Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order

  • Received: 12 November 2023 Revised: 27 December 2023 Accepted: 08 January 2024 Published: 12 January 2024
  • In the current study, a novel multi-term mixed sub-diffusion and wave-diffusion model was considered. The new model has a unique time-space coupled derivative in addition to having the diffusion-wave and sub-diffusion terms concurrently. Typically, an elliptic equation in the space variable is obtained by applying a finite difference time-stepping procedure. The severe stability restrictions are the main disadvantage of the finite difference method in time. It has been demonstrated that the Laplace transform is an excellent choice for solving diffusion problems and offers a substitute to the finite difference approach. In this paper, a method based on Laplace transform coupled with the pseudospectral method was developed for the novel model. The proposed method has three main steps: First, the model was reduced to a time-independent model via Laplace transform; second, the pseudospectral method was employed for spatial discretization; and finally, the inverse Laplace transform was applied to transform the obtained solution in Laplace transform domain back into a real domain. We also presented the numerical scheme's stability and convergence analysis. To demonstrate our method's efficacy, four problems were examined.

    Citation: Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi. Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order[J]. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003

    Related Papers:

    [1] Linglong Du, Min Yang . Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks and Heterogeneous Media, 2021, 16(1): 49-67. doi: 10.3934/nhm.2020033
    [2] Linglong Du . Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13(4): 549-565. doi: 10.3934/nhm.2018025
    [3] Hantaek Bae . On the local and global existence of the Hall equations with fractional Laplacian and related equations. Networks and Heterogeneous Media, 2022, 17(4): 645-663. doi: 10.3934/nhm.2022021
    [4] Günter Leugering, Sergei A. Nazarov, Jari Taskinen . The band-gap structure of the spectrum in a periodic medium of masonry type. Networks and Heterogeneous Media, 2020, 15(4): 555-580. doi: 10.3934/nhm.2020014
    [5] Seung-Yeal Ha, Gyuyoung Hwang, Hansol Park . Emergent behaviors of Lohe Hermitian sphere particles under time-delayed interactions. Networks and Heterogeneous Media, 2021, 16(3): 459-492. doi: 10.3934/nhm.2021013
    [6] Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009
    [7] Francesca Alessio, Piero Montecchiari, Andrea Sfecci . Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14(3): 567-587. doi: 10.3934/nhm.2019022
    [8] Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027
    [9] María Anguiano, Francisco Javier Suárez-Grau . Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14(2): 289-316. doi: 10.3934/nhm.2019012
    [10] Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028
  • In the current study, a novel multi-term mixed sub-diffusion and wave-diffusion model was considered. The new model has a unique time-space coupled derivative in addition to having the diffusion-wave and sub-diffusion terms concurrently. Typically, an elliptic equation in the space variable is obtained by applying a finite difference time-stepping procedure. The severe stability restrictions are the main disadvantage of the finite difference method in time. It has been demonstrated that the Laplace transform is an excellent choice for solving diffusion problems and offers a substitute to the finite difference approach. In this paper, a method based on Laplace transform coupled with the pseudospectral method was developed for the novel model. The proposed method has three main steps: First, the model was reduced to a time-independent model via Laplace transform; second, the pseudospectral method was employed for spatial discretization; and finally, the inverse Laplace transform was applied to transform the obtained solution in Laplace transform domain back into a real domain. We also presented the numerical scheme's stability and convergence analysis. To demonstrate our method's efficacy, four problems were examined.



    In this paper, we study the pointwise long time behavior of the solution for the nonlinear wave equation with frictional and visco-elastic damping terms

    {2tuc2Δu+ν1tuν2tΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x), (1)

    in multi-dimensional half space Rn+:=R+×Rn1, with absorbing and radiative boundary condition

    (a1x1u+a2u)(x1=0,x,t)=0. (2)

    x=(x1,x) is the space variable with x1R+:=(0,), x=(x2,,xn)Rn1, t>0 is the time variable. ν1 and ν2 are positive constant viscosities, a1 and a2 are constants. The Laplacian Δ=nj=12xj, f(u) is the smooth nonlinear term and f(u)=O(|u|k) when k>0.

    Over the past few decades, many mathematicians have concentrated on solving different kinds of damped nonlinear wave equations. The first kind is called the frictional damped wave equation, which is given as follows

    {2tuc2Δu+νtu=f(u),u|t=0=u0(x),ut|t=0=u1(x), (3)

    see [9,19,20,23] for the references. It is showed that for the long time, the fundamental solution for the linear system of (3) behaves like the Gauss kernel e|x|2C(t+1)(t+1)n2. The second kind is called the visco-elastic damped wave, which is given by the following

    {2tuc2ΔuνtΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x). (4)

    One can refer to [22] for the decaying rate of the linear solution, [11,12] for the asymptotic profiles of the linear problem, [4,21] for the nonlinear equation, etc. In [9], the authors studied the fundamental solution for the linear system of (4). The results show that the hyperbolic wave transport mechanism and the visco-elastic damped mechanism interact with each other so that the solution behaves like the convented heat kernel, i.e., e(|x|ct)2C(t+1)(t+1)3n34 for the odd dimensional case and e(|x|ct)2C(t+1)(t+1)3n14+H(ct|x|)(1+t)3n24(ct|x|+t)12 for the even dimensional case. The solution exhibits the generalized Huygens principle. For other damped wave equations, one can refer to [2,27] for the damped abstract wave equation, and [14,15,16] for the existence and large time behavior of the solutions for the Cauchy problem of mixed damping (both frictional and visco-elastic damping terms are involved) wave equation.

    For the initial-boundary value problem of the different damped wave equations, many authors studied the global well-posedness existence, long time behaviors, global attractors and decaying rate estimates of some elementary wave by using delicate energy estimate method, for example [1,13,25,26,28,29]. In this paper, we will use the pointwise estimate technique to give the long time behavior of the solution for system (1) with boundary condition (2). The main part of this technique is the construction and estimation of the Green's functions for the following linear systems:

    {2tG1c2ΔG1+ν1tG1ν2tΔG1=0,x1,y1>0,xRn1,t>0,G1(x1,x,0;y1)=δ(x1y1)δ(x),G1t(x1,x,0;y1)=0,a1x1G1(0,x,t;y1)+a2G1(0,x,t;y1)=0; (5)
    {2tG2c2ΔG2+ν1tG2ν2tΔG2=0,x1,y1>0,xRn1,t>0,G2(x1,x,0;y1)=0,G2t(x1,x,0;y1)=δ(x1y1)δ(x),a1x1G2(0,x,t;y1)+a2G2(0,x,t;y1)=0. (6)

    The way of estimating the Green's functions Gi was initiated by [17] and developed by [3,5,6,8,10,18,24] and the reference therein. Following the scheme in [10], we will find the relations between the fundamental solutions for the linear Cauchy problem and Green's functions for the linear half space problem, by comparing their symbols in the transformed tangential-spatial and time variables. Then the Green's functions can be described in terms of the fundamental solutions and the boundary surface operator.

    With the help of the accurate expression of Green's functions for the linear half space problem and the Duhamel's principle, we get the pointwise long time behavior for the nonlinear solution αxu, |α|1. We only treat the case a1a2<0. The boundary condition of Dirichlet type (a1=0) and Neumann type (a2=0) are much simpler. For the case of a1a2>0, the linear problem is unstable. The main results of our paper are given as follows:

    Theorem 1.1. Let n=2,3 be the spatial dimension, k>1+2n. Assume the initial data (u0(x),u1(x))(Hl+1Wl,1)×(HlWl,1), l[n2]+2, and satisfy

    |αxu0,αxu1|O(1)ε(1+|x|2)r,  r>n2,  |α|1,

    ε sufficiently small, then there exists a unique global classical solution to the problem (1) with the mixed boundary condition (2) while a1a20. The solution has the following pointwise estimate:

    |αxu(x,t)|O(1)ε(1+t)|α|/2(1+t+|x|2)n2.

    Moreover, we get the following optimal Lp(Rn+) estimate of the solution

    αxu(,t)Lp(Rn+)O(1)ε(1+t)n2(11p)|α|2,  p(1,].

    Remark 1. We can develop a similar theorem for the case of higher space dimension with a suitable choice of k which guarantees the existence of the solution. In Section 2.2, the approximation used in the calculation of the singular part depends on the space dimension. One could modify the short wave part expression of Green's functions for the linear half space problem to prove the results for the general case.

    Notations. Let C and O(1) be denoted as generic positive constants. For multi-indices α=(α1,,αn), αx=α1x1αnxn, |α|=ni=1αi. Let Lp denotes the usual Lp space on xRn+. For nonnegative integer l, we denote by Wl,p(1p<) the usual Lp Soblev space of order l: Wl,p={uLp:αxuLp(|α|l)}(l1),W0,p=Lp. The norm is denoted by Wl,p= uWl,p=|α|lαxuLp. When p=2, we define Wl,2=Hl for all l0. We denote Dδ:={ξCn||Im(ξi)|δ,i=1,2,,n}. Introduce the Fourier transform and Laplace transform of f(x,t) as follows:

    f(ξ,t):=F[f](ξ,t)=Rneiξxf(x,t)dx,f(x,s):=L[f](x,s)=0estf(x,t)dt.

    The rest of paper is arranged as follows: in Section 2, we study the fundamental solutions for the linear Cauchy problem and give a pointwise description of the fundamental solutions in (x,t) variables. We also describe the fundamental solutions in other transformed variables. In Section 3, the Green's functions for the half space problem are constructed in the transformed tangential-spatial and time domain. By comparing the symbols in the transformed space, we get the relationship between the fundamental solutions and the Green's functions. Finally in Section 4, we give the long time behavior of the solution for the nonlinear problem. Some useful lemmas are given in Appendix.

    The fundamental solutions for the linear damped wave equations are defined by

    {2tG1c2ΔG1+ν1tG1ν2tΔG1=0G1(x,0)=δ(x),G1t(x,0)=0, (7)
    {2tG2c2ΔG2+ν1tG2ν2tΔG2=0G2(x,0)=0,G2t(x,0)=δ(x). (8)

    Applying the Fourier transform to (7) and (8) in the space variable x, one can compute the fundamental solutions Gi(ξ,t) (i=1,2) in the Fourier space,

    G1(ξ,t)=σ+eσtσeσ+tσ+σ,  G2(ξ,t)=eσ+teσtσ+σ,σ±=ν1+ν2|ξ|22±12ν21+(2ν1ν24c2)|ξ|2+ν22|ξ|4.

    In [16], authors have studied the pointwise estimates of the fundamental solutions by long wave-short wave decomposition in the Fourier space. Here we will use the local analysis and inverse Fourier transform to get the pointwise structures of the fundamental solutions in the physical variables (x,t). Outside the finite Mach number region |x|3(t+1), one can use the weighted energy estimates to get the exponentially decaying estimates of solution in time and space. Inside the finite Mach number region |x|4(t+1), we will use the long wave short wave decomposition to get the long wave regular parts and short wave singular parts. Here the long wave and short wave are defined as follows:

    f(x,t)=fL(x,t)+fS(x,t),F[fL]=H(1|ξ|ε0)F[f](ξ,t),F[fS]=(1H(1|ξ|ε0))F[f](ξ,t),

    with the parameter ε01, the Heaviside function H(x) is defined by

    H(x)={1,  x>0,0,  x<0.

    Long wave component. When |ξ|ε01, we have the following Taylor expansion for σ± and σ+σ:

    {σ+=c2|ξ|2ν1+o(|ξ|2),σ=ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2),
    σ+σ=ν1+(ν1ν22c2)|ξ|2ν1+o(|ξ|2).

    Then

    σ+eσt=(c2|ξ|2ν1+o(|ξ|2))e(ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2))t=c2ν1|ξ|2eν1t+o(|ξ|2)eCt,σeσ+t=(ν1+(ν2+c2ν1)|ξ|2+o(|ξ|2))e(c2|ξ|2ν1+o(|ξ|2))t=ν1ec2ν1|ξ|2t+O(|ξ|2)eC|ξ|2t,1σ+σ=1ν1+O(|ξ|2).

    So we can approximate the fundamental solutions as follows

    σ+eσtσeσ+tσ+σ=c2|ξ|2ν21eν1t+ec2ν1|ξ|2t+o(|ξ|2)eCt+O(|ξ|2)eC|ξ|2t,eσ+teσtσ+σ=1ν1ec2ν1|ξ|2t1ν1eν1t+O(|ξ|2)eCt+o(|ξ|2)eC|ξ|2t.

    Using Lemma 5.1 in Appendix, for |α|0 we have

    |DαxGL1(x,t)|O(1)(e|x|2C(t+1)(1+t)n+|α|2+e|x|+tC),|DαxGL2(x,t)|O(1)(e|x|2C(t+1)(1+t)n+|α|2+e|x|+tC).

    Short wave component. We adopt the local analysis method to give a description about all types of singular functions for the short wave component of the fundamental solutions. When |ξ|N for N sufficiently large, we have the following Taylor expansion for σ±:

    {σ+=c2ν2+c2(ν1ν2c2)ν321|ξ|2+O(|ξ|4),σ=σ+(ν1+ν2|ξ|2).

    This non-decaying property results in the singularities of the fundamental solution Gi in spatial variable. To investigate the singularities, we approximate the spectra σ± by σ±:

    {σ+=c2ν2+c2(ν1ν2c2)ν32(11+|ξ|2+1(1+|ξ|2)2)+c2(ν1ν2c2)ν32O((1+|ξ|2)3),σ=σ+(ν1+ν2|ξ|2),
    infξDε0|σ(ξ)σ+(ξ)|>0,supξDε0Re(σ±(ξ))J0,  supξDε0|ξ|8|σ±(ξ)σ±(ξ)|<  as  |ξ|.

    Therefore, the approximated analytic spectra σ± given above satisfy

    |σ+eσtσeσ+tσ+σσ+eσtσeσ+tσ+σ, eσ+teσtσ+σeσ+teσtσ+σ|O(1)(1+|ξ|2)4.

    By Lemma 5.4 in the Appendix, we have

    F1[σ+eσtσeσ+tσ+σσ+eσtσeσ+tσ+σ](,t)L(Rn)=O(1),F1[eσ+teσtσ+σeσ+teσtσ+σ](,t)L(Rn)=O(1),

    which asserts that all singularities are contained in σ+eσtσeσ+tσ+σ, eσ+teσtσ+σ. Moreover, one can also prove that the errors of this approximation decay exponentially fast in the space-time domain, just like the proof in [7].

    Now we seek out all the singularities. For the short wave part of G1(ξ,t), one breaks

    σ+eσtσeσ+tσ+σ=eσ+tσ+eσ+tσ+σ+σ+eσtσ+σ.

    The first term is

    eσ+t=ec2tν2ec2(ν1ν2c2)tν3211+|ξ|2+c2(ν1ν2c2)tν321(1+|ξ|2)2+c2(ν1ν2c2)tν32O(1(1+|ξ|2)3)=ec2tν2(1+c2(ν1ν2c2)tν3211+|ξ|2+c2(ν1ν2c2)tν321(1+|ξ|2)2)+ec2tν2c2(ν1ν2c2)tν32O(1(1+|ξ|2)3)=ec2tν2+c2(ν1ν2c2)ν32tec2tν21+|ξ|2+c2(ν1ν2c2)ν32tec2tν2(1+|ξ|2)2+tec2tν2c2(ν1ν2c2)ν32O(1(1+|ξ|2)3).

    It can be estimated as follows

    |F1[eσ+t]ec2t/ν2δ(x)tc2(ν1ν2c2)ν32ec2t/ν2Yn(x)|Ce|x|+tC.

    The second term contains no singularities and we have

    σ+eσ+tσ+σ=c2ν22ec2t/ν21+|ξ|2+ec2tν2O(1(1+|ξ|2)2),

    so

    |F1[σ+eσ+tσ+σ]+c2v22ec2t/v2Yn(x)|Ce|x|+tC.

    For the third term, the function F1[σ+eσtσ+σ] does not contain singularities in x variable due to its asymptotic when |ξ| for t>0 :

    |σ+eσtσ+σ|K0e|ξ|2t/C1J0t1+|ξ|2,

    K0>0 and J0 is a constant. One has that there exist generic constant C>0 such that for δ=(ε0,ε0),

    Im(ξk)=δ1kn|σ+eσtσ+σ|dξCRne|ξ|2t/CJ0t(1+|ξ|)2dξ=CΓ(n)0er2t/CJ0t(1+r)2rn1drCet/CLn(t), (9)

    where

    Ln(t){1,n=1,log(t),n=2,tn22,n3.

    We denote

    j1(x,t):=F1[σ+eσtσ+σ],

    following the way of proof for Lemma 5.4, we get

    |j1(x,t)|Ce(|x|+t)/CLn(t)

    from (9). So the following estimate for GS1(x,t) hold,

    |GS1(x,t)j1(x,t)ec2t/ν2δn(x)(tc2ν32(ν1ν2c2)+c2ν22)ec2t/ν2Yn(x)|e|x|+tC.

    For the short wave part of G2(ξ,t), one breaks

    eσ+teσtσ+σ=eσ+tσ+σeσtσ+σ.

    The first term is

    eσ+tσ+σ=ν12ec2t/ν21+|ξ|2+ec2tν2O(1(1+|ξ|2)2),

    and we have

    |F1[eσ+tσ+σ]ν12ec2t/ν2Yn(x)|Ce|x|+tC.

    The second term contains no singularities. If denoting

    j2(x,t)F1(eσtσ+σ),

    then there exists C>0 such that

    |j2(x,t)|Ce(|x|+t)/CLn(t),

    and we have the following estimate for GS2(x,t),

    |GS2(x,t)j2(x,t)ν12ec2t/ν2Yn(x)|Ce|x|+tC.

    Hence the short wave components have the following estimates in the finite Mach number region |x|4(t+1):

    |GS1(x,t)j1(x,t)ec2tν2δn(x)(tc2(ν1ν2c2)ν32+c2ν22)ec2tν2Yn(x)|Ce|x|+tC.|GS2(x,t)j2(x,t)ν12ec2tν2Yn(x)|Ce|x|+tC.

    Outside the finite Mach number region |x|3(t+1).

    We choose the weighted function w to be w=e(|x|at)/M, M and a will be determined later. It satisfies

    wt=aMw,w=xM|x|w,Δw=wM2.

    Consider the linear damped wave equation outside the finite Mach number region:

    {2tuic2Δui+ν1tuiν2tΔui=0,|x|3(t+1),ui|t=0=0,uit|t=0=0,ui||x|=3(t+1)=Gi||x|=3(t+1). (10)

    Denote the outside finite Mach number region {xRn,|x|3(t+1)} by Dt and its boundary by Dt. Multiplying each side of the equation in (10)1 by wut and integrating with respective to x on Dt, choosing 2<a<3, M sufficiently large such that ν1>c2M and ν12+a2Mν22M2>0, we have

    c2DtwtuiuidSx+ν2DtwtuituidSx=12ddtDtw((tui)2+c2|ui|2)dx+Dt(ν1w12wt12ν2Δw)(tui)2dx+c2Dttuiwuidx+ac22MDtw|ui|2dx+ν2Dtw|tui|2dx=12ddtDtw((tui)2+c2|ui|2)dx+Dt(ν1+a2Mν22M2)w(tui)2dx+c2DtwtuixM|x|uidx+ac22MDtw|ui|2dx+ν2Dtw|tui|2dx12ddtDtw((tui)2+c2|ui|2)dx+Dtw(ac24M|ui|2+(ν12+a2Mν22M2)(tui)2+ν2|tui|2)dx.

    On the boundary Dt, by the structures of the fundamental solutions in the finite Mach number region |x|4(t+1), we have

    |tui|,|ui|,|tui|CeCt, xDt.

    So

    ddtDtw((tui)2+c2|ui|2)dx+2δ0Dtw((tui)2+c2|ui|2)dxCeCt, (11)

    δ0=min{a4M,ν12+a2Mν22M2}.

    One can also get similar estimates for any higher order derivatives l:

    l|α|=1(ddtRnw((tαxui)2+c2|αxui|2)dx)        +δ|α|Rnw((tαxui)2+c2|αxui|2)dx)CeCt. (12)

    Integrating (11) and (12) over t, using Sobolev's inequality, we have

    sup(x,t)Dt((tαxui)2+c2|αxui|2)Ce(|x|at)/CCe(|x|+t)/C,  for |α|<ln2,

    since |x|3(t+1). This means that the fundamental solutions Gi(i=1,2) satisfy the following estimate outside the finite Mach number region Dt:

    |DαxGi(x,t)|Ce(|x|+t)/C,  for |α|<ln2.

    To summarize, we have the following pointwise estimates for the fundamental solutions:

    Lemma 2.1. The fundamental solutions have the following estimates for all xRn, |α|0:

    |Dαx(G1(x,t)j1(x,t)ec2t/ν2δn(x)(tc2ν32(ν1ν2c2)+c2ν22)ec2t/ν2Yn(x))|O(1)(e|x|2C(t+1)(t+1)n+|α|2+e(|x|+t)/C),|Dαx(G2(x,t)j2(x,t)ν12ec2t/ν2Yn(x))|O(1)(e|x|2C(t+1)(t+1)n+|α|2+e(|x|+t)/C).

    Here

    |j1(x,t),j2(x,t)|O(1)Ln(t)e(|x|+t)/C,L2(t)=log(t),  Ln(t)=tn22  for  n3,Y2(x)=O(1)12πBesselK0(|x|),  Yn(x)=O(1)e|x||x|n2  for  n3.

    BesselK0(|x|) is the modified Bessel function of the second kind with degree 0.

    Applying Laplace transform in t and Fourier transform in x to the equations in (7) and (8), denoting the transformed variables by s and ξ respectively, we get the transformed fundamental solutions in (ξ,s) variables:

    G1(ξ,s)=s+ν1+ν2|ξ|2s2+ν1s+(c2+ν2s)|ξ|2,  G2(ξ,s)=1s2+ν1s+(c2+ν2s)|ξ|2.

    Now we give a lemma:

    Lemma 2.2.

    12πReiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=1ν2s+c2eλ|x1|2λ,

    where λ=λ(ξ,s)=(ν2s+c2)|ξ|2+s2+ν1sν2s+c2.

    Proof. We prove it by using the contour integral and the residue theorem. Note that

    12πReiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=12π1ν2s+c2Reiξ1x1ξ21+|ξ|2+s2+ν1sν2s+c2dξ1=12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1.

    Define a closed path γ containing Γ:=[R,R] while R is a positive constant, Ω=γΓ={z|z=Reiθ}.

    If x1>0, set 0θπ, R is chosen to be sufficiently large such that λi is contained in the domain surrounded by γ. Consider the contour integral over path γ. The contribution of the integration over Ω approaches to 0 when R, therefore by the residue theorem, we have for x1>0,

    12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1=12π1ν2s+c22πiRes(eiξ1x1(ξ1λi)(ξ1+λi)|ξ1=λi)=eλx12(ν2s+c2)λ.

    The computation for the case x1<0 is similar. Set πθ2π,

    12π1ν2s+c2Reiξ1x1(ξ1λi)(ξ1+λi)dξ1=12π1ν2s+c22πiRes(eiξ1x1(ξ1λi)(ξ1+λi)|ξ1=λi)=eλx12(ν2s+c2)λ.

    Hence we prove this lemma.

    With the help of Lemma 2.2, we get the expression of fundamental solutions G1 and G2 in (x1,ξ,s) variables:

    G1(x1,ξ,s)=1ν2s+c2(ν2δ(x1)+c2(s+ν1)ν2s+c2eλ|x1|2λ),G2(x1,ξ,s)=eλ|x1|2λ(ν2s+c2).

    In particular, when ˉx1>0, we have

    G1(ˉx1,ξ,s)=c2(s+ν1)(ν2s+c2)2eλˉx12λ,  G2(ˉx1,ξ,s)=eλˉx12λ(ν2s+c2).

    In this section, we will give the pointwise estimates of the Green's functions for the initial boundary value problem. Firstly, we compute the transformed Green's functions in the partial-Fourier and Laplace transformed space. Then by comparing the symbols of the fundamental solutions and the Green's functions in this transformed space, we get the simplified expressions of Green's functions for the initial-boundary value problem. With the help of the pointwise estimates of the fundamental solutions and boundary operator, we finally get the sharp estimates of Green functions for the half space linear problem.

    Before computing, we make the initial value zero by considering the error function Ri(x1,x,t;y1)=Gi(x1,x,t;y1)Gi(x1y1,x,t), which satisfies the following system:

    {2tRic2ΔRi+ν1tRiν2tΔRi=0,xRn+,t>0,Ri|t=0=0,Rit|t=0=0,(a1x1+a2)Ri(0,x,t;y1)=(a1x1+a2)Gi(x1y1,x,t)|x1=0.

    Taking Fourier transform only with respect to the tangential spatial variable x, Laplace transform with respect to time variable t, the following ODE system can be obtained:

    {(s2+ν1s)Ri(c2+ν2s)Rix1x1+(c2+ν2s)|ξ|2Ri=0,(a1x1+a2)Ri(0,ξ,s;y1)=(a1y1a2)Gi(y1,ξ,s)=(a1λ+a2)Gi(y1,ξ,s).

    Solving it and dropping out the divergent mode as x1+, using the boundary relationship, we have

    Ri(x1,ξ,s;y1)=a1λ+a2a2a1λeλx1Gi(y1,ξ,s)=a1λ+a2a2a1λGi(x1+y1,ξ,s),

    where λ is defined in Lemma 2.2.

    Therefore the transformed Green's functions Gi(x1,ξ,s;y1) (i=1,2) are

    Gi(x1,ξ,s;y1)=Gi(x1y1,ξ,s)a1λ+a2a2a1λGi(x1+y1,ξ,s)=Gi(x1y1,ξ,s)+Gi(x1+y1,ξ,s)2a2a2a1λGi(x1+y1,ξ,s),

    which reveal the connection between fundamental solutions and the Green's functions.

    Hence,

    Gi(x1,x,t;y1)=Gi(x1y1,x,t)+Gi(x1+y1,x,t)F1ξxL1st[2a2a2a1λ]x,tGi(x1+y1,x,t).

    Now we estimate the boundary operator F1ξxL1st[2a2a2a1λ]. The function 1a2a1λ has the poles in the right half time space if a1a2>0, which suggests that the boundary term will grow exponentially in time. In the following we only consider the case a1a2<0.

    Instead of inverting the boundary symbol, we follow the differential equation method. Notice that

    F1ξxL1st[2a2a2a1λGi(x1+y1,ξ,s)]=2a2a1x1+a2Gi(x1+y1,x,t),

    setting

    g(x1,x,t)2a2a1x1+a2Gi(x1,x,t),

    then the function g(x1,x,t) satisfies

    (a2+a1x1)g=2a2Gi(x1,x,t).

    Solving this ODE gives

    g(x1,x,t)=2γx1eγ(zx1)Gi(z,x,t)dz=2γ0eγzGi(x1+z,x,t)dz. (13)

    Summarizing previous results we obtain

    Lemma 3.1. The Green's functions Gi(x1,x,t;y1) (i=1,2) of the linear initial-boundary value problem (5) and (6) can be represented as follows

    Gi(x1,x,t;y1)=GLi(x1,x,t;y1)+GSi(x1,x,t;y1).

    Meanwhile, the following estimates hold:

    |DαxGLi(x1,x,t;y1)|O(1)(e(x1y1)2+(xy)2C(t+1)(t+1)n+|α|2+e(x1+y1)2+(xy)2C(t+1)(t+1)n+|α|2),|α|0;
    |GS1(x1,x,t;y1)|O(1)(j1(x1y1,x,t)+j1(x1+y1,x,t)+ec2tν2(δn(x1y1,x)+δn(x1+y1,x))+ec2tν2(tc2ν32(ν1ν2c2)+c2ν22)(Yn(x1y1,x)+Yn(x1+y1,x)))

    and

    |GS2(x1,x,t;y1)|O(1)(j1(x1y1,x,t)+j2(x1+y1,x,t)+ν12ec2tν2(Yn(x1y1,x)+Yn(x1+y1,x))).

    Proof. Note that

    Gi(x1,x,t;y1)=Gi(x1y1,x,t)+Gi(x1+y1,x,t)g(x1+y1,x,t),

    based on the long-wave short-wave decomposition of the fundamental solutions

    Gi(x,t)=GLi(x,t)+GSi(x,t),

    we can write

    GLi(x1,x,t;y1)=O(1)(GLi(x1y1,x,t)+GLi(x1+y1,x,t)),GSi(x1,x,t;y1)=O(1)(GSi(x1y1,x,t)+GSi(x1+y1,x,t)),

    and get the estimates directly from Lemma 2.1 and (13).

    The study of boundary operator in the last section suggests that we can only consider the case a1a2<0 for the nonlinear stability. In [15,16], they proved a threshold k=1+2n between global and non-global existence of small data solutions. Here under the assumption of k>1+2n, the global in time existence of solution for the initial-boundary value problem can be proved using the fixed point theorem of Banach, which is similar to the proof given by [16], we omit the details.

    Now we give the pointwise long time behavior of the solution for the nonlinear problem and prove the Theorem 1.1. The Green's functions Gi(x1,x,t;y1)(i=1,2) give the representation of the solution u(x,t):

    αxu(x,t)=αxRn+(G1(x1,xy,t;y1)u0(y)+G2(x1,xy,t;y1)u1(y))dy+αxt0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydταxI(x,t)+αxN(x,t). (14)

    The initial part αxI(x,t) contains two parts:

    αxI(x,t)=αxIL(x,t)+αxIS(x,t),

    where

    αxIL(x,t)=αxRn+(GL1(x1,xy,t;y1)u0(y)+GL2(x1,xy,t;y1)u1(y))dyαxIS(x,t)=αxRn+(GS1(x1,xy,t;y1)u0(y)+GS2(x1,xy,t;y1)u1(y))dy.

    By lemma 5.2, we have the following estimates in the finite Mach number region |x|4(t+1),

    |IL(x,t)|O(1)εRn+e(xy)2C(t+1)(t+1)n2(1+|y|2)rdyO(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2), (15)
    |IS(x,t)|O(1)εe(|x|+t)C|Rn(Ln(t)+δn(xy)               +[tc2ν32(ν1ν2c2)+c2ν22]Yn(xy))(1+|y|2)rdy|+O(1)εe(|x|+t)C|Rn(Ln(t)+ν12Yn(xy))(1+|y|2)rdy|O(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2). (16)

    Hence we combine (15) and (16) to get the estimate of the first part in (14) when |α|=0

    |I(x,t)|O(1)ε(ex2C(t+1)(t+1)n2+(1+t+|x|2)n2). (17)

    Similarly, when |α|=1, we have

    |αxI(x,t)|=|αxIL(x,t)+αxIS(x,t)|O(1)εRn+(e(x1y1)2+(xy)2C(t+1)(t+1)n2+12+e(x1+y1)2+(xy)2C(t+1)(t+1)n2+12)(1+|y|2)rdy+1{αx=x1}O(1)εe(|x|+t)C|Rn1Ln(t)+δn(x1y1,xy,t)      +δn(x1+y1,xy,t)+(tc2ν32(ν1ν2c2)+c2ν22)     (Yn(x1y1,xy)+Yn(x1+y1,xy))(1+|y|2)rdy|y1=0|+O(1)εe(|x|+t)C|Rn+Ln(t)+δn(x1y1,xy,t)+δn(x1+y1,xy,t)     +(tc2ν32(ν1ν2c2)+c2ν22)      (Yn(x1y1,xy)+Yn(x1+y1,xy))(1+|y|2)rdy|+1{αx=x1}O(1)εe(|x|+t)C|Rn1(Ln(t)+ν11Yn(x1y1,xy)    +ν11Yn(x1+y1,xy))(1+|y|2)rdy|y1=0|+O(1)εe(|x|+t)C|Rn1(Ln(t)+ν11Yn(x1y1,xy)    +ν11Yn(x1+y1,xy))(1+|y|2)rdy|O(1)ε(1+t)|α|2(ex22C(t+1)(t+1)n2+(1+t+|x|2)r)+O(1)εe(|x|+t)/C.

    where

    1{αx=x1}={1, if αx=x1,0, otherwise.

    Here we use the integration by parts to estimate the short wave component part. Outside the finite Mach number region, we have

    |αxI(x,t)|O(1)εeν1tRn+e|xy|(1+y2)rdyO(1)εeν1t(1+|x|2)r,|α|1. (18)

    Based on the estimates of (17)-(18), the ansatz is posed for the solution as follows:

    |αxu(x,t)|O(1)ε(1+t)|α|2(1+t+|x|2)n2,|α|1.

    Straightforward computations show that

    |f(u)(x,t)|O(1)εk(1+t+|x|2)nk2.

    Now we justify the ansatz for the nonlinear term. For N(x,t), we have

    |N(x,t)|=|t0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydτ||t0Rn+GL2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|+|t0Rn+GS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=N1+N2.

    Using Lemma 5.3, one gets

    N1O(1)εk|t00Rn1(e(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+e(x1+y1)2+(xy)2C(tτ+1)(tτ+1)n2)                  (1+τ+|y|2)nk2dydy1dτ|O(1)εk|t0Rne(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t+|x|2)n2,
    N2O(1)εk|t0Rn+ec2(tτ)ν2(Ln(tτ)+ν12Yn(x1,xy;y1))                  (1+τ+|y|2)nk2dydτ|O(1)εk(1+t+|x|2)n2.

    Now we compute the estimate of αxN when |α|=1:

    |αxN(x,t)|=|αxt0Rn+G2(x1,xy,tτ;y1)f(u)(y,τ)dydτ||t0Rn+αxGL2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|+|t0Rn+αxGS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=αxN1+αxN2.

    Similarly we have

    αxN1=|O(1)εkt00Rn1(e(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2+e(x1+y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2)     (1+τ+|y|2)nk2dydy1dτ||O(1)εkt0Rne(x1y1)2+(xy)2C(tτ+1)(tτ+1)n2+|α|2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2,
    αxN2=|t0Rn+αxGS2(x1,xy,tτ;y1)f(u)(y,τ)dydτ|=1{αx=x1}|t0Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ|+|t0Rn+GS2(x1,xy,tτ;y1)αyf(u)(y,τ)dydτ|. (19)

    The boundary term in (19) has the following estimates:

    |t0Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ||(t/20+tt/2)Rn1GS2(x1,xy,tτ;y1)f(u)(y,τ)dy|y1=0dτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2.

    The second term in (19) satisfies

    |t0Rn+GS2(x1,xy,tτ;y1)αyf(u)(y,τ)dydτ||O(1)εkt0Rn+ec2(tτ)ν2(Ln(tτ)+ν12Yn(x1,xy;y1))(1+τ)|α|2(1+τ+|y|2)nk2dydτ|O(1)εk(1+t)|α|2(1+t+|x|2)n2.

    Therefore one has the following estimate for the nonlinear term

    |αxN|O(1)εk(1+t)|α|2(1+t+|x|2)n2,|α|1.

    Outside the finite Mach number region,

    |αxN|O(1)εk|t0Rn+eν1(tτ)e|xy|(1+τ+|y2|)nk2dydτ|O(1)εk(1+t+|x|2)nk2,|α|1.

    Thus, we verify the ansatz and finish the proof of pointwise estimates of the solution.

    The Lp (p>1) estimate can be easily proved using the following equalities:

    (Rn+(1+t+|x|2)n2pdx)1p=(Rn+(1+t)n2p(1+|x|21+t)n2pdx)1p=(1+t)n2(1+t)n2p=(1+t)n2(11p).

    Hence we finish the proof of Theorem 1.1.

    Lemma 5.1. [10] In the finite Mach number region |x|4(t+1), we have the following estimate for the inverse Fourier transform:

    |1(2π)n|ξ|ε0(iξ)αeiξxe1κ|ξ|2tdξ|O(1)e|x|2C(t+1)(1+t)n+|α|2+O(1)e|x|+tC,|α|0.

    Lemma 5.2. [9] We have the follow estimate for |α|1 and r>n2,

    Rne(xy)2C(t+1)(1+t)n2+|α|2(1+|y|2)rdyO(1)(1+t)|α|2(ex22C(t+1)(t+1)n2+(1+t+|x|2)r).

    Lemma 5.3. [9] For xRn, |α|1, we have

    t0Rneν(tτ)2Yn(xy)(1+τ)|α|2(1+τ+|y|2)nk2dydτO(1)(1+t)|α|2(1+t+|x|)nk/2,
    t0Rne(xy)2C(tτ+1)(1+t)n2+|α|2(1+τ+|y|2)nk2dydτO(1)(1+t)|α|2(1+t+|x|2)n2.

    Lemma 5.4. [7] Suppose a function fL1(Rn) and its Fourier transform F[f](ξ) is analytic in Dδ and satisfies

    |F[f](ξ)|E(1+|ξ|)n+1,  for  |Im(ξi)|δ,  and  i=1,2,,n.

    Then, the function f(x) satisfies

    |f(x)|Eeδ|x|/C,

    for any positive constant C>1.

    The authors would like to thank the referees very much for their valuable comments and suggestions which improve the presentation of papersignicantly.



    [1] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [2] Z. J. Fu, L. W. Yang, Q. Xi, C. S. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023
    [3] M. Bilal, T. Gul, A. Mouldi, S. Mukhtar, W. Alghamdi, S. M. Bouzgarrou, et al., Melting heat transition in a spinning flow of silver-magnesium oxide/engine oil hybrid nanofluid using parametric estimation, J. Nanomater., 2022 (2022), 1–13. https://doi.org/10.1155/2022/2891315 doi: 10.1155/2022/2891315
    [4] Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass. Tran., 180 (2021), 121778. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778
    [5] Z. J. Fu, S. Reutskiy, H. G. Sun, J. Ma, M. A. Khan, A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains, Appl. Math. Lett., 94 (2019), 105–111. https://doi.org/10.1016/j.aml.2019.02.025 doi: 10.1016/j.aml.2019.02.025
    [6] J. A. T. Machado, A. M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calc. Appl. Anal., 18 (2015), 459–478. https://doi.org/10.1515/fca-2015-0029 doi: 10.1515/fca-2015-0029
    [7] Hahim, S. Bouzgarrou, S. Rehman, E. Sabi, Thermodynamic analysis of Powell-Eyring-blood hybrid nanofluid through vertical stretching sheet with interface slip and melting heat, Results Eng., 20 (2023), 101644. https://doi.org/10.1016/j.rineng.2023.101644 doi: 10.1016/j.rineng.2023.101644
    [8] S. Bouzgarrou, M. Akermi, S. Nasr, F. Aouaini, A. H. Khan, K. Slimi, et al., CO2 storage in porous media unsteady thermosolutal natural convection—Application in deep saline aquifer reservoirs, Int. J. Greenh. Gas. Con., 125 (2023), 103890. https://doi.org/10.1016/j.ijggc.2023.103890 doi: 10.1016/j.ijggc.2023.103890
    [9] S. Bouzgarrou, H. S. Harzallah, K. Slimi, Unsteady double diffusive natural convection in porous media-application to CO2 storage in deep saline aquifer reservoirs, Energy Procedia, 36 (2013), 756–765. https://doi.org/10.1016/j.egypro.2013.07.088 doi: 10.1016/j.egypro.2013.07.088
    [10] M. F. H. Lima, J. A. T. Machado, M. Crisóstomo, Experimental signal analysis of robot impacts in a fractional calculus perspective, J. Adv. Comput. Intell., 11 (2007), 1079–1085. https://doi.org/10.20965/jaciii.2007.p1079 doi: 10.20965/jaciii.2007.p1079
    [11] S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018
    [12] C. Liu, N. Farouk, H. Ayed, F. Aouaini, S. M. Bouzgarrou, A. Mouldi, et al., Simulation of MHD free convection inside a square enclosure filled porous foam, Case Stud. Therm. Eng., 32 (2022), 101901. https://doi.org/10.1016/j.csite.2022.101901 doi: 10.1016/j.csite.2022.101901
    [13] V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616–624. https://doi.org/10.1016/j.mcm.2009.11.002 doi: 10.1016/j.mcm.2009.11.002
    [14] V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl., 345 (2008), 754–765. https://doi.org/10.1016/j.jmaa.2008.04.065 doi: 10.1016/j.jmaa.2008.04.065
    [15] M. Stojanović, Numerical method for solving diffusion-wave phenomena, J. Comput. Appl. Math., 235 (2011), 3121–3137. https://doi.org/10.1016/j.cam.2010.12.010 doi: 10.1016/j.cam.2010.12.010
    [16] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389 (2012), 1117–1127. https://doi.org/10.1016/j.jmaa.2011.12.055 doi: 10.1016/j.jmaa.2011.12.055
    [17] Y. Liu, L. Zheng, X. Zhang, Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative, Comput. Math. Appl., 61 (2011), 443–450. https://doi.org/10.1016/j.camwa.2010.11.021 doi: 10.1016/j.camwa.2010.11.021
    [18] J. Lin, S. Reutskiy, Y. Zhang, Y. Sun, J. Lu, The novel analytical-numerical method for multi-dimensional multi-term time-fractional equations with general boundary conditions, Mathematics-Basel, 11 (2023), 929. https://doi.org/10.3390/math11040929 doi: 10.3390/math11040929
    [19] F. Liu, S. Shen, V. Anh, I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, Anziam J., 46 (2004), C488–C504. https://doi.org/10.21914/anziamj.v46i0.973 doi: 10.21914/anziamj.v46i0.973
    [20] Y. Zhao, F. Wang, X. Hu, Z. Shi, Y. Tang, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78 (2019), 1705–1719. https://doi.org/10.1016/j.camwa.2018.11.028 doi: 10.1016/j.camwa.2018.11.028
    [21] Z. Liu, F. Liu, F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139–151. https://doi.org/10.1016/j.apnum.2018.10.005 doi: 10.1016/j.apnum.2018.10.005
    [22] J. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Cont. Dyn-B., 27 (2022), 1179–1207. https://doi.org/10.3934/dcdsb.2021086 doi: 10.3934/dcdsb.2021086
    [23] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), 145–155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492
    [24] C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205–213. https://doi.org/10.1016/j.jcp.2005.08.008 doi: 10.1016/j.jcp.2005.08.008
    [25] Y. Liu, H. Sun, X. Yin, L. Feng, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew. Math. Phys., 71 (2020), 1–19. https://doi.org/10.1007/s00033-019-1244-6 doi: 10.1007/s00033-019-1244-6
    [26] A. Bhardwaj, A. Kumar, A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method, Eng. Comput.-Germany, 38 (2022), 1883–1903. https://doi.org/10.1007/s00366-020-01134-4 doi: 10.1007/s00366-020-01134-4
    [27] F. Safari, W. Chen, Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations, Comput. Math. Appl., 78 (2019), 1594–1607. https://doi.org/10.1016/j.camwa.2019.02.001 doi: 10.1016/j.camwa.2019.02.001
    [28] H. Ye, F. Liu, I. Turner, V. Anh, K. Burrage, Series expansion solutions for the multi-term time and space fractional partial differential equations in two-and three-dimensions, Eur. Phys. J.-Spec. Top., 222 (2013), 1901–1914. https://doi.org/10.1140/epjst/e2013-01972-2 doi: 10.1140/epjst/e2013-01972-2
    [29] Z. Li, O. Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations, Inverse Probl., 32 (2015), 015004. https://doi.org/10.1088/0266-5611/32/1/015004 doi: 10.1088/0266-5611/32/1/015004
    [30] S. S. Ezz-Eldien, E. H. Doha, Y. Wang, W. Cai, A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation, Commun. Nonlinear Sci., 91 (2020), 105445. https://doi.org/10.1016/j.cnsns.2020.105445 doi: 10.1016/j.cnsns.2020.105445
    [31] L. L. Sun, Y. S. Li, Y. Zhang, Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation, Inverse Probl., 37 (2021), 055007. https://doi.org/10.1088/1361-6420/abf162 doi: 10.1088/1361-6420/abf162
    [32] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge: Cambridge University Press, 1998.
    [33] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: Society for Industrial and Applied Mathematics, 2000. https://doi.org/10.1137/1.9780898719598
    [34] P. Maraner, E. Onofri, G. P. Tecchioli, Spectral methods in computational quantum mechanics, J. Comput. Appl. Math., 37 (1991), 209–219. https://doi.org/10.1016/0377-0427(91)90119-5 doi: 10.1016/0377-0427(91)90119-5
    [35] C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-30728-0
    [36] W. Bourke, Spectral methods in global climate and weather prediction models. In: M. E. Schlesinger, Physically-Based Modelling and Simulation of Climate and Climatic Change, Dordrecht: Springer, 243 (1988), 169–220. https://doi.org/10.1007/978-94-009-3041-4_4
    [37] R. L. McCrory, S. A. Orszag, Spectral methods for multi-dimensional diffusion problems, J. Comput. Phys., 37 (1980), 93–112. https://doi.org/10.1016/0021-9991(80)90006-6 doi: 10.1016/0021-9991(80)90006-6
    [38] K. Z. Korczak, A. T. Patera, An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry, J. Comput. Phys., 62 (1986), 361–382. https://doi.org/10.1016/0021-9991(86)90134-8 doi: 10.1016/0021-9991(86)90134-8
    [39] A. Bueno-Orovio, V. M. Perez-Garcia, F. H. Fenton, Spectral methods for partial differential equations in irregular domains: The spectral smoothed boundary method, SIAM J. Sci. Comput., 28 (2006), 886–900. https://doi.org/10.1137/040607575 doi: 10.1137/040607575
    [40] Z. J. Fu, W. Chen, H. T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235 (2013), 52–66. https://doi.org/10.1016/j.jcp.2012.10.018 doi: 10.1016/j.jcp.2012.10.018
    [41] Kamran, R. Kamal, G. Rahmat, K. Shah, On the numerical approximation of three-dimensional time fractional convection-diffusion equations, Mathe. Probl. Eng., 2021 (2021), 4640476. https://doi.org/10.1155/2021/4640467 doi: 10.1155/2021/4640467
    [42] Kamran, M. Irfan, F. M. Alotaibi, S. Haque, N. Mlaiki, K. Shah, RBF-based local meshless method for fractional diffusion equations, Fractal Fract., 7 (2023), 143. https://doi.org/10.3390/fractalfract7020143 doi: 10.3390/fractalfract7020143
    [43] L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci., 70 (2019), 354–371. https://doi.org/10.1016/j.cnsns.2018.10.016 doi: 10.1016/j.cnsns.2018.10.016
    [44] I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [45] R. Razzaq, U. Farooq, J. Cui, T. Muhammad, Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface, Math. Probl. Eng., 2021 (2021), 5539542. https://doi.org/10.1155/2021/5539542 doi: 10.1155/2021/5539542
    [46] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [47] B. D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J. Numer. Anal., 34 (1997), 1640–1657. https://doi.org/10.1137/S0036142993295545 doi: 10.1137/S0036142993295545
    [48] A. Shokri, S. Mirzaei, A pseudo-spectral based method for time-fractional advection-diffusion equation, Comput. Methods Diffe., 8 (2020), 454–467. https://doi.org/10.22034/CMDE.2020.29307.1414 doi: 10.22034/CMDE.2020.29307.1414
    [49] R. Baltensperger, M. R. Trummer, Spectral differencing with a twist, SIAM J. Sci. Comput., 24 (2003), 1465–1487. https://doi.org/10.1137/S1064827501388182 doi: 10.1137/S1064827501388182
    [50] S. Börm, L. Grasedyck, W. Hackbusch, Introduction to hierarchical matrices with applications, Eng. Anal. Bound. Elem., 27 (2003), 405–422. https://doi.org/10.1016/S0955-7997(02)00152-2 doi: 10.1016/S0955-7997(02)00152-2
    [51] B. Dingfelder, J. A. C. Weideman, An improved Talbot method for numerical Laplace transform inversion, Numer. Algorithms, 68 (2015), 167–183. https://doi.org/10.1007/s11075-014-9895-z doi: 10.1007/s11075-014-9895-z
    [52] H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM, 13 (1970), 47–49. Available from: https://dl.acm.org/doi/pdf/10.1145/361953.361969.
    [53] A. Talbot, The accurate numerical inversion of Laplace transforms, IMA J. Appl. Math., 23 (1979), 97–120. https://doi.org/10.1093/imamat/23.1.97 doi: 10.1093/imamat/23.1.97
    [54] Kamran, U. Gul, F. M. Alotaibi, K. Shah, T. Abdeljawad, Computational approach for differential equations with local and nonlocal fractional-order differential operators, J. Math.-UK, 2023 (2023), 6542787. https://doi.org/10.1155/2023/6542787 doi: 10.1155/2023/6542787
    [55] Kamran, S. Ahmad, K. Shah, T. Abdeljawad, B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse laplace transform methods, CMES-Comp. Model. Eng., 135 (2023), 2743–2765. https://doi.org/10.32604/cmes.2023.023705 doi: 10.32604/cmes.2023.023705
    [56] D. P. Gaver Jr, Observing stochastic processes, and approximate transform inversion, Oper. Res., 14 (1966), 444–459. https://doi.org/10.1287/opre.14.3.444 doi: 10.1287/opre.14.3.444
    [57] A. Kuznetsov, On the convergence of the Gaver–Stehfest algorithm, SIAM J. Numer. Anal., 51 (2013), 2984–2998. https://doi.org/10.1137/13091974X doi: 10.1137/13091974X
    [58] B. Davies, B. Martin, Numerical inversion of the Laplace transform: A survey and comparison of methods, J. Comput. Phys., 33 (1979), 1–32. https://doi.org/10.1016/0021-9991(79)90025-1 doi: 10.1016/0021-9991(79)90025-1
    [59] J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, Informs J. Comput., 18 (2006), 408–421. https://doi.org/10.1287/ijoc.1050.0137 doi: 10.1287/ijoc.1050.0137
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1347) PDF downloads(209) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog