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ABSTRACT. This paper is devoted to the overview of recent results concerning
nonlocal systems of conservation laws. First, we present a predator — prey
model and, second, a model for the laser cutting of metals. In both cases,
these equations lead to interesting pattern formation.

1. Introduction. Several problems lead to the study of conservation (or balance)
laws where the source and/or the flux are nonlocal functions of the solution. A
first example is related to memory effects in elastodynamics, see [9], leading to
balance laws with source terms depending on the past history. Then, in [13, 28], the
description of radiating gases led to source terms containing nonlocal operators in
the space variable. In vehicular traffic, the realistic assumption that drivers react to
what happens in a (possibly, forward) neighborhood of their position naturally leads
to conservation laws with fluxes that are nonlocal in the space variable, see [15, 7].
Nonlocal interactions are even more relevant in crowd dynamics models, where a
variety of nonlocal models were recently introduced, see for instance [2, 12, 17, 21,
34] and the review [6]. Nonlocal models for the dynamics of granular materials
are studied, e.g., in [3, 14, 25]. Finally, we recall the wide research area related to
structured populations, where standard models consist in initial — boundary value
problems for balance laws with nonlocal boundary conditions, see for instance the
book [33] or also the approach in [8], based on measure valued solutions to nonlocal
balance laws.

In this paper, we present two models based on nonlocal balance laws. The first
is a mixed hyperbolic — parabolic predator — prey model, introduced in [19]. The
latter is devoted to the dynamics of melted metal during the cutting of a metal plate
by means of a laser beam, introduced in [16]. In both cases, we recall the recently
obtained well posedness results. Again in both cases, numerical integrations display
qualitative features that are still lacking an analytic treatment. Indeed, both models
lead to the formation of patterns, common also to some of the other aforementioned
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nonlocal models, see [12, 17]. In the case of the predator — prey system, these
patterns are due to the reaching of a dynamic equilibrium between the hyperbolic
drift of predators and the parabolic diffusion of prey, see Section 2. In the latter
case of the laser model, this pattern provides a first description of the formation of
ripples, see Section 3.

At present, a rigorous analytic definition of these patterns is missing, as well as
detailed results on the qualitative behavior of solutions to balance laws with nonlocal
fluxes. Below we exploit numerical integrations to investigate the role of specific
parameters in the development of qualitative properties of solutions. Indeed, these
parameters may well play the role of controls used to pursue specific goals, such
as maximizing the predators’ growth or minimizing the formation of ripples. In
both cases of the predator-prey system and of the laser model, we single out two
parameters. The first one, namely the prey natality v in Section 2 and the laser
speed vy, in Section 3, enters the equations in a rather standard way. We expect
that the L1-Lipschitz continuous dependence of solutions on these parameters can
be obtained suitably refining the techniques in [16, 19].

A less standard role, again in both cases, is played by the radius of the support
of the convolution kernel, which is the second parameter we investigate. Indeed,
nonlocal systems of conservation laws are known to lead to well posed Cauchy
problems, see [17]. As the convolution kernels converge to a Dirac delta, we obtain
systems of conservation laws in several space dimensions, whose well posedness is a
well known hard, and currently completely open, problem.

2. A mixed parabolic — hyperbolic problem. In this section we consider the
following mixed system to describe predator — prey dynamic introduced in [19]

dru + div (uv(w)) = (aw — B)u, (1)
Oyw — pAw = (y — du) w.

Here, u = u(t,z) and w = w(t,x) are the predator and prey density respectively,
evaluated at time ¢ € Rt and position z € RY. The coefficient o, 3, v, § appearing
in system (1) are all positive, p is strictly positive. Thus, prey diffuse according to
a parabolic equation, while predators evolve according to a nonlocal balance law.
In particular, the non locality is hidden in the function v , which is supposed to be
a nonlocal and nonlinear function of the prey density w. Lotka — Volterra equations
motivate the source terms: « represents the increase in the predator density due to
feeding on prey, S is the mortality rate of predators, 7 is the prey birth rate and ¢
their mortality rate due to predators.

The model by Lotka [30] and Volterra [43], see also [32], are based on ordinary
differential equations and implicitly assumes a homogeneous distribution in space
of the two populations, while model (1) has the advantage of allowing for spacial
variations, see also [32, § 1.2] and the references therein. More precisely, the flow
uv(w) accounts for the direction preferred by predators, which then can move, for
instance, towards the region where the concentration of prey is higher. A typical
choice of the function v can be

o(w) = 5 grad(w * n)

V14 llerad(w = )]

where x > 0 is the maximal predator speed, while 7 is a positive smooth mollifier.
The space convolution product (w(t) x7) (z) yields an average of the prey density

(2)
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at time t around position z. Observe that the radius of the support of n represents
how far predators can “feel” the presence of prey, and, hence, the direction in which
to hunt.

The class of model (1) is studied in [19], under suitable assumptions on v. More
precisely, existence, uniqueness, continuous dependence from the initial datum and
various stability estimates for the solutions to (1) are proved. Solutions, understood
in distributional sense, are constructed in the space L N L>® N BV for predators
and L N L> for prey. Moreover, all analytic results hold in any space dimension.

An explicit numerical scheme for the discretisation of system (1) in two space
dimensions is introduced in [36], where the convergence of the scheme is proved.
Using the algorithm introduced in [36], qualitative properties of the solutions can
be shown. In particular, we underline below a remarkable pattern formation, see
Figure 1.

We recall the definition of solution to (1):

Definition 2.1. [19, Definition 2.1] Fix T > 0. A solution to the system (1) on
0,77 is a pair (u,w) € C° ([0, T); L*(RY;R?)) such that
e setting a(t,z) =y — du(t, z), w is a weak solution to dyw — pAw = aw;
e setting b(t,z) = aw(t,z) — f and c(t, z) = (v (w(t))) (x), u is a weak solution
to Oru + div (uc) = bu.

We now recall what weak solution means in both cases. We fix t,, T' € RT, with
T > t,, and denote I = [t,,T]. Concerning the parabolic problem, we give the
following definition of solution, inspired by [35, Section 48.3].

Definition 2.2. Let a € L>(I x RY;R) and w, € L*(RY;R). A weak solution
to (6) is a function w € CO(I;L*(RY;R)) such that for all test functions ¢ €
C! (I;CZ(RY;R))

T
/ / (WO +pwAp+awe) de dt =0 (3)
t, JRN

and w(t,, x) = wy(x).

In a way similar to [22, Section 4.3] and [40, Section 3.5] we give the following
definition of solution to the balance law.

Definition 2.3. Let b € L>®(I x RV:R), ¢ € L>=(I x RY;RY) and u, € (L' N
L) (RY;R). A weak solution to (7) is a function u € C°(I; L*(RY;R)) such that
for all test functions ¢ € CL(I x RY;R)

T
/ / (uop+uc-Vo+bup)drdt=0 4)
to JRN

and u(t,, x) = up(x).

Before stating the main analytic result, observe that system (1) is defined by
a few real and positive parameters and by the function v. Hence, we require the
following assumptions on this map:

(v): v (LY NL®)(RY;R) — (C2 N WL2)(RN;RY) admits a constant K and
an increasing map C' € L (RT;R*) such that, for all w, wy, wy € (LN

C
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L*)(RY;R),
||U(w)||Loo(RN;]RN) < KHwHLl(RN;R)’
lgrad v(w) g rgreny <K [0l @z,
[v(w:) — v(wQ)”LOO(]RN;JRN) < Kwi - wQHLl(RN;R)’
|grad (divv(w))HLl(]RN;]RN) < C (Hw”Ll(]RN;]R)) ”wHLl(RN;R)?
[div (v(w1) = v(w2))llpreriey < C <Hw2||Loo(RN;R)) lwr = we|pa @v gy

The bound on the L* norm of v(w) by means of the L' norm of w, see the first
and the third inequality above, is typical of a nonlocal operator, e.g. convolution.
Under reasonable regularity conditions on the kernel 7, Lemma 4.1 in [19] ensures
that (v) is satisfied by an operator v as in (2).

Introduce also the spaces

X = (L'NL*NBV) (RY;R) x (L' nL*) (RV;R)  and
Xt = (L'NnL*NnBV)(RY;R") x (L' nL>)(RY;RT)
with the norm
[[(w, W)l » = HUHLl(RN;R) + ”wHLl(]RN;R) : (5)
Relying solely on the assumption (v), we state the main analytic result.

Theorem 2.4. [19, Theorem 2.2] Fiz «,f3,7v,6 > 0 and pn > 0. Assume that v
satisfies (v). Then, there exists a map

R:RT xxt - X*
with the following properties:

1. R is a semigroup: Ry =1d and Ry, o Ri, = Ri 41, for all t1,ts € RT.
2. R solves (1): for all (uy,w,) € X, the map t — Ri(uo,w,) solves the

Cauchy Problem
Ou + div (uv(w)) = (aw — f)u
Ow — pAw = (y—du)w
u(0, ) = uo(x)
w(0,x) = w,(x)

in the sense of Definition 2.1. In particular, for all (u,,w,) € X the map
t — Ri(ue, w,) is continuous in time.

3. Local Lipschitz continuity in the initial datum: for allr > 0 and for all
t € R, there emist a positive L(t,r) such that for all (uy,w1), (uz,ws) € X
with

[willpeo@ygy £ 70 TV(W) <7y willpeoga gy <75 willpa@y gy < 7

fori=1,2, the following estimate holds:

IR (ur, wi) = Raug, wa)llx < L(E,7) [|(ur, wr) = (uz, wa)lx -
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4. Growth estimates: for all (u,,w,) € XV and for all t € RY, denote
(u, w)(t) = Ri(uo, w,). Then,

vt

IN

(&
l® e < Nollis g oxp (a ||wo||Lx(RN;R>)

e’t—1

IA

Hu(t)HLOO(]RN;R) HUOHLOO(]RN;]R) exp ((Oé + K) ”wO”LOO(]RN;]R)>

[wt) @y ry < ||wo||L1(JRN;R)6w

Hw(t)HLOO(RN;R) S ||w0||Loo(RN;R) e’yt .

5. Propagation speed: if (u,,w,) € XT is such that spt(u,) C B(0, p,), then
for allt € RT,

spt (u(t)) € B (0, p(t)) where  p(t) = po+ Kt |[wo|lga gy g) -

An explicit estimate of the Lipschitz constant L£(¢,r) is provided in [19, Equa-
tion (4.37)]. The growth estimates in point 4 provide an a priori control on the
total mass and on the peaks of the solution. Point 5 means that the solution to the
balance law propagates with finite speed.

For the proof of Theorem 2.4, see [19, Paragraph 4.3]. There, the result is proved
exploiting a fixed point argument and careful estimates on the parabolic problem

Ow — pAw = at,x) w
w(to, ) = wo(x) )
and, separately, on the balance law
Opu + div (e(t, x) u) = b(t, z) u
u(to, ) = uo(x)
with suitable assumptions on the functions a, b and c.

Remark 1. Concerning the parabolic problem (6), observe that we are interested
in L' solutions defined on the whole space, and not L? on a subset of RY as it
is conventional in literature, see [4, 31, 35]. Detailed proofs and estimates for the
parabolic problem are provided in [19], inspired by the results in [4, 23].

Remark 2. Tt is interesting to note that, even if both Cauchy Problems (6) and (7)
are non autonomous problems and each of them generate a process, see [19, Propo-
sition 2.5 and Proposition 2.8], the mixed system (1) generates a semigroup.

Remark 3. Consider the following generalization of (1):

Opu + div (f(u) v(w)) = (cw — B u
Ow — pAw = (y —du)w

(8)

with the assumptions f € C2?(R;R) and f(0) = 0. Existence, uniqueness and
stability estimates follow by a straightforward extension of [19, Proposition 2.8]
and Theorem 2.4.
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2.1. Numerical integrations. We exploit the numerical algorithm introduced
in [36] for the discretisation of system (8), generalization of (1), in two space di-
mensions in order to provide some numerical integrations of the model proposed
and to show some qualitative properties of the solutions.

The approximation scheme consists of a finite difference scheme for the parabolic
part and a Lax — Friedrichs type finite volume method for the balance law. The
source terms of both equations are treated using a second order Runge — Kutta
method, see [36, Section 2| for additional details. The classical operator splitting
technique is to combine the differential parts to the source terms.

In this numerical integration, the boundary data are assigned as in [36, Para-
graph 5.1].

We focus on integrating system (1) in the two-dimensional case and we use the
vector field v in (2), where the kernel function 7 is chosen as follows

3
n(xz) =19 (32 - Hx||2) XB(O’Z)(JJ) with /) € RT such that /R2 nx)de=1. (9)

In particular, we present two different situations in which an interesting asymp-
totic state arises. In both cases, we set v as in (2) and 7 as in (9).

2.1.1. First example. We set

a = 1 B = 02 K =
v = 04 60 = 24 w = 05

£ =0.0625 (10)

and choose the following initial datum on the numerical domain [0, 0.5] x [0, 1]

R B uo(@,y) = 0.25 x . (z,9) + 0.2 x (=)
® wo(z,y) =0.2
where (11)
e C={(z,y) € R?: (4x — 0.6)* + (4y — 3)2 < 0.01}
D={(z,y)€ R?: (42 — 1.3)* + (4y — 0.8)* < 0.04} .

86 01 o2 03 o4 os *bo o1 o0z o3 04 os

The solution is computed up to time Ty.x = 3 on a mesh of width Az = Ay =
0.0025 and the result is displayed in Figure 1.

At the beginning, predators almost disappear, while moving towards the central
region of the numerical domain where prey grow most, due to the chosen boundary
conditions. Then, they start to increase and slowly a regular and quite robust
pattern appears: predators focus in small regions, regularly distributed, surrounded
by prey.

The analytic explanation of this pattern could be the following: there is a sort
of dynamic equilibrium between the first order nonlocal differential operator in the
predator equation and the Laplacian in the prey equation. In the zones where
predators are focused, their feeding on prey causes “holes” in the prey distribution.
As a consequence, due to symmetry considerations, the average gradient of the prey
density almost vanishes, and hence predators almost do not move. At the same time,
these “holes” are continuously filled by the reproduction and the diffusion of the
prey, which keep providing new nutrient to predators.

Coherently with this explanation, numerical integrations confirm that this as-
ymptotic pattern essentially depends on the size of the support of 7. Indeed, we
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FIGURE 1. Numerical integration of (1)—(9)—(10) with initial da-
tum (11). Top row: wu; middle row: w. Darker colors indicate
higher densities. First, predators decrease and move towards the
central region. Then, a discrete regular pattern arises: predators
focus in small regions regularly distributed. This solution was ob-
tained with space mesh size Ax = Ay = 0.0025. On the bottom
row, to enhance the visibility of the prey distribution, we plot w—w,
where w is the average of w over the computational domain, and
we let the color levels vary, i.e. the same colors may mean different
density in different pictures.

integrate the same initial datum (11) with the same parameters (10), except for .
More precisely, we choose

¢ = 0.03125, ¢ = 0.0625, ¢ =0.125, ¢ =0.25.

We can see that as ¢ decreases, also the distance among pairwise nearest peaks
in the asymptotic predator density u decreases, and more peaks are possible, see
Figure 2.

An other interesting feature is to see what happens when one of the parameters
in (10) varies, keeping the initial datum (11) fixed. For instance, let v assume the
following values:

v=0.1, v=10.2, v =04, v = 0.6, v=10.8,

while all the other parameters are the same. The parameter v represents the birth
rate of prey w: as « gets smaller, less prey are born. The same pattern as before
appears for every values of «y, with difference in number, distribution and heights
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FIGURE 2. Numerical solution of (1)—(9)-(10) with initial da-
tum (11) computed at time ¢ 2.52 for different values of /,
i.e. from the left ¢ = 0.03125, £ = 0.0625, £ = 0.125 and ¢ = 0.25.
Only the solution for predators u is displayed, since the structure
is more visible. Darker colors indicate higher densities. As £ de-
creases, the distance among peaks in u decreases and more peaks
are possible. The space mesh size is Az = Ay = 0.0025.

of the peaks, see Figure 3, where we focus only on the solution for predators u at
a particular time £ = 2.52. In Figure 4 we can see the evolution in time of the
L-norm of the densities v and w. For larger v, the total mass of predators u grows
more, see the graphs on the left of Figure 4. The same seems to happen to the total
mass of prey. However, as time passes, the great amounts of predators present for
larger values of v permits to control the prey, leading to a reduction of their mass.
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FIGURE 3. Numerical solution of (1)—(9)—(10) with initial da-
tum (11) computed at time ¢ = 2.52 for different values of =,
i.e. from the left v = 0.1, v = 0.2, v = 0.4, v = 0.6 and v = 0.8.
Only the solution for predators u is displayed, since the structure is
more visible. Darker colors indicate higher densities. As -y changes,
the number of peaks in u varies. The space mesh size is Ax
Ay = 0.0025.
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FIGURE 4. Evolution in time of the integral of u, on the left, and
w, on the right, numerical solution of (1)-(9)—(10) with initial da-
tum (11) for different values of v, i.e. v = 0.1, v = 0.2, v = 0.4,
v = 0.6 and v = 0.8. These integrals represent the total mass of
predators and prey respectively.

2.1.2. Second example. We now set

a = 4 B 0.2 k=

¢ =0.0625 (12)

and choose the following initial datum on the numerical domain [0, 0.5] x [0, 1]

o gt uo(x,y) = 0.4 x (2, y)

) ) wo(2,y) = 0.6 X, 5 (2,Y)

. * . o where (13)
. . E={(z,y) € R*: (4o — 1)? + (4y — 2)*< 0.01}
oo o F={(z,y)€ R*: (dz — 1)* + (4y — 2)* < 0.0225} .

The solution is computed up to time Ty.x = 3 on a mesh of width Az = Ay =
0.0025 and the result is displayed in Figure 5. Figure 6 shows the evolution of the
total mass, i.e. the L'-norm in space, of predators u and prey w over time.

As in the previous example, we can see the formation of a discrete pattern. Here,
predators u are in the centre of the numerical domain from the beginning, while
prey w surround them, forming a ring around predators. Prey start to diffuse,
filling the centre of this ring. However, their density is still greater in the original
ring than in its centre, so predators move away from the centre of the domain. Prey
keep on diffusing, and predators start to focus in small regions. Peaks of predator
density are initially distributed along two columns, placed rather in the centre of
the domain. As prey diffuse and their density increases not only in the centre of the
numerical domain, see Figure 6, some predators move away form the centre, and
the peaks in their density at the end are distributed along six columns, on an area
wider than the initial one.
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FIGURE 5. Numerical integration of (1)—(9)—(12) with initial da-
tum (13). Only w is displayed, at different times, the contours of w
being “complementary”, as in example 1, see Section 2.1.1. Darker
colors indicate higher densities. Note that, to enhance the visibility
of the pattern, the same color in different figures may indicate a
different density. This solution was obtained with space mesh size
Az = Ay = 0.0025.
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FIGURE 6. The graphs display the integral of w, on the left, and
w, on the right, representing the total mass of predators and prey
respectively. They refer to the solution to (1)—(9)—(12) with initial
datum (13).

2.2. Future research directions. The mixed system (1) suggests several other
research directions. First of all, inspired by the outcome of the numerical integra-
tions, we expect it is possible to prove the Lipschitz dependence of the solution
to (1) from the parameters therein, i.e. , 8, v and .



NONLOCAL CONSERVATION LAWS 59

Secondly, it would be worth studying system (1) with different source terms, for
instance considering the carrying capacity of the species.

Lastly, up to now the problem is studied on all RY. It would be interesting
to study the mixed system (1) in a bounded domain. Concerning the parabolic
case, this would not be a problem, since in the literature many results on parabolic
equations in bounded domain can be found. As for the hyperbolic equation, it
is necessary first to settle a few issues. A key reference is the classical paper by
Bardos, Leroux and Nédélec [5], but more estimates are needed in anticipation of
the coupling with the parabolic equation, see also [20].

3. A model for laser cutting. In this section we present a new model for the
cutting of metal plates by means of a laser beam, see [16].

Currently, two types of laser are used in this kind of technology: CO- lasers
and fiber lasers. The former ones are more powerful and accurate, but also more
expensive. The latter ones are much less expensive but, unfortunately, they have
the drawback of the formation of a sort of ripples along the sides of the cut, see
Figure 8, right. Typical tasks in laser cutting applications involve finding those
cutting parameters, e.g. laser power or cutting speed, such that these ripples are
minimal.

Through a phenomenological model based on a nonlocal system of balance laws
in two space dimensions, we aim to the description of the formation of these ripples,
whose insurgence deeply affects the quality of the cuts.

From an analytic point of view, the formulation of this model leads to a Cauchy
problem whose well posedness was not yet proved. Adapting techniques taken from
the theory of conservation laws is obtained a new theorem for existence, uniqueness
and continuous dependence of the solutions from the initial data for a class of
nonlinear systems which includes the present model.

For the evaluation of qualitative properties of solutions of the proposed model,
the use of numerical integration is indispensable. Here, by using realistic numeric
parameters taken from the specialized engineering literature, we obtain the forma-
tion of a geometry similar to the ripples observed in industrial cuts. We remark
that in this construction neither the initial data nor the parameters in the equations
contain any oscillating term. Indeed, in perspective, this model could allow to pre-
liminary test the parameters of cutting, to optimize and to minimize the presence
of ripples in real cuts.

For its industrial relevance, laser technology is widely considered in the special-
ized literature. In particular, for research results related to the modeling, model
analysis and numerical simulation of laser cutting, we refer to [24, 26, 37, 38, 39,
42, 44]. The paper in [10] is devoted to the problem of ripples with a framework
different from the present one. A 1D system of balance laws is used to describe this
phenomenon, but is difficult a treatment of the problem from the analytic point of
view. These difficulties led to the formulation of the model in [16].

We describe this process as follow. We consider a 3D geometric framework, see
Figure 7 left, where the plate lies on the z = 0 plain and the laser beam is parallel
to the z axis. We distinguish the height h of the solid metal and that of the melted
part, denoted h,,; see Figure 7, right. We base our model on the following 2D
system of balance laws

Ol + divg(hm V) = L
Bths == —ﬁ.

(14)
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‘ L2 a1

FIGURE 7. Left, the description of the 3D geometric framework:
the laser beam is parallel to the z axis, while the plate lies on the
z = 0 plain. Right, the distinction between the melted part h,,
and the solid one hg.

The source term L is directly related to the intensity of the laser: it describes the
net rate at which the solid part turns into melted. It is given by
i(t,x)
= 55 (15)
1+ ||grad, (n + H)|
where i = (¢, ) is the laser intensity. The denominator is the squared cosine of an
averaged incidence angle of the laser on the surface z = H(t, z), where H = hs+hy,,
see Figure 8.
The function 7 is a smooth function defined in R2, so that

n € CZ(R*%R), (W*H(t))(x)Z/RNn(x—ﬁ)H(tS)dé, (nx H(t)) (z) €R.

Indeed, the term grad, (n* H(t)) (x) is the average gradient at position z and time
t of the surface z = H(t, x).

2 Laser axis

FIGURE 8. Left, the incidence angle a of the laser beam on the
surface z = H(t, z). Right, image of a cutting surface with ripples.
In (14), the vector V = V (¢, z) is given by
) —grad, (n * hg)
VU llgrad, (o« h) P

V = (w(t,z) —19hm (16)
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where w = w(t, z) is the wind speed, provoked around the beam, which pushes the
melted material downwards. The coefficient 7, in (16) is related to the shear stress,
inspired by [10, 44]. The denominator in (16) is due to a (smooth) normalization
of the direction — grad,(n * hs) of the average steepest descent along the surface
z = hy(t, x).

For the the laser intensity function ¢ = i(¢,2) and for the wind function w =
w(t, z) we consider

itte) =T(Jlz—z®l) and  w(t,z) =W(llz—zL®)]), (17)

where z = x1,(t) is the center of the laser beam and both the functions Z and W
can be reasonably described through a compactly supported bell shaped function
centered at the location of the moving focus of the laser beam. In general, the
radius of the surface where the wind blows downward is a few times that of the
laser beam.

Therefore, the model proposed is the following;:

— d hs
Othpm + divy, (w(t, )Ry, — Tg(hm)2) grad, (n * hy)
2
\/1 + |lgrad,, (n * hs)||
_ i(t,x)
1+ |grad,, (1 * H)|]? (18)
Dby = — o)
1+ |lgrad,(n+ H)||
H= hs + h77L

From an analytic point of view, the formulation of this model leads to consider a
wider class of Cauchy Problems for systems of nonlocal balance laws in several space
dimensions. In fact, in [16], a new theorem is obtained ensuring existence, unique-
ness and continuous dependence for a class of nonlinear systems which includes the
model in (18).

More precisely, the following family of problems is considered:

Opu; + divy @i (t, z,us, 0 % u) = (¢, z,us, 0 % u)
u; (0, ) = u;(z)

i=1,...,n.  (19)

Above, t € [0,400] is time, x € RY is the space coordinate and the vector u =
(u1,...,up), with u; = w;(t,2), is the unknown. The term ¢ = (¢1,..., d,), with
oi(t,x,u;, A) € RY | is the flow and ® = (®q,...,®,), with ®;(¢,z,u;, A) € R, is
the source term. The function @ is a smooth function defined in RY attaining as
values m x n matrices, so that

0 € CZRYN;R™™), (Oxu®) (@)= [ Ox—&ut,)de, (Oxut)) (z) € R™.
RN
The above system (19) enjoys the property that the equations are coupled only
through the nonlocal convolution term 6 * u. This fact plays a key role in proving
well posedness. Indeed, for small times, system (19) admits a unique solution
u = u(t,z). Moreover, u is proved to be a continuous function of time with respect
to the L topology and an L'-Lipschitz continuous function of the initial datum 4.
We recall first the definition of solution to system (19).
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Definition 3.1. Fix a positive T. Let 4 € L*®°(RY,R?). A map u : [0,T] —
L (RN, R") is a solution on [0, 7] to (19) with initial datum 4 if, for i = 1,...,n,
setting for all w € R

(gi(tvwi) = ¢i (tax7w7(9*u)(tvm)) and (Aﬁi(taxaw) =, (t,x,w,(@*u)(t,x))

the map u is a Kruzkov solution to the system

8tui + le gi(t,x,ui) = @i(t,x, ui)

i=1,...,n. (20)
u;(0,2) = @;(x)

Above, for the definition of Kruzkov solution we refer to the original [27, Defini-
tion 1].
The main result of the paper in [16] is given by:

Theorem 3.2. Assume that there exists a function \ € (CONLY)(I xRN xRT; RY)
such that:
(¢): For any U >0, ¢ € (CZNW2)(I x RN x Uy x U R™N) and for all
tel,reRYN, uecly, AcUr

llgrad, ¢(t, z,u, A)l, |div, ¢(t, x, u, A)]|,
max ¢ ||grad, div, ¢(t,z,u, A)||, |erad, grad, ¢(t,z,u, A)||, ¢ < At z,U).
llgrad 4 ¢(t, z,u, A)|| , ngadi qb(t,x,u,A)H

(®): For any U > 0, ® € (C* MWL) (I x RN x Uy x U RN) and for all
tel,ze RN, uely, AUy

max {[|®(t, z,u, A)[|, [lgrad, ®(¢,z,u, A)[[} <A, z,U).
(0): 6 € C2(RN;R"¥7).

Then, for any positive C there exists a positive T, € I and positive L, C such that
for any datum

%l @y gy < C.
ae(L'NL®N BV)(RN;RN) with ||ﬂ¢||Lm(RN;RN) < C, (21)
TV(w) < C,

problem (19) admits a unique solution
u e C° ([0, T.J; L*(RY; RY))
satisfying the bounds
||u(t)HL1(RN;]RN) <C, Hu(t)”LOO(RN;RN) <C and TV(u(t)) <C,

for all t € [0,Ty]. Moreover, if also @ satisfies (21) and w is the corresponding
solution to (19), the following Lipschitz estimate holds:

[u(t) = wt) 2@y gy < LG — D1 gy gy -

For the proof see [16, Section 5].
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3.1. Numerical integration. To display qualitative properties of the solutions of
the proposed model (18), the use of numerical integrations is indispensable. Here,
using realistic numeric parameters, we obtain the formation of a geometry similar
to that of ripples observed in real industrial cuts. We remark that, in the present
construction, neither the initial data nor the parameters in the equations contain
any oscillating term. Nonetheless, we obtain an oscillating profile, rather similar
to what happens in real cuts; see for instance Figure 8, right, refer also to [16,
Paragraph 3.1]. We use below the numerical method presented in [1], which is
specifically devoted to systems of nonlocal conservation laws. More precisely, we
use a Lax — Friedrichs type algorithm for the convective part and a first order
explicit forward Euler method for the ordinary differential equations arising from
the source terms; see also [29, Section 12.1].

We show here a numerical integration, where the laser beam describes 3 segments.
More precisely, the integration is computed for ¢ € [0, 1.19], time being measured in
seconds, the mesh size is 8-107° and the domain is the rectangle [0, 20] x [—5, 4.12].
All lengths are measured in millimeters. The laser beam trajectory is given by

(3.6,3.0) t e [0,0.1]
(3.6 + 40(t — 0.1), 3.0) t e [0.10, 0.42]
2ult) = (16.4, 3.0) t € [0.42,0.52] (22)
(16.4, 3.0 —40(t —0.52)) ¢ € [0.52, 0.67]
(16.4, —3.0) t € [0.67,0.77]
(16.4 — 40(t — 0.77),—3.0) ¢ € [0.77,1.19]

corresponding to a laser beam moving at vy, = 407>, The initial hole is drilled
centered at (3.6, 0), in the interior of the metal plate. At each corner, the beam
stops for 0.1sec. We used the data in [41], see also [10, Table 1]. In particular, we
set 7, = 4 and the convolution kernel is given by

Mo here ii(a) = (1= (el /2:4)2)°  lall < 2.4,

) = Jra 1) dy 0 | > 2.4.

As initial datum, we choose
B (z) =0 and he(z) = 4.5 for all 2 € R?,

which represents a metal plate 4.5 mm thick. Finally, the wind and laser functions
are given by (17) with

W(E) = (1 - (5/3.6)2)4 lI€Il < 3.6, 7(6) = 2 (1 _ (5/1'2)2)6 lel<1.2,
0 €l > 3.6, 0 lEl>1.2,

corresponding to a laser beam with radius 1.2mm, see [41].
The resulting integration is in Figure 9, where we can see these sort of ripples,
generated with neither parameters nor initial data that contain anything oscillating.
It is of interest to investigate the dependence of the solution from the various
parameters. While a rigorous analytic study is left to a forthcoming research, here
we provide an insight on the basis of numerical integrations.
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FIGURE 9. Numerical integration of (18)—(22) with the data and
the realistic numeric parameters listed in § 3.1, see [10, 41]. Dis-
played are the contour plots of the solid metal hg, representing the
shape of the metal remaining after the cut.

A parameter of key relevance is the horizontal speed at which the vertical laser
beam moves. As Figure 10 shows, there is clear reduction in ripples as this speed

+ =1.49 t=1.22 t=0.81

FIGURE 10. Numerical integration of (18)-(22) with the data and
the realistic numeric parameters listed in § 3.1, see [10, 41], with dif-
ferent laser speeds vy : from left to right, 307552, 40752 and 80527,
A higher speed apparently reduces ripples.

increases. Note also that the faster beam produces a narrower cut, as is to be
expected.

A more subtle parameter is the radius 7, of the support of the convolution kernel
n. The proof of the L'-Lipschitz continuous dependence of the solution from 7,
does not appear to be easily at reach. Nevertheless, the integrations in Figure 11
display a convincing stability.

3.2. Future research directions. The present model rises various questions.
First, from the modeling point of view, a reasonable formal derivation of the con-
vective part and of the source term in (18) would be certainly interesting.

In view of specific applications of this model, the dependence of solutions from
parameters is also of interest and the techniques in [18] are likely to provide the
necessary starting point. However, the inverse problem, i.e., determining the values
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FIGURE 11. Numerical integration of (18)—(22) with the data and
the realistic numeric parameters listed in § 3.1, see [10, 41], with
different radii r of the kernel : from left to right, 1.2mm, 2.4mm
and 4.8mm.

of the parameters from measures of the solution, is currently a completely open
research direction, see for instance the discussion in [11, Section 2].

Finally, we recall the obvious relevance of the control problem for (18). In view of
its industrial interest, we expect that the ability of tuning the various parameters to
optimize the quality of cuts and, more generally, the efficiency of the whole process,
is of obvious interest.

Acknowledgments. Support by the INAAM-GNAMPA 2014 project Conserva-
tion laws in the modeling of collective phenomena and by the PRIN 2012 project
Nonlinear Hyperbolic Partial Differential Equations, Dispersive and Transport Equa-
tions: Theoretical and Applicative Aspects.

REFERENCES

[1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several
space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
[2] D. Amadori, P. Goatin and M. D. Rosini, Existence results for Hughes’ model for pedestrian
flows, J. Math. Anal. Appl., 420 (2014), 387-406.
[3] D. Amadori and W. Shen, Global existence of large BV solutions in a model of granular flow,
Comm. Partial Differential Equations, 34 (2009), 1003-1040.
[4] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, vol. 89 of Monographs in
Mathematics, Birkhduser Boston Inc., Boston, MA, 1995, Abstract linear theory.
[5] C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary
conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
[6] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system view-
point, Math. Models Methods Appl. Sci., 22 (2012), 1230004, 29pp.
[7] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in
traffic flow modeling, Numer. Math., To appear.
[8] J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell
growth and measure valued balance laws, J. Differential Equations, 252 (2012), 3245-3277.
[9] C. Christoforou, Systems of hyperbolic conservation laws with memory, J. Hyperbolic Differ.
Equ., 4 (2007), 435-478.
[10] R. M. Colombo, G. Guerra, M. Herty and F. Marcellini, A hyperbolic model for the laser
cutting process, Appl. Math. Model., 37 (2013), 7810-7821.
[11] R. M. Colombo and F. Marcellini, A traffic model aware of real time data, M3AS, To appear.
[12] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedes-
trian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p.
[13] R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Comm.
Partial Differential Equations, 32 (2007), 1917-1939.
[14] R. M. Colombo, G. Guerra and W. Shen, Lipschitz semigroup for an integro-differential
equation for slow erosion, Quart. Appl. Math., 70 (2012), 539-578.


http://www.ams.org/mathscinet-getitem?mr=MR3332915&return=pdf
http://dx.doi.org/10.1137/140975255
http://dx.doi.org/10.1137/140975255
http://www.ams.org/mathscinet-getitem?mr=MR3229831&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2014.05.072
http://dx.doi.org/10.1016/j.jmaa.2014.05.072
http://www.ams.org/mathscinet-getitem?mr=MR2560309&return=pdf
http://dx.doi.org/10.1080/03605300902892279
http://www.ams.org/mathscinet-getitem?mr=MR1345385&return=pdf
http://dx.doi.org/10.1007/978-3-0348-9221-6
http://www.ams.org/mathscinet-getitem?mr=MR542510&return=pdf
http://dx.doi.org/10.1080/03605307908820117
http://dx.doi.org/10.1080/03605307908820117
http://www.ams.org/mathscinet-getitem?mr=MR2974179&return=pdf
http://dx.doi.org/10.1142/S0218202512300049
http://dx.doi.org/10.1142/S0218202512300049
http://dx.doi.org/10.1007/s00211-015-0717-6
http://dx.doi.org/10.1007/s00211-015-0717-6
http://www.ams.org/mathscinet-getitem?mr=MR2871800&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.11.003
http://dx.doi.org/10.1016/j.jde.2011.11.003
http://www.ams.org/mathscinet-getitem?mr=MR2339804&return=pdf
http://dx.doi.org/10.1142/S0219891607001215
http://www.ams.org/mathscinet-getitem?mr=MR3089596&return=pdf
http://dx.doi.org/10.1016/j.apm.2013.02.031
http://dx.doi.org/10.1016/j.apm.2013.02.031
http://dx.doi.org/10.1142/S0218202516500081
http://www.ams.org/mathscinet-getitem?mr=MR2902155&return=pdf
http://dx.doi.org/10.1142/S0218202511500230
http://dx.doi.org/10.1142/S0218202511500230
http://www.ams.org/mathscinet-getitem?mr=MR2372493&return=pdf
http://dx.doi.org/10.1080/03605300701318849
http://www.ams.org/mathscinet-getitem?mr=MR2986134&return=pdf
http://dx.doi.org/10.1090/S0033-569X-2012-01309-2
http://dx.doi.org/10.1090/S0033-569X-2012-01309-2

66

(15]

[16]

(17)
(18]
(19]
20]

(21]

(22]

23]
24]
[25]
[26]
27]
(28]
29]

(30]
(31]

(32]
33]
34]

(35]

(36]

37]

(38]

(39]

[40]

RINALDO M. COLOMBO, FRANCESCA MARCELLINI AND ELENA ROSSI

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non
local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.

R. M. Colombo and F. Marcellini, Nonlocal systems of balance laws in several space dimen-
sions with applications to laser technology, Journal of Differential Equations, 259 (2015),
6749-6773.

R. M. Colombo and L.-M. Mercier, Nonlocal crowd dynamics models for several populations,
Acta Mathematica Scientia, 32 (2012), 177-196.

R. M. Colombo, M. Mercier and M. D. Rosini, Stability and total variation estimates on
general scalar balance laws, Commun. Math. Sci., 7 (2009), 37-65.

R. M. Colombo and E. Rossi, Hyperbolic predators vs. parabolic prey, Commun. Math. Sci.,
13 (2015), 369-400.

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta
Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944.

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a
system of continuity equations with non-local flow, Nonlinear Differential Equations and
Applications NoDEA, 20 (2013), 523-537.

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundle-
hren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
3rd edition, Springer-Verlag, Berlin, 2010.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1964.

M. S. Gross, On gas dynamics effects in the modelling of laser cutting processes, Appl. Math.
Model., 30 (2006), 307-318.

G. Guerra and W. Shen, Existence and stability of traveling waves for an integro-differential
equation for slow erosion, J. Differential Equations, 256 (2014), 253-282.

K. Hirano and R. Fabbro, Experimental investigation of hydrodynamics of melt layer during
laser cutting of steel, Journal of Physics D: Applied Physics, 44 (2011), 105502.

S. N. Kruzhkov, First order quasilinear equations with several independent variables, Mat.
Sb. (N.S.), 81 (1970), 228-255.

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for
radiating gas, J. Differential Equations, 190 (2003), 439-465.

R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd edition, Lectures in Mathe-
matics ETH Ziirich, Birkh&user Verlag, Basel, 1992.

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, 1925.

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in
Nonlinear Differential Equations and their Applications, 16, Birkhduser Verlag, Basel, 1995.
J. D. Murray, Mathematical Biology. I, vol. 18 of Interdisciplinary Applied Mathematics, 3rd
edition, Springer-Verlag, New York, 2003, Spatial models and biomedical applications.

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhauser Verlag,
Basel, 2007.

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian
flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhduser Advanced Texts:
Basler Lehrbiicher. [Birkhduser Advanced Texts: Basel Textbooks], Birkhauser Verlag, Basel,
2007, Blow-up, global existence and steady states.

E. Rossi and V. Schleper, Convergence of a numerical scheme for a mixed hyperbolic—parabolic
system in two space dimensions, ESAIM: Mathematical Modelling and Numerical Analysis,
To appear.

W. Schulz, V. Kostrykin, H. Zefferer, D. Petring and R. Poprawe, A free boundary problem
related to laser beam fusion cutting: Ode approximation, Int. J. Heat Mass Transfer, 40
(1997), 2913-2928.

W. Schulz, M. Nielen, U. Eppelt and K. Kowalick, Simulation of laser cutting, in Springer
Series in Materials Science, The theory of laser materials processing: Heat and mass transfer
in modern technology, Springer Publishers, 119 (2009), 21-69.

W. Schulz, G. Simon, H. Urbassek and I. Decker, On laser fusion cutting of metals, J. Phys.
D - Appl. Phys, 20 (1987), p481.

D. Serre, Systems of Conservation Laws. 1 € 2, Cambridge University Press, Cambridge,
1999, Translated from the 1996 French original by I. N. Sneddon.


http://www.ams.org/mathscinet-getitem?mr=MR2801323&return=pdf
http://dx.doi.org/10.1051/cocv/2010007
http://dx.doi.org/10.1051/cocv/2010007
http://www.ams.org/mathscinet-getitem?mr=MR3397337&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.08.005
http://dx.doi.org/10.1016/j.jde.2015.08.005
http://www.ams.org/mathscinet-getitem?mr=MR2921871&return=pdf
http://dx.doi.org/10.1016/S0252-9602(12)60011-3
http://www.ams.org/mathscinet-getitem?mr=MR2512832&return=pdf
http://dx.doi.org/10.4310/CMS.2009.v7.n1.a2
http://dx.doi.org/10.4310/CMS.2009.v7.n1.a2
http://www.ams.org/mathscinet-getitem?mr=MR3291374&return=pdf
http://dx.doi.org/10.4310/CMS.2015.v13.n2.a6
http://www.ams.org/mathscinet-getitem?mr=MR3355359&return=pdf
http://dx.doi.org/10.1016/S0252-9602(15)30028-X
http://dx.doi.org/10.1007/s00030-012-0164-3
http://dx.doi.org/10.1007/s00030-012-0164-3
http://www.ams.org/mathscinet-getitem?mr=MR2574377&return=pdf
http://dx.doi.org/10.1007/978-3-642-04048-1
http://www.ams.org/mathscinet-getitem?mr=MR0181836&return=pdf
http://dx.doi.org/10.1016/j.apm.2005.03.021
http://www.ams.org/mathscinet-getitem?mr=MR3115842&return=pdf
http://dx.doi.org/10.1016/j.jde.2013.09.003
http://dx.doi.org/10.1016/j.jde.2013.09.003
http://dx.doi.org/10.1088/0022-3727/44/10/105502
http://dx.doi.org/10.1088/0022-3727/44/10/105502
http://www.ams.org/mathscinet-getitem?mr=MR0267257&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1970037&return=pdf
http://dx.doi.org/10.1016/S0022-0396(02)00158-4
http://dx.doi.org/10.1016/S0022-0396(02)00158-4
http://www.ams.org/mathscinet-getitem?mr=MR1153252&return=pdf
http://dx.doi.org/10.1007/978-3-0348-8629-1
http://www.ams.org/mathscinet-getitem?mr=MR1329547&return=pdf
http://dx.doi.org/10.1007/978-3-0348-9234-6
http://www.ams.org/mathscinet-getitem?mr=MR1952568&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2270822&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2771664&return=pdf
http://dx.doi.org/10.1007/s00205-010-0366-y
http://dx.doi.org/10.1007/s00205-010-0366-y
http://www.ams.org/mathscinet-getitem?mr=MR2346798&return=pdf
http://dx.doi.org/10.1051/m2an/2015050
http://dx.doi.org/10.1051/m2an/2015050
http://dx.doi.org/10.1016/S0017-9310(96)00342-0
http://dx.doi.org/10.1016/S0017-9310(96)00342-0
http://dx.doi.org/10.1007/978-1-4020-9340-1_2
http://dx.doi.org/10.1088/0022-3727/20/4/013
http://www.ams.org/mathscinet-getitem?mr=MR1707279&return=pdf
http://dx.doi.org/10.1017/CBO9780511612374

NONLOCAL CONSERVATION LAWS 67

[41] W. Steen, Laser Material Processing, Springer, 2003, URL http://books.google.it/books?
id=8E_RujOhvzwC.

[42] M. Vicanek and G. Simon, Momentum and heat transfer of an inert gas jet to the melt in
laser cutting, Journal of Physics D: Applied Physics, 20 (1987), p1191.

[43] V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi,
Mem. Acad. Lincei Roma, 2 (1926), 31-113.

[44] G. Vossen and J. Schiittler, Mathematical modelling and stability analysis for laser cutting,
Mathematical and Computer Modelling of Dynamical Systems, 18 (2012), 439-463.

Received April 2015; revised September 2015.

E-mail address: rinaldo.colombo@unibs.it
E-mazil address: francesca.marcellini@unimib.it
E-mail address: e.rossib0@campus.unimib.it


http://books.google.it/books?id=8E_Ruj0hvzwC
http://books.google.it/books?id=8E_Ruj0hvzwC
http://dx.doi.org/10.1088/0022-3727/20/9/016
http://dx.doi.org/10.1088/0022-3727/20/9/016
http://www.ams.org/mathscinet-getitem?mr=MR2954949&return=pdf
http://dx.doi.org/10.1080/13873954.2011.642387
mailto:rinaldo.colombo@unibs.it
mailto:francesca.marcellini@unimib.it
mailto:e.rossi50@campus.unimib.it

	1. Introduction
	2. A mixed parabolic – hyperbolic problem
	2.1. Numerical integrations
	2.2. Future research directions

	3. A model for laser cutting
	3.1. Numerical integration
	3.2. Future research directions

	Acknowledgments
	REFERENCES

