Loading [MathJax]/jax/output/SVG/jax.js

Γ-convergence of quadratic functionals with non uniformly elliptic conductivity matrices

  • Received: 01 June 2021 Revised: 01 July 2021
  • Primary: 35B27, 35B40, 49J45; Secondary: 74Q05

  • We investigate the homogenization through Γ-convergence for the L2(Ω)-weak topology of the conductivity functional with a zero-order term where the matrix-valued conductivity is assumed to be non strongly elliptic. Under proper assumptions, we show that the homogenized matrix A is provided by the classical homogenization formula. We also give algebraic conditions for two and three dimensional 1-periodic rank-one laminates such that the homogenization result holds. For this class of laminates, an explicit expression of A is provided which is a generalization of the classical laminate formula. We construct a two-dimensional counter-example which shows an anomalous asymptotic behaviour of the conductivity functional.

    Citation: Lorenza D'Elia. Γ-convergence of quadratic functionals with non uniformly elliptic conductivity matrices[J]. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022

    Related Papers:

    [1] Yaxin Hou, Cao Wen, Yang Liu, Hong Li . A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037
    [2] Jinhu Zhao . Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034
    [3] Ming-Kai Wang, Cheng Wang, Jun-Feng Yin . A second-order ADI method for pricing options under fractional regime-switching models. Networks and Heterogeneous Media, 2023, 18(2): 647-663. doi: 10.3934/nhm.2023028
    [4] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [5] Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034
    [6] Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065
    [7] Jie Gu, Lijuan Nong, Qian Yi, An Chen . Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation. Networks and Heterogeneous Media, 2023, 18(4): 1692-1712. doi: 10.3934/nhm.2023074
    [8] Wen Dong, Dongling Wang . Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations. Networks and Heterogeneous Media, 2023, 18(3): 946-956. doi: 10.3934/nhm.2023041
    [9] Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003
    [10] Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011
  • We investigate the homogenization through Γ-convergence for the L2(Ω)-weak topology of the conductivity functional with a zero-order term where the matrix-valued conductivity is assumed to be non strongly elliptic. Under proper assumptions, we show that the homogenized matrix A is provided by the classical homogenization formula. We also give algebraic conditions for two and three dimensional 1-periodic rank-one laminates such that the homogenization result holds. For this class of laminates, an explicit expression of A is provided which is a generalization of the classical laminate formula. We construct a two-dimensional counter-example which shows an anomalous asymptotic behaviour of the conductivity functional.



    In this paper, we consider the following two-dimensional multi-term time fractional diffusion equation:

    Dαtu(x,y,t)Δu(x,y,t)=f(x,y,t)(x,y,t)Q:=Ω×(0,T], (1.1a)
    u(x,y,t)|Ω=0                               for t(0,T], (1.1b)
    u(x,y,0)=u0(x,y)                        for (x,y)Ω, (1.1c)

    where fC(ˉQ), ΩR2. In Eq(1.1a), Dαtu denotes the multi-term fractional derivative, which is defined by

    Dαtu(x,y,t)=Jm=1bmDαmtu(x,y,t), (1.2)

    where J is a positive integer, bm0, α:=(α1,,αJ) with 0<αJ<<α1<1, and the fractional Caputo derivative Dαtu(0<α<1) in Eq (1.2) is defined by

    Dαtu(x,y,t)=1Γ(1α)t0(ts)αu(x,y,s)sds,t>0.

    For existence and uniqueness of the exact solution for problem (1.1), one can refer to [15,17]. The initial weak singularity of the solution for problem (1.1) is given in [9]. In recent years, many authors have investigated single-term time-fractional diffusion equations, see, e.g., [16,28,30]. At the same time, multi-term fractional equations [12,22,26] which have been successfully used in application of real life have attracted more and more attention. Among many types of fractional derivatives, some researchers have used Riemann-Liouville derivative [7,25], while others, including this article, choose to use Caputo derivative [13,27,30]. However, most of the previous work assumes that the exact solutions in temporal direction are smooth enough, whereas the solutions typically exhibit some weak singularities at initial time. Alternating direction implicit (ADI) method was first introduced in [18], the advantage of the ADI method is that it can reduce the computational cost by transforming a multi-dimensional problem into sets of 1D problems. Nowadays, there are many researchers using ADI method to solve various types of fractional derivative problems, such as [2,6,14,19,20,21,23,31]. Recently, Huang et al. [11] have presented an ADI scheme for 2D multi-term time-space fractional nonlinear diffusion-wave equations under reasonable solution regularity assumption. Cao and Chen [1] have used ADI difference method on uniform mesh to solve a 2D multi-term time-fractional subdiffusion equation with initial singularity. However, the global accuracy in time direction of [1] is low. It is only O(τα). So, our current work is on graded mesh to improve the temporal accuracy. More precisely, we investigate a fully discrete ADI method for solving the problem (1.1) with weakly singular solution, where the temporal discretization is based L1 approximation on graded mesh, and finite difference method is used for spatial discretization. We establish the stability and convergence of the fully discrete L1-ADI scheme, both L2-norm and H1-norm error estimates are obtained, and the final error bounds do not blow up when α11.

    The rest of the paper is organized as follows. In Section 2, we construct a fully discrete L1-ADI scheme for problem (1.1). In Section 3, we establish the stability and convergence L1-ADI scheme in discrete L2-norm. Then, the sharp H1-norm convergence of L1-ADI scheme is presented in Section 4. Some numerical experiments are given in Section 5. The final part is the conclusion.

    Notation. Throughout the paper, we denote by C a generic positive constant, which may change its value at different occurrences, but is always independent of the mesh sizes. We call a constant C α-robust, if it doesn't blow up when α11.

    In the whole paper, to simplify the analysis, let us choose Ω=(0,L)×(0,L), where L>0 is constant. We use positive integers N1, N2 and M respectively to define the spatial and temporal partition parameters. Consider the graded temporal grid in [0,T]:tj=T(j/M)r, j=0,1,,M and r1. Denote time step τn:=tntn1 for n=1,,M. Then, we use xm=mh1 for m=0,1,,N1 and yn=nh2 for n=0,1,,N2 to denote the spatial grids, where h1=L/N1, h2=L/N2. Set Ωh={(xm,yn)|0mN1,0nN2}, Ωh=ΩhΩ, and Ωh=ΩhΩ.

    We approximate the Caputo fractional derivative Dαmtu(,,tn) with 0<αm<1 and 1nM on graded mesh by using well-known L1 scheme as follows:

    δαmtun:=z(αm)n,1unz(αm)n,nu0n1i=1(z(αm)n,iz(αm)n,i+1)uni, (2.1)

    where

    z(αm)n,k=1Γ(2αm)(tntnk)1αm(tntnk+1)1αmτnk+1k=1,2,,n. (2.2)

    Then, we denote

    zn,i:=Jm=1bmz(αm)n,i. (2.3)

    Thus one can approximate the multi-term fractional derivative Dαtu in Eq (1.2) by

    δαtun:=zn,1unzn,nu0n1k=1(zn,kzn,k+1)unk. (2.4)

    Given a mesh function{vj}Mj=0, and for 0nM, we define

    δxvni12,j=vni,jvni1,jh1   for 1iN1,0jN2,δ2xvni,j=δxvni+12,jδxvni12,jh1   for 1iN11,0jN2,δyδxvni12,j12=δxvni12,jδxvni12,j1h2   for 1iN1,1jN2.

    The notations δyvni,j12, δ2yvni,j and δxδyvni12,j12 can be defined similarly. We define the discrete Laplace operator Δh:=δ2x+δ2y which is a second-order approximation of Δ. Let uni,j be the numerical approximation of the exact solution u(xi,yj,tn), so the discrete problem of (1.1) is as follows

    δαtuni,jΔhuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T], (2.5a)
    uni,j|Ω=0                                       for t(0,T], (2.5b)
    u0i,j=u0(xi,yj)                             for (xi,yj)Ω. (2.5c)

    To solve 2D problem, we want to solve 1D problem at first, after that we solve another 1D problem. If a small term γ2nδ2xδ2yδαtuni,j for n=1,,M, where γn=z1n,1, is added to the left side of Eq (2.5a), one gets

    (1+γ2nδ2xδ2y)δαtuni,jδ2xuni,jδ2yuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T]. (2.6)

    Thus the purpose is achieved as Eq (2.6) can be rewritten by

    (1γnδ2x)(1γnδ2y)uni,j=γn[(1+γ2nδ2xδ2y)(zn,nu0i,j+n1k=1(zn,kzn,k+1)unki,j)+fni,j].

    We set ui,j=(1γnδ2y)ui,j. Then, the first 1D problem we need to solve is, for 1jN21,

    {(1γnδ2x)ui,j=γn[(1+γ2nδ2xδ2y)(zn,nu0i,j+n1k=1(zn,kzn,k+1)unki,j)+fni,j]    1iN11,u0,j=(1γnδ2y)un0,j,uN1,j=(1γnδ2y)unN1,j, (2.7)

    and the second 1D problem we need to solve is, for 1iN11,

    {(1γnδ2y)uni,j=ui,j                1jN21,uni,0=0,uni,N2=0. (2.8)

    Thus, we have the following fully discrete ADI scheme for the problem (1.1):

    (1+γ2nδ2xδ2y)δαtuni,jδ2xuni,jδ2yuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T], (2.9a)
    uni,j|Ω=0                                                   for t(0,T], (2.9b)
    u0i,j=u0(xi,yj)                                        for (xi,yj)Ω. (2.9c)

    We define the convolution multipliers σn,j, which is positive for n=1,2,,M and j=1,2,,n1 by

    σn,n=1,σn,j=njk=11znk,1(zn,kzn,k+1)σnk,j>0. (3.1)

    We have the following two lemmas on the properties of the convolution multipliers σn,j.

    Lemma 1. ([10, Corollary 1]) One has

    z1n,1nj=1σn,jJm=1tαmnbmΓ(1+αm).

    Lemma 2. ([10, Corollary 2]) Set lM=1/lnM. Assume that M3 so 0<lM<1. Then

    z1n,1nj=1(Jm=1bmtαmj)σn,jJermax1mJΓ(1+lMαm)Γ(1+lM).

    To investigate the stability and convergence of the fully discrete L1-ADI scheme (2.9), we need the following fractional discrete Gronwall inequality.

    Lemma 3. [8, Lemma 5.3] Suppose that the sequences {εn}n=1,{ηn}n=1 are nonnegative and assume the grid function {Vn:n=0,1,,M} satisfies V00 and

    (δαtVn)VnεnVn+(ηn)2forn=1,2,,M.

    Then,

    VnV0+z1n,1nj=1σn,j(εn+ηn)+max1jn{ηj}forn=1,2,,M.

    Set

    Vh={v|v={vi,j|(xi,yj)Ωh}andvi,j=0if(xi,yj)Ωh}.

    For any mesh functions u,vVh, define the discrete L2 inner product (u,v)=h1h2N11i=1N21j=1ui,jvi,j, and the norm v=(v,v). We also define a new inner product (u,v)γn:=(u,v)+ γ2n(u,v)xy, where

    (u,v)xy=h1h2N1i=1N2j=1(δxδyui12,j12)δxδyvi12,j12,

    and set uγn=(u,u)γn.

    Lemma 4. [1, Lemma 3] The inner product (u,v)γn satisfies

    (u,v)γnuγnvγn.

    Lemma 5. For n=1,2,,M, the solution of ADI scheme (2.9) satisfies

    unγnu0γn+z1n,1nj=1σn,jfj.

    Proof. On both sides of Eq (2.9a), we take the discrete inner product with un. Then, one has

    ((1+γ2nδ2xδ2y)(zn,1unn1k=1(zn,kzn,k+1)unkzn,nu0),un)=(δ2xun,un)+(δ2yun,un)+(fn,un). (3.2)

    Then, by linear property of the inner product and discrete Green formula, the Eq (3.2) becomes

    zn,1un2γnn1k=1(zn,kzn,k+1)(unk,un)γnzn,n(u0,un)γn=(fn,un)δxun2δyun2.

    Using Lemma 4, one has

    zn,1un2γnn1k=1(zn,kzn,k+1)unkγnunγn+zn,nu0γnunγn+fnunγn,

    which is equivalent to

    (δαtunγn)unγnfnunγn. (3.3)

    Then, setting all ηn=0 in Lemma 3, and applying it to Eq (3.3), the result is proved.

    From [3, Lemmas 2.2 and 2.3], one can easily get that

    Lemma 6. Set σ(0,1). Suppose that |u(k)(t)|C(1+tσk) where k=0,1,2. Then, for 1nM, one has

    |δαtu(tn)Dαtu(tn)|CJm=1bmtαmnMmin{rσ,2αm}.

    Now we come to the convergence of the fully discrete ADI scheme (2.9).

    Theorem 1. Suppose that {|u(l)(t)|C(1+tσl)} for l=0,1,2 with σ(0,1). Then the computed solution errors eni,j:=u(xi,yj,tn)uni,j satisfy:

    enC(h21+h22+Mmin{2α1,rσ,2α1}),n=1,2,,M,

    where C is α-robust.

    Proof. From Eqs (2.9a) and (1.1a), we get the following error equation:

    (1+γ2nδ2xδ2y)δαteni,jδ2xeni,jδ2yeni,j=ϕni,j  forn=1,2,,M, (3.4)

    where ϕni,j is the truncation error. By the well-known simple bound |ΔuΔhu|C(h21+h22), |γ2n|CM2α1, and Lemma 6, the truncation error ϕni,j satisfies

    |ϕni,j|C(h21+h22+M2α1+Jm=1bmtαmnMmin{rσ,2αm)).

    From Lemma 5, and noting that e0=0, we have

    enγnz1n,1nj=1σn,jϕjCz1n,1nj=1σn,j(h21+h22+M2α1+Jm=1bmtαmnMmin{rσ,2αm)).

    Then, using Lemmas 1 and 2, we can get

    enγnC(h21+h22+Mmin{2α1,rσ,2α1}),

    where C is α-robust. Finally, according to the definition of the norm γn, the proof is completed.

    In order to prove the stability and convergence of the fully discrete ADI scheme (2.9) in H1-norm sense in this section, we first define some norms. For any grid functions U,VVh, define

    (U,V)xy2=h1h2M11i=1M2j=1(δxδ2yUi,j12)δxδ2yVi,j12,(U,V)x2y=h1h2M1i=1M21j=1(δ2xδyUi12,j)δ2xδyVi12,j,(U,V)Δh=h1h2M1i=1M2j=1(ΔhUi,j)ΔhVi,j.

    The corresponding seminorms are

    δxδ2yU=(U,U)xy2,δ2xδyU=(U,U)x2y,ΔhU=(U,U)Δh.

    For any function VVh, define

    hVn=δxVn2+δyVn2,VnH1=Vn2+hVn2,VnA=hV2+γ2n(δxδ2yVn2+δ2xδyVn2).

    According to the definition of hVn and VnA, we can see that hVnVnA. From [31, Lemma 2.2], one has VnChVn for all functions VVh, then, we have VnH1ChVn, hence, VnH1CVnA.

    Lemma 7. [29, Lemma 3.2] For any grid functions U,VVh, one has

    ((Un+γ2nδ2xδ2yUn),ΔhVn)UnAVnA,

    where the equality holds when U=V.

    Next, we denote Rtuni,j=(1+γ2nδ2xδ2y)δαtu(xi,yj,tn)Dαtu(xi,yj,tn), Rsuni,j=Δu(xi,yj,tn)Δhu(xi,yj,tn). Then the error equation (3.4) can be written as

    (1+γn2δ2xδ2y)δαteni,jΔheni,j=Rtuni,j+Rsuni,j. (4.1)

    Besides, we have

    (Rtun,Δhen)hRtunhenhRtunenA (4.2)

    and

    (Rsun,Δhen)RsunΔhenΔhen2+14Rsun2. (4.3)

    Theorem 2. Suppose that |u(l)(t)|C(1+tσl) for l=0,1,2 with σ(0,1). Then, the computed solution error eni,j:=u(xi,yj,tn)uni,j satisfy:

    enH1C(h21+h22+Mmin{2α1,rσ,2α1})for n=1,2,,M,

    where C is α-robust.

    Proof. Taking discrete L2 inner product with Δhen on both sides of Eq (4.1) and noting that e0=0, we get

    zn,1(en+γ2nδ2xδ2yen,Δhen)+Δhen2=n1k=1(zn,kzn,k+1)(enk+γ2nδ2xδ2yenk,Δhen)+(Rtun+Rsun,Δhen).

    Using Lemma 7, one has

    zn,1en2A+Δhen2n1k=1(zn,kzn,k+1)enkAenA+(Rtun+Rsun,Δhen). (4.4)

    From Eqs (4.2) and (4.3), we obtain

    zn,1en2An1k=1(zn,kzn,k+1)enkAenA+hRtunenA+14Rsun2,

    that is

    (δαtenA)enAhRtunenA+14Rsun2. (4.5)

    Thus, by Lemma 3, from Eq (4.5) we have

    enAz1n,1nj=1σn,j(hRtuj+12Rsuj)+max1jn{12Rsuj}. (4.6)

    Then, using Lemmas 1 and 2, we come to the conclusion

    enAC(h21+h22+Mmin{2α1,rσ,2α1})for n=1,2,,M (4.7)

    by noting that

    RsujC(h21+h22)

    and

    hRtujC(M2α1+Jm=1bmtαmjMmin{rσ,2αm)).

    Finally, the results follow from enH1CenA for n=1,2,,M. The proof is completed.

    In this section, some numerical examples are reported to support our theoretical analysis. In this section, we present some 2D numerical examples to illustrate the result of our error analysis and convergence order on the temporal graded mesh. We define max1nMu(tn)un as temporal global L2-norm error and global H1-norm error is defined similarly.

    Example 1. In Eq (1.1) take Ω=[0,π]×[0,π], T=1, J=2, b1=b2=1. Choose u(x,y,t)=tα1sinxsiny as an exact solution. The force term f(x,y,t)=b1Γ(1+α1)+b2Γ(1+α1)tα1α2Γ(1α2+α1)sinxsiny+2tα1sinxsiny.

    For this example, the regularity parameter σ in Lemma 6 is σ=α1. Thus, both the temporal convergence orders in Theorems 1 and 2 are O(Mmin{2α1,rα1,2α1}). We take N1=N2=1000 to eliminate the contamination of spatial errors. Tables 13 present L2-norm errors and orders of convergence for Example 1 with different α1, α2 and r. And Tables 4, 6 and 8 present H1-norm errors and convergence orders. From these tables, we find that the temporal convergence orders are consistent with our theoretical results. As in [1], we also present the local H1-norm errors and orders of convergence at t=1 for Example 1 in Tables 5, 7 and 9, which have better convergence rates than the global errors. We next test the spatial accuracy of the fully discrete ADI scheme (2.9). Take M=1000 such that the spatial errors are dominant. We using α1=0.6, α2=0.4 and r=2 as an example and the results are presented in Figure 1. The results show that the spatial convergence orders are second order in L2 and H1-norm sense as is indicated in Theorems 1 and 2.

    Table 1.  Global L2-norm errors and orders of convergence for Example 1 with α1=0.4, α2=0.2.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 4.5097e-02 3.5324e-02 2.7702e-02 2.1696e-02 1.6945e-02
    0.3524 0.3507 0.3526 0.3565 0.4
    r=2 1.6555e-02 1.0374e-02 6.4456e-03 3.9727e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089 0.8
    r=1α1 1.8950e-02 1.1927e-02 7.4361e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053 0.8
    r=2α1α1 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975 0.8

     | Show Table
    DownLoad: CSV
    Table 2.  Global L2-norm errors and orders of convergence for Example 1 with α1=0.6, α2=0.4.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 2.1888e-02 1.4954e-02 1.0156e-02 6.8591e-03 4.6113e-03
    0.5495 0.5583 0.5662 0.5728 0.6
    r=2 4.3121e-03 2.0043e-03 9.2711e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267 1.2
    r=1α1 4.6879e-03 2.4428e-03 1.2576e-03 6.4229e-04 3.2626e-04
    0.9404 0.9578 0.9694 0.9772 1.0
    r=2α1α1 4.9526e-03 2.3114e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231 1.2

     | Show Table
    DownLoad: CSV
    Table 3.  Global L2-norm errors and orders of convergence for Example 1 with α1=0.8, α2=0.6.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 7.1706e-03 4.2900e-03 2.5403e-03 1.4930e-03 8.7296e-04
    0.7411 0.7560 0.7668 0.7743 0.8
    r=2 1.9211e-03 7.5633e-04 2.9814e-04 1.1785e-04 4.6867e-05
    1.3448 1.3430 1.3391 1.3302 1.2
    r=1α1 3.7340e-03 1.9655e-03 1.0233e-03 5.2892e-04 2.7174e-04
    0.9258 0.9417 0.9521 0.9608 1.0
    r=2α1α1 2.2479e-03 1.0660e-03 4.9903e-04 2.3116e-04 1.0617e-04
    1.0764 1.0950 1.1102 1.1225 1.2

     | Show Table
    DownLoad: CSV
    Table 4.  Global H1-norm errors and orders of convergence for Example 1 with α1=0.4, α2=0.2.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 4.5098e-02 3.5325e-02 2.7702e-02 2.1696e-02 1.6945e-02
    0.3524 0.3507 0.3526 0.3565 0.4
    r=2 1.6555e-02 1.0374e-02 6.4457e-03 3.9728e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089 0.8
    r=1α1 1.8950e-02 1.1927e-02 7.4362e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053 0.8
    r=2α1α1 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975 0.8

     | Show Table
    DownLoad: CSV
    Table 5.  Local H1-norm errors and orders of convergence at t=1 for Example 1 with α1=0.4, α2=0.2.
    M=64 M=128 M=256 M=512 M=1024
    r=1 1.1675e-02 7.1582e-03 4.3712e-03 2.6568e-03 1.6067e-03
    0.7057 0.7116 0.7184 0.7255
    r=2 1.6555e-02 1.0374e-02 6.4457e-03 3.9728e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089
    r=1α1 1.8950e-02 1.1927e-02 7.4362e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053
    r=2α1α1 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975

     | Show Table
    DownLoad: CSV
    Table 6.  Global H1-norm errors and orders of convergence for Example 1 with α1=0.6, α2=0.4.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 2.1888e-02 1.4955e-02 1.0156e-02 6.8591e-03 4.6113e-03
    0.5495 0.5583 0.5662 0.5728 0.6
    r=2 4.3121e-03 2.0043e-03 9.2712e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267 1.2
    r=1α1 4.6880e-03 2.4428e-03 1.2576e-03 6.4230e-04 3.2627e-04
    0.9404 0.9578 0.9694 0.9772 1.0
    r=2α1α1 4.9526e-03 2.3115e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231 1.2

     | Show Table
    DownLoad: CSV
    Table 7.  Local H1-norm errors and orders of convergence at t=1 for Example 1 with α1=0.6, α2=0.4.
    M=64 M=128 M=256 M=512 M=1024
    r=1 3.2280e-03 1.5199e-03 7.1441e-04 3.3510e-04 1.5677e-04
    1.0867 1.0891 1.0922 1.0959
    r=2 4.3121e-03 2.0043e-03 9.2712e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267
    r=1α1 3.7184e-03 1.7189e-03 7.9137e-04 3.6280e-04 1.6550e-04
    1.1132 1.1190 1.1252 1.1323
    r=2α1α1 4.9526e-03 2.3115e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231

     | Show Table
    DownLoad: CSV
    Table 8.  GlobalH1-norm errors and orders of convergence for Example 1 with α1=0.8, α2=0.6.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 7.1707e-03 4.2901e-03 2.5403e-03 1.4930e-03 8.7297e-04
    0.7411 0.7560 0.7668 0.7743 0.8
    r=2 1.9211e-03 7.5634e-04 2.9814e-04 1.1785e-04 4.6868e-05
    1.3448 1.3430 1.3391 1.3302 1.2
    r=1α1 3.7340e-03 1.9655e-03 1.0233e-03 5.2893e-04 2.7174e-04
    0.9258 0.9417 0.9521 0.9608 1.0
    r=2α1α1 2.2479e-03 1.0660e-03 4.9903e-04 2.3116e-04 1.0617e-04
    1.0764 1.0950 1.1102 1.1225 1.2

     | Show Table
    DownLoad: CSV
    Table 9.  Local H1-norm errors and orders of convergence at t=1 for Example 1 with α1=0.8, α2=0.6.
    M=64 M=128 M=256 M=512 M=1024
    r=1 1.8988e-03 8.6835e-04 4.0348e-04 1.9000e-04 9.0390e-05
    1.1287 1.1058 1.0865 1.0718
    r=2 1.9211e-03 7.5634e-04 2.9814e-04 1.1785e-04 4.6664e-05
    1.3448 1.3430 1.3391 1.3365
    r=1α1 1.6142e-03 6.7476e-04 2.8389e-04 1.2013e-04 5.1015e-05
    1.2584 1.2490 1.2407 1.2357
    r=2α1α1 1.6187e-03 6.5123e-04 2.6278e-04 1.0638e-04 4.3129e-05
    1.3136 1.3093 1.3046 1.3025

     | Show Table
    DownLoad: CSV
    Figure 1.  L2-norm and H1-norm errors and orders of convergence in spatial direction for Example 1 with α1=0.6, α2=0.4 and r=2.

    Example 2. In Eq (1.1) take Ω=[0,π]×[0,π], T=1, J=2, b1=b2=1. Let u0(x,y)=sinxsiny, the force term f(x,y,t)=0.

    The exact solution u(x,y,t) of Example 2 is unknown. We use the two-mesh principle in [4, p107] to calculate the convergence order of the numerical solution. Let uni,j with 0iN1, 0jN2 and 0nM be the solution computed by our L1-ADI Scheme 2.6. Then, consider a spatial mesh and the temporal mesh which is defined by 0iN1, 0jN2 and tn=T(n/(2M)) for 0n2M. We denote Wnh with 0n2M as the computed solution on this mesh. Then, we define Dnh=unhW2nhH1 as the H1-norm of the two-mesh differences and the estimated rate of convergence is computed by log2(Dnh/D2nh).

    To test the temporal convergence of our scheme we set spatial partition parameters N1=N2=1000. Tables 10, 12 and 14 present H1-norm errors and convergence orders for Example 2 in the case of α1=0.4,0.6,0.8 with α2=0.2,0.4,0.6. The results show that the temporal convergence rates are O(Mmin{2α1,rα1,2α1}), which, once again, confirm the sharpness of our theoretical analysis. We have also present the local H1-norm errors and convergence orders at t=1 for Example 2 in Tables 11, 13 and 15, which have better convergence rates than global errors.

    Table 10.  Global H1-norm errors and orders of convergence for Example 2 with α1=0.4, α2=0.2.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 4.2648e-02 3.5832e-02 2.9725e-02 2.4362e-02 1.9747e-02
    0.2512 0.2696 0.2870 0.3030 0.4
    r=2 1.7773e-02 1.1198e-02 6.8693e-03 4.1345e-03 2.4556e-03
    0.6664 0.7050 0.7324 0.7517 0.8
    r=1α1 9.6556e-03 5.1889e-03 2.8079e-03 1.4872e-03 9.0857e-04
    0.8959 0.8859 0.9169 0.7109 0.8
    r=2α1α1 7.1020e-03 4.6925e-03 3.0434e-03 1.9441e-03 1.2265e-03
    0.5978 0.6247 0.6466 0.6646 0.8

     | Show Table
    DownLoad: CSV
    Table 11.  Local H1-norm errors and orders of convergence at t=1 for Example 2 with α1=0.4, α2=0.2.
    M=64 M=128 M=256 M=512 M=1024
    r=1 4.3792e-03 2.6480e-03 1.6045e-03 9.7164e-04 5.8717e-04
    0.7258 0.7228 0.7236 0.7266
    r=2 4.9902e-03 3.1856e-03 2.0192e-03 1.2690e-03 7.9068e-04
    0.6475 0.6578 0.6701 0.6825
    r=1α1 5.5605e-03 3.5950e-03 2.2975e-03 1.4521e-03 9.0857e-04
    0.6292 0.6459 0.6619 0.6765
    r=2α1α1 7.1020e-03 4.6925e-03 3.0434e-03 1.9441e-03 1.2265e-03
    0.5978 0.6247 0.6466 0.6646

     | Show Table
    DownLoad: CSV
    Table 12.  Global H1-norm errors and orders of convergence for Example 2 with α1=0.6, α2=0.4.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 2.5383e-02 1.7829e-02 1.2380e-02 8.5185e-03 5.8193e-03
    0.5096 0.5262 0.5394 0.5498 0.6
    r=2 5.8541e-03 2.8312e-03 1.3301e-03 6.1587e-04 2.8032e-04
    1.0480 1.0899 1.1108 1.1356 1.2
    r=1α1 9.0483e-03 4.9340e-03 2.6263e-03 1.3755e-03 7.1241e-04
    0.8749 0.9097 0.9331 0.9492 1.0
    r=2α1α1 4.1839e-03 1.8190e-03 7.6784e-04 3.1629e-04 1.4124e-04
    1.2017 1.2443 1.2796 1.1631 1.2

     | Show Table
    DownLoad: CSV
    Table 13.  Local H1-norm errors and orders of convergence at t=1 for Example 2 with α1=0.6, α2=0.4.
    M=64 M=128 M=256 M=512 M=1024
    r=1 3.0946e-03 1.4921e-03 7.2117e-04 3.4892e-04 1.6888e-04
    1.0524 1.0489 1.0475 1.0469
    r=2 2.8991e-03 1.3174e-03 5.9939e-04 2.7285e-04 1.2417e-04
    1.1379 1.1361 1.1354 1.1358
    r=1α1 2.6705e-03 1.2034e-03 5.4295e-04 2.4509e-04 1.1062e-04
    1.1500 1.1482 1.1475 1.1477
    r=2α1α1 3.2093e-03 1.4709e-03 6.7404e-04 3.0872e-04 1.4124e-04
    1.1256 1.1258 1.1265 1.1282

     | Show Table
    DownLoad: CSV
    Table 14.  Global H1-norm errors and orders of convergence for Example 2 with α1=0.8, α2=0.6.
    M=64 M=128 M=256 M=512 M=1024 Theoretical order
    r=1 1.1164e-02 6.6335e-03 3.9421e-03 2.3268e-03 1.3681e-03
    0.7511 0.7508 0.7606 0.7662 0.8
    r=2 3.9574e-03 1.7177e-03 7.3884e-04 3.1639e-04 1.3526e-04
    1.2041 1.2171 1.2235 1.2260 1.2
    r=1α1 7.2913e-03 3.8726e-03 2.0378e-03 1.0644e-03 5.5259e-04
    0.9129 0.9263 0.9370 0.9457 1.0
    r=2α1α1 5.2772e-03 2.5404e-03 1.2056e-03 5.6564e-04 2.6297e-04
    1.0547 1.0754 1.0918 1.1050 1.2

     | Show Table
    DownLoad: CSV
    Table 15.  Local H1-norm errors and orders of convergence at t=1 for Example 2 with α1=0.8, α2=0.6.
    M=64 M=128 M=256 M=512 M=1024
    r=1 3.5614e-03 1.6739e-03 7.9585e-04 3.8211e-04 1.8495e-04
    1.0892 1.0727 1.0585 1.0468
    r=2 3.3083e-03 1.3585e-03 5.5756e-04 2.2938e-04 9.4727e-05
    1.2840 1.2848 1.2814 1.2759
    r=1α1 3.0927e-03 1.3497e-03 5.9116e-04 2.5979e-04 1.1450e-04
    1.1962 1.1910 1.1862 1.1820
    r=2α1α1 3.0053e-03 1.2639e-03 5.3187e-04 2.2422e-04 9.4744e-05
    1.2496 1.2487 1.2462 1.2428

     | Show Table
    DownLoad: CSV

    A fully discrete L1-ADI scheme is investigated for the initial-boundary problem of a multi-term time-fractional diffusion equation. Stability and convergence of the fully discrete L1-ADI scheme are rigorously established. Both L2-norm and H1-norm error estimates of the fully discrete L1-ADI scheme are obtained, and they are α-robust. Numerical experiments are given to illustrate the sharpness of the theoretical analysis. It should be noted that since the computational cost of numerical methods for time-fractional PDEs will be very time-consuming. One can also use the fast and parallel numerical methods such as [5,24,32] for accelerating the proposed method, which will be the focus of our future work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research is supported in part by the National Natural Science Foundation of China under Grant 11801026, and Fundamental Research Funds for the Central Universities (No. 202264006).

    The authors declare there is no conflict of interest.



    [1] Homogenization and two-scale convergence. SIAM J. Math. Anal. (1992) 23: 1482-1518.
    [2]

    G. Allaire, Shape Optimization by the Homogenization Method, Springer-Verlag, New York, 2002.

    [3] Espaces de dirichlet. Acta Math. (1958) 99: 203-224.
    [4] (2002) Γ-Convergence for Beginners. Oxford: Oxford University Press.
    [5]

    A. Braides, A handbook of Γ-convergence, Handbook of Differential Equations: Stationary Partial Differential Equations Vol. 3, Elsevier, (2006), 101–213.

    [6] A variational approach to double-porosity problems. Asymptot. Anal. (2004) 39: 281-308.
    [7]

    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext series, Springer, New York, 2010.

    [8] Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. (1994) 4: 357-379.
    [9] Non-Markovian quadratic forms obtained by homogenization. Boll. Uni. Mate. Ital. Sez. B Artic. Ric. Mat. (2003) 6: 323-337.
    [10] Loss of ellipticity through homogenization in linear elasticity. Math. Mod. Met. Appl. Sci. (2015) 25: 905-928.
    [11] A two-dimensional labile aether through homogenization. Commun. Math. Phys. (2019) 367: 599-628.
    [12]

    M. Briane and A. J. Pallares Martín, Homogenization of weakly coercive integral functionals in three-dimensional linear elasticity, J. Éc. Polytech. Math., 4 (2017), 483–514.

    [13]

    G. Dal Maso, An Introduction to Γ-Convergence, Volume 8 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 1993.

    [14] Laminations in linearized elasticity: The isotropic non-very strongly elliptic case. Q. J. Mech. Appl. Math (2004) 57: 571-582.
    [15] Composite media and asymptotic Dirichlet forms. J. Funct. Anal. (1994) 123: 368-421.
    [16] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. (1989) 20: 608-623.
    [17] Estimations fines de coefficients homogénéisés. Ennio De Giorgi Colloquium, Ed. P. Krée, Pitman Research Notes in Mathematics (1985) 125: 168-187.
  • This article has been cited by:

    1. Xin Shen, Xuehua Yang, Haixiang Zhang, The High-Order ADI Difference Method and Extrapolation Method for Solving the Two-Dimensional Nonlinear Parabolic Evolution Equations, 2024, 12, 2227-7390, 3469, 10.3390/math12223469
    2. Wang Xiao, Xuehua Yang, Ziyi Zhou, Pointwise-in-time $ \alpha $-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, 2024, 16, 2836-3310, 53, 10.3934/cam.2024003
    3. Adel Al-rabtah, Salah Abuasad, Effective Modified Fractional Reduced Differential Transform Method for Solving Multi-Term Time-Fractional Wave-Diffusion Equations, 2023, 15, 2073-8994, 1721, 10.3390/sym15091721
    4. Pradip Roul, Trishna Kumari, Sameer N. Khandagale, A graded mesh technique for numerical approximation of a multi-term Caputo time-fractional Fokker-Planck equation in 2D space, 2025, 178, 08981221, 92, 10.1016/j.camwa.2024.11.031
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1595) PDF downloads(301) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog