Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results

  • Received: 01 April 2015 Revised: 01 September 2015
  • Primary: 35L65; Secondary: 35M30, 92D25.

  • This paper is devoted to the overview of recent results concerning nonlocal systems of conservation laws. First, we present a predator -- prey model and, second, a model for the laser cutting of metals. In both cases, these equations lead to interesting pattern formation.

    Citation: Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi. Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results[J]. Networks and Heterogeneous Media, 2016, 11(1): 49-67. doi: 10.3934/nhm.2016.11.49

    Related Papers:

    [1] Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi . Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks and Heterogeneous Media, 2016, 11(1): 49-67. doi: 10.3934/nhm.2016.11.49
    [2] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [3] Jan Friedrich, Sanjibanee Sudha, Samala Rathan . Numerical schemes for a class of nonlocal conservation laws: a general approach. Networks and Heterogeneous Media, 2023, 18(3): 1335-1354. doi: 10.3934/nhm.2023058
    [4] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [5] Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029
    [6] Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
    [7] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [8] Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203
    [9] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [10] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
  • This paper is devoted to the overview of recent results concerning nonlocal systems of conservation laws. First, we present a predator -- prey model and, second, a model for the laser cutting of metals. In both cases, these equations lead to interesting pattern formation.


    [1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983. doi: 10.1137/140975255
    [2] D. Amadori, P. Goatin and M. D. Rosini, Existence results for Hughes' model for pedestrian flows, J. Math. Anal. Appl., 420 (2014), 387-406. doi: 10.1016/j.jmaa.2014.05.072
    [3] D. Amadori and W. Shen, Global existence of large BV solutions in a model of granular flow, Comm. Partial Differential Equations, 34 (2009), 1003-1040. doi: 10.1080/03605300902892279
    [4] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, vol. 89 of Monographs in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1995, Abstract linear theory. doi: 10.1007/978-3-0348-9221-6
    [5] C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. doi: 10.1080/03605307908820117
    [6] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci., 22 (2012), 1230004, 29pp. doi: 10.1142/S0218202512300049
    [7] Numer. Math., To appear. doi: 10.1007/s00211-015-0717-6
    [8] J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws, J. Differential Equations, 252 (2012), 3245-3277. doi: 10.1016/j.jde.2011.11.003
    [9] C. Christoforou, Systems of hyperbolic conservation laws with memory, J. Hyperbolic Differ. Equ., 4 (2007), 435-478. doi: 10.1142/S0219891607001215
    [10] R. M. Colombo, G. Guerra, M. Herty and F. Marcellini, A hyperbolic model for the laser cutting process, Appl. Math. Model., 37 (2013), 7810-7821. doi: 10.1016/j.apm.2013.02.031
    [11] M3AS, To appear.
    [12] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p. doi: 10.1142/S0218202511500230
    [13] R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Comm. Partial Differential Equations, 32 (2007), 1917-1939. doi: 10.1080/03605300701318849
    [14] R. M. Colombo, G. Guerra and W. Shen, Lipschitz semigroup for an integro-differential equation for slow erosion, Quart. Appl. Math., 70 (2012), 539-578. doi: 10.1090/S0033-569X-2012-01309-2
    [15] R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007
    [16] R. M. Colombo and F. Marcellini, Nonlocal systems of balance laws in several space dimensions with applications to laser technology, Journal of Differential Equations, 259 (2015), 6749-6773. doi: 10.1016/j.jde.2015.08.005
    [17] R. M. Colombo and L.-M. Mercier, Nonlocal crowd dynamics models for several populations, Acta Mathematica Scientia, 32 (2012), 177-196. doi: 10.1016/S0252-9602(12)60011-3
    [18] R. M. Colombo, M. Mercier and M. D. Rosini, Stability and total variation estimates on general scalar balance laws, Commun. Math. Sci., 7 (2009), 37-65. doi: 10.4310/CMS.2009.v7.n1.a2
    [19] R. M. Colombo and E. Rossi, Hyperbolic predators vs. parabolic prey, Commun. Math. Sci., 13 (2015), 369-400. doi: 10.4310/CMS.2015.v13.n2.a6
    [20] R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944. doi: 10.1016/S0252-9602(15)30028-X
    [21] G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 523-537. doi: 10.1007/s00030-012-0164-3
    [22] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1
    [23] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.
    [24] M. S. Gross, On gas dynamics effects in the modelling of laser cutting processes, Appl. Math. Model., 30 (2006), 307-318. doi: 10.1016/j.apm.2005.03.021
    [25] G. Guerra and W. Shen, Existence and stability of traveling waves for an integro-differential equation for slow erosion, J. Differential Equations, 256 (2014), 253-282. doi: 10.1016/j.jde.2013.09.003
    [26] K. Hirano and R. Fabbro, Experimental investigation of hydrodynamics of melt layer during laser cutting of steel, Journal of Physics D: Applied Physics, 44 (2011), 105502. doi: 10.1088/0022-3727/44/10/105502
    [27] S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [28] C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190 (2003), 439-465. doi: 10.1016/S0022-0396(02)00158-4
    [29] R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-8629-1
    [30] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, 1925.
    [31] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6
    [32] J. D. Murray, Mathematical Biology. II, vol. 18 of Interdisciplinary Applied Mathematics, 3rd edition, Springer-Verlag, New York, 2003, Spatial models and biomedical applications.
    [33] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2007.
    [34] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y
    [35] P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007, Blow-up, global existence and steady states.
    [36] ESAIM: Mathematical Modelling and Numerical Analysis, To appear. doi: 10.1051/m2an/2015050
    [37] W. Schulz, V. Kostrykin, H. Zefferer, D. Petring and R. Poprawe, A free boundary problem related to laser beam fusion cutting: Ode approximation, Int. J. Heat Mass Transfer, 40 (1997), 2913-2928. doi: 10.1016/S0017-9310(96)00342-0
    [38] W. Schulz, M. Nießen, U. Eppelt and K. Kowalick, Simulation of laser cutting, in Springer Series in Materials Science, The theory of laser materials processing: Heat and mass transfer in modern technology, Springer Publishers, 119 (2009), 21-69. doi: 10.1007/978-1-4020-9340-1_2
    [39] W. Schulz, G. Simon, H. Urbassek and I. Decker, On laser fusion cutting of metals, J. Phys. D - Appl. Phys, 20 (1987), p481. doi: 10.1088/0022-3727/20/4/013
    [40] D. Serre, Systems of Conservation Laws. 1 & 2, Cambridge University Press, Cambridge, 1999, Translated from the 1996 French original by I. N. Sneddon. doi: 10.1017/CBO9780511612374
    [41] W. Steen, Laser Material Processing, Springer, 2003, URL http://books.google.it/books?id=8E_Ruj0hvzwC.
    [42] M. Vicanek and G. Simon, Momentum and heat transfer of an inert gas jet to the melt in laser cutting, Journal of Physics D: Applied Physics, 20 (1987), p1191. doi: 10.1088/0022-3727/20/9/016
    [43] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma, 2 (1926), 31-113.
    [44] G. Vossen and J. Schüttler, Mathematical modelling and stability analysis for laser cutting, Mathematical and Computer Modelling of Dynamical Systems, 18 (2012), 439-463. doi: 10.1080/13873954.2011.642387
  • This article has been cited by:

    1. Alexandre Bayen, Jean-Michel Coron, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, 2021, 49, 2305-221X, 957, 10.1007/s10013-021-00506-7
    2. Kuang Huang, Qiang Du, Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, 2022, 82, 0036-1399, 221, 10.1137/20M1355732
    3. Rinaldo M. Colombo, Elena Rossi, Well‐posedness and control in a hyperbolic–parabolic parasitoid–parasite system, 2021, 147, 0022-2526, 839, 10.1111/sapm.12402
    4. Xiaoxuan Yu, Yan Xu, Qiang Du, Asymptotically compatible approximations of linear nonlocal conservation laws with variable horizon, 2022, 38, 0749-159X, 1948, 10.1002/num.22849
    5. Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, 2022, 21, 1536-0040, 1495, 10.1137/20M1366654
    6. Alberto Bressan, Wen Shen, On Traffic Flow with Nonlocal Flux: A Relaxation Representation, 2020, 237, 0003-9527, 1213, 10.1007/s00205-020-01529-z
    7. Jereme Chien, Wen Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads, 2019, 26, 1021-9722, 10.1007/s00030-019-0601-7
    8. Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001
    9. Francesca Marcellini, On the stability of a model for the cutting of metal plates by means of laser beams, 2017, 68, 08939659, 143, 10.1016/j.aml.2017.01.002
    10. Xiaoxuan Yu, Yan Xu, Qiang Du, Numerical Simulation of Singularity Propagation Modeled by Linear Convection Equations with Spatially Heterogeneous Nonlocal Interactions, 2022, 92, 0885-7474, 10.1007/s10915-022-01915-7
    11. Aekta Aggarwal, Helge Holden, Ganesh Vaidya, Well-posedness and error estimates for coupled systems of nonlocal conservation laws, 2024, 0272-4979, 10.1093/imanum/drad101
    12. Marco Inversi, Giorgio Stefani, 2025, 809, 978-1-4704-7860-5, 123, 10.1090/conm/809/16205
    13. Qunyu Yuan, Xiaoyu Cheng, Qing Huang, General Solutions of a Class of nth-Order Nonlocal Differential Equations, 2025, 24, 1575-5460, 10.1007/s12346-025-01268-0
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4728) PDF downloads(72) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog