0.1935736 0.1934214
    RAB 5.72266E-05 0.000680218 0.000920906 0.001428612 0.00064088
    ER 9.45E-11 7.45763E-11 6.33743E-11 1.52514E-11 3.06928E-12
    width 0.00093006 0.000687739 0.000452429 0.00033985 0.000224581

     | Show Table
    DownLoad: CSV
    Table 13.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,4), t = 0.5 and β=5..
    Sample size (n) 10 30 50 70 100
    Exact value 0.0919312
    SE Estimate 0.09201055 0.09178575 0.09181545 0.092062 0.09174895
    RAB 0.000863173 0.001582157 0.001259056 0.001422866 0.001982355
    ER 7.25936E-11 4.23112E-11 2.67945E-11 8.42203E-12 6.64231E-12
    width 0.000610588 0.000553999 0.000366307 0.000350079 0.000219156
    LINEX(v = 2) Estimate 0.09178774 0.09188011 0.09194927 0.09197472 0.09168103
    RAB 0.001560422 0.000555688 0.000196604 0.000473451 0.002721184
    ER 4.11567E-11 3.21937E-11 1.53E-11 3.78884E-12 1.25162E-12
    width 0.000334497 0.00025149 0.000246263 0.0002135 0.00018744
    LINEX(v = −2) Estimate 0.09188073 0.09169108 0.09190761 0.0918465 0.09182573
    RAB 0.000548943 0.002611855 0.000256567 0.000921266 0.00114721
    ER 5.09343E-11 1.15307E-11 1.11265E-11 4.43458E-12 2.22455E-12
    width 0.000472028 0.000455362 0.000349649 0.000302822 0.000265702
    PRE Estimate 0.09194847 0.09185285 0.09210766 0.09192755 0.09191302
    RAB 0.00018789 0.000852198 0.001919522 3.96648E-05 0.000197709
    ER 5.97E-11 2.22754E-11 1.22791E-11 8.66E-12 6.61E-12
    width 0.000566201 0.000396718 0.000261318 0.000238706 0.000236182
    Note: E-a: stands for 10^-a.

     | Show Table
    DownLoad: CSV
    Table 14.  Bayes estimates, RAB, ER and width of the DCRRE for Lomax distribution for (α,λ)=(1.5,4), t = 1.5 and β=5.
    Sample size (n) 10 30 50 70 100
    Exact value 0.04176352
    SE Estimate 0.04195238 0.04164627 0.04186148 0.04186715 0.04195167
    RAB 0.004522163 0.002807542 0.002345453 0.00248131 0.004505184
    ER 7.13373E-11 5.74965E-11 1.91901E-11 1.14776E-11 7.08026E-12
    width 0.00083513 0.000789892 0.00056322 0.000501208 0.000308716
    LINEX(v = 2) Estimate 0.04169195 0.04192397 0.04166999 0.04178557 0.04177622
    RAB 0.001713768 0.003841756 0.002239598 0.00052784 0.000304066
    ER 6.02454E-11 5.14854E-11 1.7497E-11 9.72E-12 3.23E-12
    width 0.000683436 0.000562861 0.000537438 0.000446217 0.000310601
    LINEX(v = −2) Estimate 0.04187211 0.04184263 0.04177058 0.04196117 0.04175873
    RAB 0.002600158 0.001894263 0.000169074 0.004732582 0.000114653
    ER 6.35843E-11 5.25171E-11 3.97E-11 2.81305E-11 4.59E-12
    width 0.000639135 0.000416648 0.000230094 0.000143375 0.00012603
    PRE Estimate 0.04162304 0.04190236 0.04174227 0.04172538 0.04199364
    RAB 0.003363745 0.003324387 0.000508727 0.000913293 0.005509934
    ER 6.94703E-11 5.8552E-11 3.03E-11 2.90967E-11 9.05905E-12
    width 0.000666527 0.000514737 0.000329824 0.000264613 0.000218476
    Note: E-a: stands for 10^-a.

     | Show Table
    DownLoad: CSV
    Figure 9.  ERs of DCREE estimates of Lomax under different loss functions at n = 10 and t = 0.5.
    Figure 10.  ERs of DCREE estimates of Lomax under different loss functions at n = 100 and t = 0.5.
    Figure 11.  ERs of DCREE estimates of Lomax under different loss functions at n = 10 and t = 1.5.
    Figure 12.  ERs of DCREE estimates of Lomax under different loss functions at n = 100 and t = 1.5.

    ●  As anticipated, the performance of all DCRRE estimates become improved as the sample size increases.

    ●  The estimated value of the DCRRE increases as the value of α increases for fixed λ. The estimated value of the DCRRE decreases as the value of scale parameter λ increases for fixed α.

    ●  The estimated value of the DCRRE decreases as the value of t increases for fixed values of α and λ.

    ●  Under SE loss function, the ERs for DCRRE estimates get the smallest values at true value γR(β)= 0.6264, for most values of n (see for example Figures 5 and 6).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 gets the smallest values for all values of n. Also, the width of the BCI for ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for all n (see Table 5).

    ●  The ER of ˆγR,BE(β)SE takes the smallest values for all n except n = 100. The width of the BCI for ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of the PRE and SE loss functions for all n (see Table 6).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 takes the smallest values for all values of n. The width of the BCI for ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of PRE and SE loss functions at n = 10 and 30 (see Table 7).

    ●   At t = 1.5, the ERs for DCRRE estimates get the smallest values at γR(β)= 0.2798, for all n under SE and PRE loss functions (see for example Figures 7 and 8).

    ●  The ER of ˆγR,BE(β)LINEX at v = 2 takes the smallest values at n = 50, 70 and 100, while the ER of ˆγR,BE(β)PRE takes the smallest values at n = 10 and 30. The width of the BCI for ˆγR,BE(β)SE is the shortest compared to the width of the BCI in case of LINEX and PRE loss functions for all values of n (see Table 8).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 takes the smallest values at n = 50, 70 and 100, while the ER of ˆγR,BE(β)PRE takes the smallest values at n = 10 and 30. The width of the BCI of ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for all values of n (see Table 9).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 takes the smallest values for n = 10, 70 and 100. The width of the BCI for ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for most values of n (see Table 10).

    ●  At β=5, the ERs for DCRRE estimates get the smallest values at γR(β)= 0.0919312, for most values of n under most selected loss functions (see for example Figures 9 and 10).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 gets the smallest values for all values of n. While, the width of the BCI for ˆγR,BE(β)LINEX at v = 2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for all n (see Table 11).

    ●  The ER of ˆγR,BE(β)LINEX at v = −2 gets the smallest values for all values of n. While, the width of the BCI for ˆγR,BE(β)SE is the shortest compared to the width of the BCI in case of the LINEX and PRE loss functions for all n expect at n = 10 (see Table 12).

    ●  Under SE loss function, the ERs for DCRRE estimates get the smallest values at γR(β)= 0.04176352, for most values of n (see for example Figures 11 and 12).

    ●  The ER of ˆγR,BE(β)LINEX at v = 2 gets the smallest values for n = 10, 70 and 100. While, the width of the BCI for ˆγR,BE(β)LINEX at v = 2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for all n (see Table 13).

    ●  The ER of ˆγR,BE(β)LINEX at v = 2 gets the smallest values for all values of n. While, the width of the BCI for ˆγR,BE(β)LINEX at v = −2 is the shortest compared to the width of the BCI in case of the SE and PRE loss functions for all n (see Table 14).

    In this section, we provide an application to real data set to prove the importance and flexibility of the Lomax distribution compared with some other models. Also, the real data set can be used to illustrate the proposed methods in Sections 2 and 3.

    The real data set was used by Jorgensen [41] which represent the active repair times (in hours) for airborne communication transceiver. The data are recorded as follows:

    0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

    Firstly, some preliminary data analysis is performed. The histogram, scaled total time on test (TTT) plots and the log likelihood for the real dataset are presented in Figure 13. We can observe that the shape of TTT plots is convex curve for dataset, which demonstrates decreasing failure rate.

    Figure 13.  Estimated PDF, TTT plots and log likelihood of Lomax distribution for active repair times data for airborne communication transceiver.

    Secondly, an application to a real data set is given to demonstrate the importance and flexibility of the proposed distribution compared with other one, two and three parameters fitted distributions. The suggested distributions are the alpha power Lindley (APLi) (Dey et al. [42]), Lindley (Li) and alpha power Weibull (APW) (Nassar et al. [43]) distributions. The MLE of the unknown parameters and the corresponding standard error (SE) of Lomax distribution and the other competitive models are calculated. In order to compare the different models with the Lomax model, we use measures like, Akaike information criterion (AIC), and Bayesian information criterion (BIC), consistent AIC (CAIC), Hannan-Quinn information criterion (HQIC). Also, the Kolmogorov- Smirnov (K-S) goodness of fit test and its P value (PV) for all models are calculated. Table 15 reports the MLEs and the corresponding SEs for all models. Table 16 reports numerical values of AIC, BIC, CAIC, HQIC, K-S and PVs for the different competitive distributions. From the results, we found that the Lomax distribution takes the smallest values of the considered measures and the largest value of PV among all other competitive models, and so it could be chosen as the best model.

    Table 15.  MLEs and their SEs (in parentheses).
    Model MLE and SE
    L (α,λ) 4.678 (3.899) 14.758 (14.657)
    APLi (α,γ) 0.015 (0.114) 0.077 (0.143)
    Li (α) 0.424 (0.0485)
    APW (α,θ,γ) 0.024 (0.0386) 1.279 (0.144) 0.058 (0.03)

     | Show Table
    DownLoad: CSV
    Table 16.  Measures of goodness-of-fit statistics of active repair times for airborne communication transceiver data.
    Model AIC CAIC BIC HQIC KS PV
    L 193.006 193.33 192.21 194.227 0.1451 0.3688
    APLi 259.618 259.943 258.822 260.84 0.1499 0.3298
    Li 199.583 199.688 199.185 200.193 0.2157 0.0484
    APW 260.106 260.773 258.912 261.938 0.1488 0.338

     | Show Table
    DownLoad: CSV

    Thirdly, regarding this data, the ML and Bayes estimates of the DCRRE under SE, LINEX and PRE loss functions are obtained and listed in Table 17.

    Table 17.  DCRRE estimates under ML and Bayesian methods for different loss functions at t = 0.5 and 1.5.
    t ML SE LINEX (v = 2) LINEX (v = −2) PRE
    0.5 0.14384104 0.1437858 0.1439026 0.1438579 0.1437906
    1.5 0.08003058 0.09838636 0.09832135 0.09835058 0.09842378

     | Show Table
    DownLoad: CSV

    As anticipated, we conclude from Table 17 that the DCRRE estimates are decreasing function on time (t), that is the estimated values of the DCRRE decrease as the time t increases.

    In this paper, the maximum likelihood and Bayesian methods of estimation for dynamic cumulative residual Rényi entropy of Lomax distribution are considered. The maximum likelihood estimates and approximate confidence intervals of the DCRRE are obtained. The performance of the DCRRE estimates for Lomax distribution is investigated via simulation in terms of their mean square error, average length and coverage probability. The Bayesian estimate of the DCRRE for Lomax model is obtained by considering the gamma priors under symmetric and asymmetric loss functions. The MCMC procedure is employed to compute the Bayes estimates and the Bayesian credible intervals. The performance of the DCRRE estimates for Lomax distribution is inspected through their relative absolute bias, estimated risk and the width of the credible intervals. Application to real data is provided.

    Regarding the simulation results, we conclude that the mean square error of maximum likelihood and Bayesian estimates of the DCRRE decreases as the sample size increases. Also, the average length of the DCRRE estimates decreases and coverage probability increases as the sample size increases. The ER and the width of credible intervals of the DCRRE Bayes estimates decrease. For small true values of DCRRE, the width of DCRRE of BCIs under LINEX loss function is smaller than the corresponding based on SE and PRE loss functions for all selected sample size at t = 0.5 and 1.5. For large true values of DCRRE, the BCI width of the DCRRE under LINEX loss function is smaller than the corresponding based on SE and PRE loss functions for large sample size at t = 0.5 and 1.5.

    Generally, the DCRRE estimates for both ML and Bayesian methods approach the true value as the sample size increases. As the time (t) increases, both ML and Bayesian estimates of the DCRRE decrease. Bayesian estimates under LINEX loss function at v = −2 are more suitable than other estimates under SE and PRC loss functions in most of the situations.

    The authors thank the reviewers for their detailed and constructive comments. This project is supported by Researchers Supporting Project number (RSP-2020/156) King Saud University, Riyadh, Saudi Arabia. The first author, therefore, gratefully acknowledges the KSU for technical and financial support.

    The authors declare no conflict of interest.



    [1] C. E. Shannon, A Mathematical Theory of Communication, Bell. Syst. Tech. J., 27 (1948), 379–432. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2] A. Rényi, On measures of Entropy and Information, Proc. Fourth Berkeley Symp. Math. Statist. Prob., 1 (1961), 547–561.
    [3] R. Renner, N. Gisin, B. Kraus, An Information-Theoretic Security Proof for Quantum-Key-Distribution Protocols, Phys. Rev. A., 72 (2005), 1–18.
    [4] P. Lévay, S. Nagy, J. Pipek, Elementary Formula for Entanglement Entropies of Fermionic Systems, Phys. Rev. A., 72 (2005), 1–8
    [5] A. Motahari, G. Bresler, D. Tse, Information Theory of DNA Shotgun Sequencing, 2013, Available from: https://arXiv.org/pdf/1203.6233.pdf.
    [6] S. Gabarda, G. Cristobal, Multifocus Image Fusion Through Pseudo-Wigner Distribution, Opt. Eng., 44 (2005), 1–9.
    [7] E. Martina, E. Rodriguez, R. Escarela-Perez, J. Alvarez-Ramirezd, Multiscale Entropy Analysis of Crude Oil Price Dynamics, Energy Econ., 33 (2011), 936–947.
    [8] G. Resconi, I. Licata, D. Fiscaletti, Unification of Quantum and Gravity by Non Classical Information Entropy Space, Entropy, 15 (2013), 3602–3619. doi: 10.3390/e15093602
    [9] S. Kayal, S. Kumar, Estimating the Entropy of an Exponential Population under the Linex Loss Function, J. Indian. Stat. Assoc. (JISA), 49 (2011), 91–112.
    [10] J. I. Seo, H. J. Lee, S. B. Kang, Estimation for Generalized Half Logistic Distribution Based on Records, J. Korea Inf. Sci. Soc., 23 (2012), 1249–1257.
    [11] Y. Cho, H. Sun, K. Lee, Estimating the Entropy of a Weibull Distribution Under Generalized Progressive Hybrid Censoring, Entropy, 17 (2015), 102–122. doi: 10.3390/e17010102
    [12] M. Chacko, P. S. Asha, Estimation of Entropy for Generalized Exponential Distribution Based on Record values, J. Indian Soc. Probab. Stat., 19 (2018), 79–96. doi: 10.1007/s41096-018-0033-4
    [13] L.K. Patra, S. Kayal, S. Kumar, Estimating a Function of Scale Parameter of an Exponential Population with Unknown Location under General Loss Function, Stat. Papers, 61 (2020), 2511–2527. doi: 10.1007/s00362-018-1052-7
    [14] A. S. Hassan, A. N. Zaky, Estimation of Entropy for Inverse Weibull Distribution Under Multiple Censored Data, J. Taibah. Univ. Sci., 13 (2019), 331–337. doi: 10.1080/16583655.2019.1576493
    [15] C. Petropoulos, L. K. Patra, S. Kumar, Improved Estimators of the Entropy in Scale Mixture of Exponential Distributions, Braz. J. Probab. Stat., 34 (2020), 580–593. doi: 10.1214/19-BJPS450
    [16] R. A. R. Bantan, M. Elgarhy, C. Chesneau, F. Jamal, Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data, Entropy, 22 (2020), 601. doi: 10.3390/e22060601
    [17] A. S. Hassan, A. N. Zaky, Entropy Bayesian Estimation for Lomax Distribution Based on Record, Thail. Stat., 19 (2021), 96–115.
    [18] S. M. Sunoj, M. N. Linu, Dynamic Cumulative Residual Rényi's Entropy, Statistics, 46 (2012), 41–56. doi: 10.1080/02331888.2010.494730
    [19] M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative Residual Entropy: A New Measure of Information, IEEE Trans. Inf. Theory, 50 (2004), 1220–1228. doi: 10.1109/TIT.2004.828057
    [20] O. Kamari, On Dynamic Cumulative Residual Entropy of Order Statistics, J. Stat. Appl. Prob., 5 (2016), 515–519. doi: 10.18576/jsap/050315
    [21] C. Kundu, A.D. Crescenzo, M. Longobardi, On Cumulative Residual (Past) Inaccuracy for Truncated Random Variables, Metrika, 79 (2016), 335–356. doi: 10.1007/s00184-015-0557-5
    [22] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, Bayes Estimation of Dynamic Cumulative Residual Entropy for Pareto Distribution Under Type-II Right Censored Data, Appl. Math. Model., 40 (2016), 8424–8434. doi: 10.1016/j.apm.2016.04.017
    [23] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, A Study of The Effect of Loss Functions On the Bayes Estimates Of Dynamic Cumulative Residual Entropy For Pareto Distribution Under Upper Record Values, J. Stat. Comput. Sim., 86 (2016), 324–339. doi: 10.1080/00949655.2015.1007986
    [24] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, Bayesian Estimation of Dynamic Cumulative Residual Entropy for Classical Pareto Distribution, Am. J. Math. Manage. Sci., 37 (2018), 1–13.
    [25] A. A. H. Ahmadini, A. S. Hassan, A. N. Zaky, S. S Alshqaq, Bayesian Inference of Dynamic Cumulative Residual Entropy from Pareto II Distribution with Application to COVID-19, AIMS Math., 6 (2020), 2196–2216.
    [26] K. S. Lomax, Business Failures: Another Example of the Analysis of Failure Data, J. Am. Stat. Assoc., 49 (1954), 847–852. doi: 10.1080/01621459.1954.10501239
    [27] A. Corbellini, L. Crosato, P. Ganugi, Mazzoli M, Fitting Pareto II Distributions on Firm Size: Statistical Methodology and Economic Puzzles, In: Advances in Data Analysis, 2010,321–328.
    [28] A. M. Abd-Elfattah, F. M Alaboud, H. A. Alharbey, On Sample Size Estimation for Lomax Distribution, Aust. J. Basic Appl. Sci., 1 (2007), 373–378.
    [29] M. Ahsanullah, Record Values of Lomax Distribution, Statistica Nederlandica., 45 (1991), 21–29. doi: 10.1111/j.1467-9574.1991.tb01290.x
    [30] N. Balakrishnan, M. Ahsanullah, Relations for Single and Product Moments of Record Values from Lomax Distribution, Sankhya B., 56 (1994), 140–146
    [31] A. S. Hassan, A. Al-Ghamdi, Optimum Step Stress Accelerated Life Testing for Lomax Distribution, J. Appl. Sci. Res., 5 (2009), 2153–2164.
    [32] A. S. Hassan, S. M. Assar, A. Shelbaia, Optimum Step-Stress Accelerated Life Test Plan for Lomax Distribution with an Adaptive Type-II Progressive Hybrid Censoring, J. Adv. Math. Comp. Sci., 13 (2016), 1–19.
    [33] A. S. Hassan, M. Abd-Allah, Exponentiated Lomax Geometric Distribution: Properties and Applications, Pak. J. Stat. Oper. Res., 13 (2017), 545–566.
    [34] A. S. Hassan, S. G Nassr, Power Lomax Poisson distribution: Properties and Estimation, J. Data Sci. (JDS), 16 (2018), 105–128.
    [35] A. S. Hassan, R. E. Mohamed, Parameter Estimation for Inverted Exponentiated Lomax Distribution with Right Censored Data, Gazi Univ. J. Sci., 32 (2019), 1370–1386. doi: 10.35378/gujs.452885
    [36] A. S. Hassan, M. A. H Sabry, A. Elsehetry, Truncated Power Lomax Distribution with Application to Flood Data, J. Stat. Appl. Prob., 9 (2020), 347–359. doi: 10.18576/jsap/090214
    [37] A. S. Hassan, M. Elgarhy, R. E. Mohamed, Statistical Properties and Estimation of Type II Half Logistic Lomax Distribution, Thail. Stat., 18 (2020), 290–305.
    [38] R. Bantan, A. S. Hassan, M. Elsehetry, Zubair Lomax Distribution: Properties and Estimation based on Ranked Set Sampling, CMC- Comput. Mater. Con., 65 (2020), 2169–2187.
    [39] A. Pak, M. R. Mahmoudi, Estimating the Parameters of Lomax Distribution from Imprecise Information, J. Stat. Theory Appl., 17 (2018), 122–135.
    [40] M. H. Chen, Q. M. Shao, Monte Carlo Estimation of Bayesian Credible and HPD Intervals, J. Comput. Graph. Stat., 8 (1999), 69–92.
    [41] B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, Springer-Verlag, New York, 1982.
    [42] S. Dey, I. Ghosh, D Kumar, Alpha power transformed Lindley distribution: properties and associated inference with application to earthquake data, Ann. Data. Sci., 6 (2019), 623–650.
    [43] M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: Properties and applications, Commun. Stat. Theory Methods, 46 (2017), 10236–10252.
  • This article has been cited by:

    1. Abdulhakim A. Al-Babtain, Ibrahim Elbatal, Christophe Chesneau, Mohammed Elgarhy, Feng Chen, Estimation of different types of entropies for the Kumaraswamy distribution, 2021, 16, 1932-6203, e0249027, 10.1371/journal.pone.0249027
    2. Ahmed Sayed M. Metwally, Amal S. Hassan, Ehab M. Almetwally, B M Golam Kibria, Hisham M. Almongy, Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications, 2021, 23, 1099-4300, 1662, 10.3390/e23121662
    3. M. Shrahili, Ahmed R. El-Saeed, Amal S. Hassan, Ibrahim Elbatal, Mohammed Elgarhy, V. Vijayan, Estimation of Entropy for Log-Logistic Distribution under Progressive Type II Censoring, 2022, 2022, 1687-4129, 1, 10.1155/2022/2739606
    4. Abdullah M. Almarashi, Ali Algarni, Amal S. Hassan, Ahmed N. Zaky, Mohammed Elgarhy, Bayesian Analysis of Dynamic Cumulative Residual Entropy for Lindley Distribution, 2021, 23, 1099-4300, 1256, 10.3390/e23101256
    5. Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Analysis of uncertainty measure using unified hybrid censored data with applications, 2021, 15, 1658-3655, 1130, 10.1080/16583655.2021.2022901
    6. Salem A. Alyami, Amal S. Hassan, Ibrahim Elbatal, Mohammed Elgarhy, Ahmed R. El-Saeed, Bayesian and non-Bayesian estimation of dynamic cumulative residual Tsallis entropy for moment exponential distribution under progressive censored type II, 2023, 21, 2391-5471, 10.1515/phys-2022-0264
    7. Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy, Analysis of information measures using generalized type-Ⅰ hybrid censored data, 2023, 8, 2473-6988, 20283, 10.3934/math.20231034
    8. Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy, Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution, 2024, 9, 2473-6988, 32646, 10.3934/math.20241563
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3030) PDF downloads(142) Cited by(8)

Figures and Tables

Figures(13)  /  Tables(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog