Processing math: 59%

The Lax-Oleinik semigroup on graphs

  • We consider Tonelli Lagrangians on a graph, define weak KAM solutions, which happen to be the fixed points of the Lax-Oleinik semi-group, and identify their uniqueness set as the Aubry set, giving a representation formula. Our main result is the long time convergence of the Lax Oleinik semi-group. It follows that weak KAM solutions are viscosity solutions of the Hamilton-Jacobi equation [3, 4], and in the case of Hamiltonians called of eikonal type in [3], we prove that the converse holds.

    Citation: Renato Iturriaga, Héctor Sánchez Morgado. The Lax-Oleinik semigroup on graphs[J]. Networks and Heterogeneous Media, 2017, 12(4): 643-662. doi: 10.3934/nhm.2017026

    Related Papers:

    [1] Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170
    [2] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
    [3] Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052
    [4] E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127
    [5] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [6] Anh Tuan Nguyen, Chao Yang . On a time-space fractional diffusion equation with a semilinear source of exponential type. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071
    [7] Akeel A. AL-saedi, Jalil Rashidinia . Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216
    [8] Minzhi Wei . Existence of traveling waves in a delayed convecting shallow water fluid model. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343
    [9] Ziqing Yang, Ruiping Niu, Miaomiao Chen, Hongen Jia, Shengli Li . Adaptive fractional physical information neural network based on PQI scheme for solving time-fractional partial differential equations. Electronic Research Archive, 2024, 32(4): 2699-2727. doi: 10.3934/era.2024122
    [10] Huifu Xia, Yunfei Peng . Pointwise Jacobson type necessary conditions for optimal control problems governed by impulsive differential systems. Electronic Research Archive, 2024, 32(3): 2075-2098. doi: 10.3934/era.2024094
  • We consider Tonelli Lagrangians on a graph, define weak KAM solutions, which happen to be the fixed points of the Lax-Oleinik semi-group, and identify their uniqueness set as the Aubry set, giving a representation formula. Our main result is the long time convergence of the Lax Oleinik semi-group. It follows that weak KAM solutions are viscosity solutions of the Hamilton-Jacobi equation [3, 4], and in the case of Hamiltonians called of eikonal type in [3], we prove that the converse holds.



    Reidemeister torsion is a topological invariant and was introduced by Reidemeister in 1935. Up to PL equivalence, he classified the lens spaces S3/Γ, where Γ is a finite cyclic group of fixed point free orthogonal transformations [20]. In [11], Franz extended the Reidemeister torsion and classified the higher dimensional lens spaces S2n+1/Γ, where Γ is a cyclic group acting freely and isometrically on the sphere S2n+1.

    In 1964, the results of Reidemeister and Franz were extended by de Rham to spaces of constant curvature +1 [10]. Kirby and Siebenmann proved the topological invariance of the Reidemeister torsion for manifolds in 1969 [14]. Chapman proved for arbitrary simplicial complexes [7,8]. Hence, the classification of lens spaces of Reidemeister and Franz was actually topological (i.e., up to homeomorphism).

    Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. He constructed two homeomorphic but combinatorially distinct finite simplicial complexes. He identified in 1962 the Reidemeister torsion with Alexander polynomial which plays an important role in knot theory and links [16,18].

    In [21], Sözen explained the claim mentioned in [27,p. 187] about the relation between a symplectic chain complex with ωcompatible bases and the Reidemeister torsion of it. Moreover, he applied the main theorem to the chain-complex

    0C2(Σg;Adϱ)2idC1(Σg;Adϱ)1idC0(Σg;Adϱ)0,

    where Σg is a compact Riemann surface of genus g>1, where is the usual boundary operator, and where ϱ:π1(Σg)PSL2(R) is a discrete and faithful representation of the fundamental group π1(Σg) of Σg [21]. Now we will give his description of Reidemesister torsion and explain why it is not unique by a result of Milnor in [17].

    Let Hp(C)=Zp(C)/Bp(C) denote the homologies of the chain complex (C,)=(CnnCn1C11C00) of finite dimensional vector spaces over field C or R, where Bp=Im{p+1:Cp+1Cp}, Zp=ker{p:CpCp1}, respectively.

    Consider the short-exact sequences:

    0ZpCpBp10 (1.1)
    0BpZpHp0, (1.2)

    where (1.1) is a result of 1st-Isomorphism Theorem and (1.2) follows simply from the definition of Hp. Note that if bp is a basis for Bp, hp is a basis for Hp, and p:HpZp and sp:Bp1Cp are sections, then we obtain a basis for Cp. Namely, bpp(hp)sp(bp1).

    If, for p=0,,n, cp, bp, and hp are bases for Cp, Bp and Hp, respectively, then the alternating product

    Tor(C,{cp}np=0,{hp}np=0)=np=0[bpp(hp)sp(bp1),cp](1)(p+1) (1.3)

    is called the Reidemeister torsion of the complex C with respect to bases {cp}np=0, {hp}np=0, where [bpp(hp)sp(bp1),cp] denotes the determinant of the change-base matrix from cp to bpp(hp)sp(bp1).

    Milnor [17] proved that torsion does not depend on neither the bases bp, nor the sections sp,p. Moreover, if cp,hp are other bases respectively for Cp and Hp, then there is the change-base-formula:

    Tor(C,{cp}np=0,{hp}np=0)=np=0([cp,cp][hp,hp])(1)pTor(C,{cp}np=0,{hp}np=0). (1.4)

    Let M be a smooth nmanifold, K be a cell-decomposition of M with for each p=0,,n, cp={ep1,,epmp}, called the geometric basis for the pcells Cp(K;Z). Hence, we have the chain-complex associated to M

    0Cn(K)nCn1(K)C1(K)1C0(K)0, (1.5)

    where p denotes the boundary operator. Then Tor(C(K),{cp}np=0,{hp}np=0) is called the Reidemeister torsion of M, where hp is a basis for Hp(K).

    In [23], oriented closed connected 2mmanifolds (m1) are considered and he proved the following formula for computing the Reidemeister torsion of them. Namely,

    Theorem 1.1. Let M be an oriented closed connected 2mmanifold (m1). For p=0,,2m, let hp be a basis of Hp(M). Then the Reidemeister torsion of M satisfies the following formula:

    |T(M,{hp}2m0)|=m1p=0|detHp,2mp(M)|(1)p|detHm,m(M)|(1)m,

    where detHp,2mp(M) is the determinant of the matrix of the intersection pairing (,)p,2mp:Hp(M)×H2mp(M) R in bases hp,h2mp.

    It is well known that Riemann surfaces and Grasmannians have many applications in a wide range of mathematics such as topology, differential geometry, algebraic geometry, symplectic geometry, and theoretical physics (see [2,3,5,6,12,13,22,24,25,26] and the references therein). They also applied Theorem 1.1 to Riemann surfaces and Grasmannians.

    In this work we calculate Reidemeister torsion of compact flag manifold K/T for K=SUn+1, where K is a compact simply connected semi-simple Lie group and T is maximal torus [28].

    The content of the paper is as follows. In Section 2 we give all details of cup product formula in the cohomology ring of flag manifolds which is called Schubert calculus [15,19]. In the last section we calculate the Reidemesiter torsion of flag manifold SUn+1/T for n3.

    The results of this paper were obtained during M.Sc studies of Habib Basbaydar at Abant Izzet Baysal University and are also contained in his thesis [1].

    Now, we will give the important formula equivalent to the cup product formula in the cohomology of G/B where G is a Kač-Moody group. The fundamental references for this section are [15,19]. To do this we will give a relation between the complex nil Hecke ring and H(K/T,C). Also we introduce a multiplication formula and the actions of reflections and Berstein-Gelfand-Gelfand type BGG operators Ai on the basis elements in the nil Hecke ring.

    Proposition 2.1.

    ξuξv=u,vwpwu,vξw,

    where pwu,v is a homogeneous polynomial of degree (u)+(v)(w).

    Proposition 2.2.

    riξw={ξwif riw>w,(w1αi)ξriw+ξwriwγwαi(γ)ξwotherwise.

    Theorem 2.3. Let u,vW. We write w1=ri1rin as a reduced expression.

    pwu,v=j1<<jmrj1rjm=v1Ai1ˆAij1ˆAijmAin(ξu)(e)

    where m=(v) and the notation ˆAi means that the operator Ai is replaced by the Weyl group action ri.

    Let C0=S/S+ be the S-module where S+ is the augmentation ideal of S. It is 1-dimensional as C-vector space. Since Λ is a S-module, we can define C0SΛ. It is an algebra and the action of R on Λ gives an action of R on C0SΛ. The elements σw=1ξwC0SΛ is a C-basis form of C0SΛ.

    Proposition 2.4. C0SΛ is a graded algebra associated with the filtration of length of the element of the Weyl group W.

    Proposition 2.5. The complex linear map f:C0SΛGrC{W} is a graded algebra homomorphism.

    Theorem 2.6. Let K be the standard real form of the group G associated to a symmetrizable Kač-Moody Lie algebra g and let T denote the maximal torus of K. Then the map

    θ:H(K/T,C)C0SΛ

    defined by θ(εw)=σw for any wW is a graded algebra isomorphism. Moreover, the action of wW and Aw on H(K/T,C) corresponds respectively to that δw and xwR on C0SΛ.

    Corollary 2.7. The operators Ai on H(K/T,C) generate the nil-Hecke algebra.

    Corollary 2.8. We can use Proposition 2.1 and Theorem 2.3 to determine the cup product εuεv in terms of the Schubert basis {εw}wW of H(K/T,Z).

    This section includes our calculations about Reidemeister torsion of flag manifolds using Theorem 1.1 and Proposition 2.1 because χ(SUn+1/T)=|W|=n! is always an even number.

    We know that the Weyl group W of K acts on the Lie algebra of the maximal torus T. lt is a finite group of isometries of the Lie algebra t of the maximal torus T. lt preserves the coweight lattice Tv. For each simple root α, the Weyl group W contains an element rα of order two represented by e((π/2)(eα+eα)) in N(T). Since the roots α can be considered as the linear functionals on the Lie algebra t of the maximal torus T, the action of rα on t is given by

    rα(ξ)=ξα(ξ)hαforξt,

    where hα is the coroot in t corresponding to simple root α.Also, we can give the action of rα on the roots by

    rα(β)=βα(hβ)αforα,βt,

    where t is the dual vector space of t. The element rα is the reflection in the hyperplane Hα of t whose equation is α(ξ)=0. These reflections rα generate the Weyl group W.

    Set α1,α2,,αn be roots of Weyl Group of SUn+1. Since the Cartan Matrix of Weyl Group of SUn+1 is

    Mij={2i=j1|ij|=10otherwise,

    rαi(αj)={αi,i=jαi+αj,|ij|=1αj,otherwise.

    Proposition 3.1. The Weyl group W of SUn+1 is isomorphic to Coxeter Group An given by generators s1,s2,,sn and relations

    (i) s2i=1i=1,2,,n;

    (ii) sisi+1si=si+1sisi+1i=1,2,,n1;

    (iii) sisj=sjsi1i<j1<n.

    Proof. (i)

    rαirαi(β)=rαi(β<αi,β>αi)=β<αi,β>αi<β<αi,β>αi,αi>αi=β<αi,β>αi<β,αi>αi+<αi,β><αi,αi>αi=β<αi,β>αi<αi,β>αi+2<αi,β>αi=β.

    (ii)

    rαirαi+1rαi(β)=rαirαi+1(β<αi,β>αi)=rαi(β<αi,β>αi<αi+1,β<αi,β>αi>αi+1)=rαi(β<αi,β>αi<αi+1,β>αi+1+<αi+1,<αi,β>αi>αi+1)=rαi(β<αi,β>αi<αi+1,β>αi+1+<αi,β><αi+1,αi>αi+1)=rαi(β<αi,β>αi<αi+1,β>αi+1<αi,β>αi+1)=β<αi,β>αi<αi+1,β>αi+1<αi,β>αi+1<αi,β<αi,β>αi<αi+1,β>αi+1<αi,β>αi+1>αi=β<αi,β>αi<αi+1,β>αi+1<αi,β>αi+1<αi,β>αi+<αi,β><αi,αi>αi+<αi+1,β><αi+1,αi>αi+<αi,β><αi+1,αi>αi=β<αi,β>αi<αi+1,β>αi+1<αi,β>αi+1<αi,β>αi+2<αi,β>αi<αi+1,β>αi<αi,β>αi=β<αi,β>αi<αi+1,β>αi<αi+1,β>αi+1<αi,β>αi+1=β(<αi,β>+<αi+1,β>)(αi+αi+1).
    rαi+1rαirαi+1(β)=rαi+1rαi(β<αi+1,β>αi+1)=rαi+1(β<αi+1,β>αi+1<αi,β<αi+1,β>αi+1>αi)=rαi+1(β<αi+1,β>αi+1<αi,β>αi+<αi+1,β><αi,αi+1>αi)=rαi+1(β<αi+1,β>αi+1<αi,β>αi<αi+1,β>αi)=β<αi+1,β>αi+1<αi,β>αi<αi+1,β>αi<αi+1,β<αi+1,β>αi+1<αi,β>αi<αi+1,β>αi>αi+1=β<αi+1,β>αi+1<αi+1,β>αi<αi,β>αi<αi+1,β>αi+1+<αi,β><αi+1,αi>αi+1+<αi+1,β><αi+1,αi>αi+1+<αi+1,β><αi+1,αi+1>αi+1=β<αi+1,β>αi+1<αi,β>αi<αi+1,β>αi<αi+1,β>αi+1+2<αi+1,β>αi+1<αi,β>αi+1<αi+1,β>αi+1=β<αi+1,β>αi+1<αi,β>αi<αi+1,β>αi<αi,β>αi+1=β(<αi+1,β>+<αi,β>)(αi+1+αi).

    Hence rαi+1rαirαi+1(β)=rαi+1rαirαi+1(β).

    (iii)

    rαirαj(β)=rαi(β<αj,β>αj)=β<αj,β>αj<αi,β<αj,β>αj>αi=β<αj,β>αj<αi,β>αi+<αj,β><αi,αj>αi=β<αj,β>αj<αi,β>αi.
    rαjrαi(β)=rαj(β<αi,β>αi)=β<αi,β>αi<αj,β<αi,β>αi>αj=β<αi,β>αi<αj,β>αj+<αi,β><αj,αi>αj=β<αi,β>αi<αj,β>αj.

    Hence rαirαj(β)=rαjrαi(β).

    After this point si will represent rαi.

    Let us define the word

    si,j={sisi+1sji<jsii=j1i>j.

    Theorem 3.2. [4,Theorem 3.1] The reduced Gröbner-Shirshov basis of the coxeter group An consists of relation

    si,jsi=si+jsi,j1i<jn

    together with defining relations of An.

    The following lemma is equivalent of [4,Lemma 3.2]. The only difference is the order of generators s1>s2>sn in our setting.

    Lemma 3.3. Using elimination of leading words of relations, the reduced elements of An are in the form

    sn+1,jn+1sn,jnsn1,jn1si,jis1,j1 1iji+1n+1.

    Notice that jn+1+1=n+1jn+1=n and sn+1,n=1.

    Algorithm 3.1. (Finding Inverse) Let w=sn,jnsn1,jn1s1,j1. The inverse of w can be found using following algorithm.

    Invw={};

    Conw=Reverse(w);

    For k=1 to k=n

    Find maximum sequence in Conw;

    list={sk,sk+1,sk+2,,sk+j};

    Invw=listInvw;

    End For.

    Example 3.4. Let s4,6s3,5s2,5s1,3. The inverse of its is S3s2s1s5s4s3s2s5s4s3s6s5s4.

    Invw=s1,4

    S3s2s5s4s3s5s4s6s5

    Invw=s2,5s1,4

    S3s5s4s5s6

    Invw=s3,5s2,5s1,4

    s5s6

    Invw=s5,6s3,5s2,5s1,4.

    Lemma 3.5. Let w=(sn,jn)(sn1,jn1)(si+1,ji+1)(si,ji)(s1,j1) and

    siw = (sn,¯jn)(sn1,¯jn1)(si+1,¯ji+1)(si,¯ji)(s1,¯j1), where

    siw={¯ji+1=ji+1,¯ji=ji+1ifji<ji+1¯ji+1=ji,¯ji=ji+11ifjiji+1¯jk=jkifki,i+1

    Here if i=n, then we assume jn+1=n.

    Corollary 3.6. Let w=(sn,jn)(sn1,jn1)(si+1,ji+1)(si,ji)(s1,j1) and

    si1(siw) = (sn,^jn)(sn1,^jn1)(si+1,^ji+1)(si,^ji)(s1,^j1), where

    si1(siw)={^ji+1=ji+1,^ji=ji1+1,^ji1=ji+1ifji<ji+1,ji1<ji+1^ji+1=ji+1,^ji=ji1,^ji1=ji+11ifji<ji+1,ji1ji+1^ji+1=ji,^ji=ji1+1,^ji1=ji+11ifjiji+1,ji1<ji+11^ji+1=ji,^ji=ji1,^ji1=ji+12ifjiji+1,ji1ji+11^jk=jkifki1,i,i+1.

    Proof. Let ¯w=siw=(sn,¯jn)(sn1,¯jn1)(si+1,¯ji+1)(si,¯ji)(s1,¯j1). Then

    si1(¯w)={^ji=¯ji1+1,^ji1=¯jiif¯ji1<¯ji^ji=¯ji1,^ji1=¯ji1if¯ji1¯ji^jk=¯jkifki1,i.

    (i) ji<ji+1 ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji1<¯ji ji1<ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji1+1=ji1+1, ^ji1=¯ji=ji+1.

    (ii) ji<ji+1 ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji1¯ji ji1ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji1=ji1, ^ji1=¯ji1=ji+11.

    (iii) jiji+1 ¯ji+1=ji, ¯ji=ji+11 So ¯ji1<¯ji ji1<ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji1=ji1, ^ji1=¯ji1=ji+11.

    (iv) jiji+1 ¯ji+1=ji, ¯ji=ji+11 So ¯ji1¯ji ji1ji+11, ^ji+1=¯ji+1=ji, ^ji=¯ji1=ji1, ^ji1=¯ji1=ji+12.

    Corollary 3.7. Let w=(sn,jn)(sn1,jn1)(si+1,ji+1)(si,ji)(s1,j1) and

    si+1(siw) = (sn,^jn)(sn1,^jn1)(si+1,^ji+1)(si,^ji)(s1,^j1). Then

    si+1(siw)={^ji+2=ji+2,^ji+1=ji+2,^ji=ji+1ifji<ji+1,ji+1<ji+2^ji+2=ji+1,^ji+1=ji+21,^ji=ji+1ifji<ji+1,ji+1ji+2^ji+2=ji+1,^ji+1=ji+2,^ji=ji+11ifjiji+1,ji<ji+2^ji+2=ji,^ji+1=ji+21,^ji=ji+11ifjiji+1,jiji+2^jk=jkifki,i+1,i+2.

    Proof. Let ¯w=siw=(sn,¯jn)(sn1,¯jn1)(si+1,¯ji+1)(si,¯ji)(s1,¯j1). Then

    si+1(¯w)={^ji+2=¯ji+1+1,^ji+1=¯ji+2if¯ji+1<¯ji+2^ji+2=¯ji+1,^ji+1=¯ji+21if¯ji+1¯ji+2^jk=¯jkifki+1,i+2.

    (i) ji<ji+1 ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji+1<¯ji+2 ji+1<ji+2, ^ji+2=¯ji+1+1=ji+2, ^ji+1=¯ji+2=ji+2, ^ji=¯ji=ji+1.

    (ii) ji<ji+1 ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji+1¯ji+2 ji+1ji+2, ^ji+2=¯ji+1=ji+1, ^ji+1=¯ji+21=ji+21, ^ji=¯ji=ji+1.

    (iii) jiji+1 ¯ji+1=ji, ¯ji=ji+11 So ¯ji+1<¯ji+2 ji<ji+2, ^ji+2=¯ji+1+1=ji+1, ^ji+1=¯ji+2=ji+2, ^ji=¯ji1=ji+11.

    (iv) jiji+1 ¯ji+1=ji, ¯ji=ji+11 So ¯ji+1¯ji+2 jiji+2, ^ji+2=¯ji+1=ji, ^ji+1=¯ji+21=ji+21, ^ji=¯ji=ji+11.

    Using Lemma 3.3 and definitions of Ai and ri operators, we can obtain the followings.

    Lemma 3.8. Let w=(sn,jn)(sn1,jn1)(si+1,ji+1)(si,ji)(s1,j1). Then

    Ai(εw)={εw1ifjiji+10ifji<ji+1,

    where w1=(sn,¯jn)(sn1,¯jn1)(si+1,¯ji+1)(si,¯ji)(s1,¯j1) with ¯ji+1=ji, \quad ¯ji=ji+11 and ¯jk=jk if ki,i+1.

    Lemma 3.9. ri(εsj)={εsi1εsiεsi+1ifi=jεsjifij.

    The integral cohomology of SUn+1/T is generated by Schubert classes indexed

    W={snjnsn1,jn1s1j1:ji=0orijin}.

    Let xi=εriH2(SUn+1/T,Z). We define an order between generators of the integral cohomology of SUn+1/T. Since each element εsnjnsn1,jn1sijis1j1 can be represented by an n-tuple (jnn+1,jn1(n1)+1,,jii+1,,j11+1), we can define an order between n-tuples.

    Definition 3.10. (Graded Inverse Lexicographic Order) Let α=(α1,α2,,αn) and β=(β1,β2,,βn)Zn0. We say α>β if |α|=α1+α2+αn>|β|=β1+β2+βn or |α|=|β| and in the vector difference αβZn, the right-most nonzero entry is positive. We will write εsnjnsn1,jn1sijis1j1>εsnknsn1,jk1sikis1j1 if (jnn+1,jn1(n1)+1,,jii1,,j11+1)>(knn+1,kn1(n1)+1,,kii1,,k11+1).

    Example 3.11. εs35s23s14>εs35s24s13 since (3,2,4)>(3,3,3) in graded inverse lexicographic order.

    We will try to find a quotient ring Z[x1,x2,,xn]/I which is isomorphic to H(SUn+1/T,Z). We also define an order between monomials as follows.

    Definition 3.12. We say xα11xα22xαnn>xβ11xβ22xβnn if |α|=α1+α2++αn>|β|=β1+β2++βn or |α|=|β| and in the vector difference αβZn the left-most non-zero entry is negative.

    Example 3.13. x41x22x33<x31x32x33, since (4,2,3)(3,3,3)=(1,1,0).

    Lemma 3.14. xα11xα22xαnn=εsnαnsn1,αn1siαis1α1+lowerterms.

    Proof. To prove this, we use induction on degree of the monomials. By definition xi=εsi. Let us compute xixj=εsiεsj. Here we may assume that ij. If ji>1, the inverse of sisj is sisj. Hence

    Psjsisisj=rjAi(εsi)=rj(1)=1

    in the cup product. If j=i+1, the inverse of si+1si is sisi+1. In this case

    Psi,si+1=Airi+1(εsi)=Ai(εsi)=ε{}=1.

    If i=j, then we have to consider the word si,i+1. Its inverse si+1si and

    Psi,i+1sisi=ri+1Ai(εsi)=ri+1(1)=1.

    Now we have to show that Pskslsisj=0 if εsksl>εsjsi. By definition of cup product the coefficient of {\varepsilon}^{s_ks_l} is not zero only if s_i\rightarrow s_ks_l and s_j\rightarrow s_ks_l . However, this is possible only if s_ks_l = s_js_i or s_ks_l = s_{i, i+1} when j = i+1 . Clearly {\varepsilon}^{s_is_{i+1}} < {\varepsilon}^{s_{i+1}s_i} . Hence {\varepsilon}^{s_i}{\varepsilon}^{s_{i+1}} = {\varepsilon}^{s_{i+1}s_i}+\mathrm{lower}\; \mathrm{terms} and {\varepsilon}^{s_i}{\varepsilon} ^{s_j} = {\varepsilon}^{s_j}{\varepsilon}^{s_i} if j-i > 1 . In the case i = j , we have to look elements s_i s_k and s_k s_i . The inverse of s_ks_i is equal to s_ks_i itself if k-i > 1 , hence

    P_{s_is_j}^{s_ks_i} = A^k r_i({\varepsilon}^{s_i}) = A^k({\varepsilon}^{s_{i-1}}-{\varepsilon}^{s_i}+{\varepsilon}^{s_{i+1}}) = 0

    since k-i > 1 . Clearly {\varepsilon}^{s_is_k} < {\varepsilon}^{s_is_{i+1}} if k < i . Hence {\varepsilon}^{s_i}{\varepsilon}^{s_i} = {\varepsilon}^{s_is_{i+1}}+\mathrm{lower}\; \mathrm{terms} .

    Assume that x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n} = {\varepsilon}^{s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i}\ldots s_{1\alpha_{1}}}+\mathrm{lower}\; \mathrm{terms} .

    We have to show x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_i^{\alpha_i+1}\ldots x_n^{\alpha_n} = {\varepsilon}^{s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}}+\mathrm{lower}\; \mathrm{terms} by Bruhat ordering.

    s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}\rightarrow w' only if w' = s_{n\overline{\alpha_n}}s_{n-1, \overline{\alpha_{n-1}}}\ldots s_{i\overline{\alpha_i}}\ldots s_{1\overline{\alpha_{1}}} where there exists an index j for which \overline{\alpha_j} = \alpha_j+1 and \overline{\alpha_k} = \alpha_k if k\neq j .

    By given ordering

    w' = s_{n\overline{\alpha_n}}s_{n-1, \overline{\alpha_{n-1}}}\ldots s_{i\overline{\alpha_i}}\ldots s_{1\overline{\alpha_{1}}} \gt s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}.

    If j > i , then, by Algorithm 1 , in w'^{-1} , we will not have a subsequence s_{j-1}, s_{j-2}\ldots s_i after the elements s_j . Hence in the cup product before applying A^j we will not have the term {\varepsilon}^{s_j} . It means P_{s_i, w}^{w'} = 0.

    If j = i , then, again by Algorithm 1 , in w'^{-1} we will not have a subsequence s_{j-1}, s_{j-2}\ldots s_i after the elements s_j . Hence in the cup product before applying A^j we will not have the term {\varepsilon}^{s_j} . It means P_{s_i, w}^{w'} = 1 if and only if j > i .

    Example 3.15. Let l = 3 ,

    x_1x_2x_3 = {\varepsilon}^{s_3s_2s_1}+\mathrm{lower}\; \mathrm{terms} .

    x_1^2x_2x_3 = {\varepsilon}^{s_3s_2s_{12}}+\mathrm{lower}\; \mathrm{terms} .

    Then we have {\varepsilon}^{s_3s_{23}s_1} > {\varepsilon}^{s_3s_2s_{12}} > {\varepsilon}^{s_{23}s_{12}} > {\varepsilon}^{s_3s_{13}} > {\varepsilon}^{s_2s_{13}} . Since the inverse of s_3s_{23}s_1 is s_3s_{13} and the inverse of s_3s_2s_1 is s_{13} , A_3r_1r_2r_3({\varepsilon}^{s_1}) = A_3r_1({\varepsilon}^{s_1}) = A_3(-{\varepsilon}^{s_1}+{\varepsilon}^{s_2}) = 0 .

    Similarly, since the inverse of s_3s_2s_{12} is s_2s_{13} , A_2r_1r_2r_3({\varepsilon}^{s_1}) = A_2r_1({\varepsilon}^{s_1}) = A_2(-{\varepsilon}^{s_1}+{\varepsilon}^{s_2}) = 1 .

    Before finding the quotient ring \mathbb{Z}[x_1, \ldots, x_n]/I , we give some information about ring \Bbbk[x_1, \ldots, x_n]/I where \Bbbk is a field. Fix a monomial ordering on \Bbbk[x_1, \ldots, x_n] . Let f\in \Bbbk[x_1, \ldots, x_n] . The leading monomial of f , denoted by LM(f) , is the highest degree monomial of f . The coefficient of LM(f) is called leading coefficient of f and denoted by LC(f) . The leading term of f , LT(f) = LC(f) LM(f) .

    Let I\subseteq k[x_1, \ldots, x_n] be an ideal. Define LT(I) = \{LT(f): f\in I\} . Let < LT(I) > be an ideal generated by LT(I) .

    Proposition 3.16. [9,Section 5.3,Propostions 1 and 4]

    (i) Every f\in \Bbbk[x_1, \ldots, x_n] is congruent modulo I to a unique polynomial r which is a \Bbbk -linear combination of the monomials in the complement of < LT(I) > .

    (ii) The elements of \{x^\alpha: x^\alpha\not\in < LT(I) > \} are linearly independent modulo I .

    (iii) \Bbbk[x_1, \ldots, x_n]/I is isomorphic as a \Bbbk-vector space to

    S = {\operatorname{Span}}\{x^\alpha: x^\alpha\not\in \lt LT(I) \gt \}.

    Theorem 3.17. [9,Section 5.3,Theorem 6] Let I\subseteq \Bbbk[x_1, \ldots, x_n] be an ideal.

    (i) The \Bbbk -vector space \Bbbk[x_1, \ldots, x_n]/I is finite dimensional.

    (ii) For each i , 1\leq i\leq n , there is a polynomial f_i\in I such that LM(f_i) = x_i^{m_i} for some positive integer m_i .

    Theorem 3.18. H^*(SU_{n+1}/T, \mathbb{Z}) isomorphic to \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > where LT(f_i) = x_{i}^{n-i+2} with respect to monomial order given by Definition 3.12 .

    Proof. Let I be the ideal such that H^*(SU_{n+1}/T, \mathbb R)\cong\mathbb R[\alpha_1, \alpha_2, \ldots, \alpha_n]/I . Since we found one to one correspondence between length l elements of H^*(SU_{n+1}/T, \mathbb Z) and monomials x_{1}^{\alpha_1}x_{2}^{\alpha_2}\cdots x_{n}^{\alpha_n} , where \alpha_1+\alpha_2+\cdots \alpha_n = l and for each i , 1\leq i\leq n , \alpha_i\leq n-i+1 , there should be a polynomial f_i \in I such that LT(f_i) = x_{i}^{n-i+2} .

    Example 3.19. Let n = 3 . Then we have

    \alpha_i\leq n-i+1 , i = 1, 2, 3 ;

    \alpha_1\leq 3 , \alpha_2\leq 2 , \alpha_3\leq 1 .

    For l = 1;\; x_1, \; x_2, \; x_3 ; and

    for l = 2;\; x_1^2, \; x_1x_2, \; x_1x_3, \; x_2x_3, \; x_2^2 . So we must have a polynomial f_3 with LM(f_3) = x_3^2 .

    For l = 3;\; x_1^3, \; x_1^2x_2, \; x_1^2x_3, \; x_1x_2x_3, \; x_1x_2^2, \; x_2^2x_3 , so

    we must have a polynomial f_2 with LM(f_2) = x_2^3 .

    For l = 4;\; x_1^3x_2, \; x_1^3x_3, \; x_1^2x_2x_3, \; x_1^2x_2^2, \; x_1x_2^2x_3 , so

    we must have a polynomial f_1 with LM(f_1) = x_1^4 .

    The complex dimension of SU_{n+1} / T is equal to (n+1)n / 2 . So the highest element has length of (n+1)n/2 .

    Since the unique highest element has length of \frac{n(n+1)}{2} , we now give the result about the multiplication of elements of length k and of length \frac{n(n+1)}{2}-k .

    Theorem 3.20. Let A = {\varepsilon}^{s_{nj_{n}}s_{n-1, j_{n-1}}\cdots s_{1j_{1}}} be an element of length k and B = {\varepsilon}^{s_{np_{n}}s_{n-1, p_{n-1}}\cdots s_{1p_{1}}} be an element of length \frac{n(n+1)}{2}-k . The corresponding polynomials in \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > has leading monomials

    x_{1}^{j_1-1+1}x_{2}^{j_2-2+1}\cdots x_{i}^{j_i-i+1}\cdots x_{1}^{j_n-n+1} and x_{1}^{p_1-1+1}x_{2}^{p_1-2+1}\cdots x_{1}^{p_n-n+1} , respectively. Then

    A\cdot B = \left\{ \begin{array}{ll} {\varepsilon}^{s_{n, n}s_{n-1, n}, \ldots, s_{in}, \ldots, s_{1n}}, & if \; j_i+p_i+1 = n+i; \\ 0, & if \; j_i+p_i+1\neq n+i. \end{array} \right.

    Proof. The unique highest degree monomial in \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > is x_{1}^{n}x_{2}^{n-1}\cdots x_{i}^{n-i+1}\cdots x_{n} . The multiplication of leading monomials of corresponding monomials of A and B produce the monomial

    x_{1}^{j_1+p_1}x_{2}^{j_2+p_2-2}\cdots x_{i}^{j_i+p_i-2i+2}\cdots x_{n}^{j_n+p_n-2n+2}.

    If j_i+p_i-2i+2 = n-i+1\rightarrow j_i+ p_i+1 = n+i for each i , i\leq 1\leq n , then the multiplication gives the x_{1}^{n}x_{2}^{n-1}\ldots x_{n} . Since this monomial correspondence the element {\varepsilon}^{s_{n, n}s_{n-1, n}\cdots s_{in}\cdots s_{1n}} , A\cdot B = {\varepsilon}^{s_{n, n}s_{n-1, n}\cdots s_{1n}} . If j_i+p_i+1\neq n+i, then the leading monomial and the monomials of lower degree must reduce to zero modulo < f_1, f_2, \ldots, f_n > in \Bbbk[x_1, x_2, \ldots, x_n] when we apply the division algorithm. Hence A\cdot B = 0 .

    Now we can give the whole computation of the quotient ring \mathbb{Z}[x_1, x_2, x_3]/ < f_1, f_2, f_3 > .

    Example 3.21. Let x_1 = {\varepsilon}^{s_1} , x_2 = {\varepsilon}^{s_2} , x_3 = {\varepsilon}^{s_3} .

    For l = 2 , we have

    \begin{eqnarray*} x_2x_3 & = & {\varepsilon}^{s_3s_2}+{\varepsilon}^{s_2s_3} \\ x_2^2 & = & {\varepsilon}^{s_2s_3}+{\varepsilon}^{s_2s_1} \\ x_1x_3 & = & {\varepsilon}^{s_3s_1} \\ x_1x_2 & = & {\varepsilon}^{s_2s_1}+{\varepsilon}^{s_1s_2} \\ x_1^2 & = & {\varepsilon}^{s_1s_2}, \end{eqnarray*}

    and

    \left(\begin{array}{c} x_2x_3 \\ x_2^2 \\ x_1x_3 \\ x_1x_2 \\ x_1^2 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2} \\ {\varepsilon}^{s_2s_3} \\ {\varepsilon}^{s_3s_1} \\ {\varepsilon}^{s_2s_1} \\ {\varepsilon}^{s_1s_2} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2} \\ {\varepsilon}^{s_2s_3} \\ {\varepsilon}^{s_3s_1} \\ {\varepsilon}^{s_2s_1} \\ {\varepsilon}^{s_1s_2} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_2x_3 \\ x_2^2 \\ x_1x_3 \\ x_1x_2 \\ x_1^2 \\ \end{array} \right) , where

    M = \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccccc} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right). Then we have

    \begin{eqnarray*} {\varepsilon}^{s_3s_2} & = & x_2x_3-x_2^2+x_1x_2-x_1^2 \\ {\varepsilon}^{s_2s_3} & = & x_2^2-x_1x_2+x_2^2\\ {\varepsilon}^{s_3s_1} & = & x_1x_3 \\ {\varepsilon}^{s_2s_1} & = & x_1x_2-x_1^2 \\ {\varepsilon}^{s_1s_2} & = & x_1^2. \end{eqnarray*}

    Here we must have a relation involving x_3^2 and we have it as

    x_3^2 = {\varepsilon}^{s_3s_2} = x_2x_3-x_2^2+x_1x_2-x_1^2.

    For l = 3 ;

    \begin{eqnarray*} x_2^2x_3& = & {\varepsilon}^{s_3s_2s_3}+{\varepsilon}^{s_3s_2s_1}+{\varepsilon}^{s_2s_3s_1} \\ x_1x_2x_3 & = & {\varepsilon}^{s_3s_2s_1}+{\varepsilon}^{s_2s_3s_1}+{\varepsilon}^{s_3s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1x_2^2 & = & {\varepsilon}^{s_2s_3s_1}+{\varepsilon}^{s_2s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^2x_3 & = & {\varepsilon}^{s_3s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^2x_2 & = & {\varepsilon}^{s_2s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^3 & = & {\varepsilon}^{s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_2^2x_3 \\ x_1x_2x_3 \\ x_1x_2^2 \\ x_1^2x_3 \\ x_1^2x_2 \\ x_1^3 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3} \\ {\varepsilon}^{s_3s_2s_1} \\ {\varepsilon}^{s_2s_3s_1} \\ {\varepsilon}^{s_3s_1s_2} \\ {\varepsilon}^{s_2s_1s_2} \\ {\varepsilon}^{s_1s_2s_3} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3} \\ {\varepsilon}^{s_3s_2s_1} \\ {\varepsilon}^{s_2s_3s_1} \\ {\varepsilon}^{s_3s_1s_2} \\ {\varepsilon}^{s_2s_1s_2} \\ {\varepsilon}^{s_1s_2s_3} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_2^2x_3 \\ x_1x_2x_3 \\ x_1x_2^2 \\ x_1^2x_3 \\ x_1^2x_2 \\ x_1^3 \\ \end{array} \right) , where

    M = \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{cccccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right).

    Then we have

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3} & = & x_2^2x_3-x_1x_2x_3+x_1^2x_3 \\ {\varepsilon}^{s_3s_2s_1} & = & x_1x_2x_3-x_1x_2^2-x_1^2x_3+x_1^2x_2 \\ {\varepsilon}^{s_2s_3s_1} & = & x_1x_2^2-x_1^2x_2\\ {\varepsilon}^{s_3s_1s_2} & = & x_1^2x_3-x_1^3 \\ {\varepsilon}^{s_2s_1s_2} & = & x_1^2x_2-x_1^3 \\ {\varepsilon}^{s_1s_2s_3} & = & x_1^3. \end{eqnarray*}

    Here we must have a relation involving x_2^3 and we now we have it as

    x_2^3 = 2{\varepsilon}^{s_2s_3s_1} = 2(x_1x_2^2-x_1^2x_2).

    For l = 4 ; we have

    \begin{eqnarray*} x_1x_2^2x_3 & = & {\varepsilon}^{s_3s_2s_3s_1}+{\varepsilon}^{s_3s_2s_1s_2}+ 2{\varepsilon}^{s_2s_3s_1s_2}+2{\varepsilon}^{s_3s_1s_2s_3} \\ x_1^2x_2x_3 & = & {\varepsilon}^{s_3s_2s_1s_2}+{\varepsilon}^{s_2s_3s_1s_2}+ {\varepsilon}^{s_3s_1s_2s_3}+{\varepsilon}^{s_2s_1s_2s_3} \\ x_1^2x_2^2 & = & {\varepsilon}^{s_2s_3s_1s_2}+{\varepsilon}^{s_2s_1s_2s_3} \\ x_1^3x_3 & = & {\varepsilon}^{s_3s_1s_2s_3} \\ x_1^3x_2 & = & {\varepsilon}^{s_2s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_1x_2^2x_3 \\ x_1^2x_2x_3 \\ x_1^2x_2^2 \\ x_1^3x_3 \\ x_1^3x_2 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1} \\ {\varepsilon}^{s_3s_2s_1s_2} \\ {\varepsilon}^{s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_1s_2s_3} \\ {\varepsilon}^{s_2s_1s_2s_3} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1} \\ {\varepsilon}^{s_3s_2s_1s_2} \\ {\varepsilon}^{s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_1s_2s_3} \\ {\varepsilon}^{s_2s_1s_2s_3} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_1x_2^2x_3 \\ x_1^2x_2x_3 \\ x_1^2x_2^2 \\ x_1^3x_3 \\ x_1^3x_2 \\ \end{array} \right) , where

    M = \left(\begin{array}{ccccc} 1 & 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 2 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right).

    Then

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3s_1} & = & x_1x_2^2x_3-x_1^2x_2x_3-x_1^2x_2^2-x_1^3x_3+2x_1^3x_2 \\ {\varepsilon}^{s_3s_2s_1s_2} & = & x_1^2x_2x_3-x_1^2x_2^2-x_1^3x_3\\ {\varepsilon}^{s_2s_3s_1s_2} & = & x_1^2x_2^2-x_1^3x_2 \\ {\varepsilon}^{s_3s_1s_2s_3} & = & x_1^3x_3\\ {\varepsilon}^{s_2s_1s_2s_3} & = & x_1^3x_2. \end{eqnarray*}

    We must have a relation involving x_1^4 , which is x_1x_1^3 = {\varepsilon}^{s_1}.{\varepsilon}^{s_1s_2s_3} = 0 .

    For l = 5 ;

    \begin{eqnarray*} x_1^2x_2^2x_3& = & {\varepsilon}^{s_3s_2s_3s_1s_2}+{\varepsilon}^{s_3s_2s_1s_2s_3}+{\varepsilon}^{s_2s_3s_1s_2s_3} \\ x_1^3x_2x_3 & = & {\varepsilon}^{s_3s_2s_1s_2s_3}+{\varepsilon}^{s_2s_3s_1s_2s_3} \\ x_1^3x_2^2 & = & {\varepsilon}^{s_2s_3s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_1^2x_2^2x_3 \\ x_1^3x_2x_3 \\ x_1^3x_2^2 \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_2s_1s_2s_3} \\ {\varepsilon}^{s_2s_3s_1s_2s_3} \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_2s_1s_2s_3} \\ {\varepsilon}^{s_2s_3s_1s_2s_3} \end{array} \right) = M^{-1} \left(\begin{array}{c} x_1^2x_2^2x_3 \\ x_1^3x_2x_3 \\ x_1^3x_2^2 \end{array} \right) , where

    M = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ \end{array} \right). So

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3s_1s_2} & = & x_1^2x_2^2x_3-x_1^3x_2x_3 \\ {\varepsilon}^{s_3s_2s_1s_2s_3} & = & x_1^3x_2x_3-x_1^3x_2^2 \\ {\varepsilon}^{s_2s_3s_1s_2s_3} & = & x_1^3x_2^2. \end{eqnarray*}

    Hence we don't have any relation.

    For l = 6 ;

    x_1^3x_2^2x_3 = {\varepsilon}^{s_3s_2s_3s_1s_2s_3} and {\varepsilon}^{s_3s_2s_3s_1s_2s_3} = x_1^3x_2^2x_3 .

    Now let us multiple elements with lengths of k and 6-k .

    First M_0 = 1 and |\det(M_0)| = 1 .

    Now we will calculate Reidemeister torsion of SU_4 /T by using above multiplication. From multiplication of the second cohomology, we have M_2 = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0\end{pmatrix} and |\det(M_2)| = 1.

    \underline{Degree \quad 2 * Degree \quad 4}

    To calculate Reidemeister torsion of SU_4 /T we need multiplication of fourth cohomology bases elements and then we have M_4 = \begin{pmatrix}0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\end{pmatrix} and |\det(M_4)| = 1.

    \underline{Degree \quad 3 * Degree \quad 3}

    To calculate Reidemeister torsion of SU_4 /T we need multiplication of sixth cohomology bases elements and then we have M_6 = \begin{pmatrix}0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\end{pmatrix} and |\det(M_6)| = 1.

    In general the matrix M_k represents the intersection pairing between the homology classes of degrees k and (n+1)n - k with real coefficient. So in general |\det(M_{\frac{n(n+1)}{2}})| = 1. Hence the Reidemeister torsion of SU_4 /T is 1 by the Reidmeister torsion formula for manifolds.

    By Theorems 1.1, 3.18 and 3.20, we obtain the following result.

    Theorem 3.22. The Reidemeister torsion of SU_{n+1} /T is always 1 for any positive integer n with n\geq 3 .

    Remark 3.23. We should note that we found this result by Schubert calculus. But, we choose any basis to define Reidemeister torsion. There are many bases for the Reidemeister torsion to be 1 . Why we focus on this basis to compute the Reidemeister torsion is that we can use Schubert calculus and we have cup product formula in this algebra in terms of Schubert differential forms. Otherwise these computations are not easy. Also by Groebner techniques we can find the normal form of all elenents of Weyl group indexing our basis. So computations in this algebra is avaliable.

    Remark 3.24. In our work, we consider flag manifold SU_{n + 1}/T for n \geq 3. Then we consider the Schubert cells \{\mathfrak{c}_p\} and the corresponding homology basis a \{ \mathfrak{h}_p\} associated to \{\mathfrak{c}_p\} . We caculated that \mathrm{Tor}(\mathcal{C}_{\ast}(\mathbf{K}), \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}_p\}_{p = 0}^n) = 1 .

    If we consider the same cell-decomposition but other homology basis \{\mathfrak{h}'_p\} then by the change-base-formula (1.4), then we have

    \begin{equation*} \text{Tor}(\mathcal{C}_{\ast}, \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}'_p\}_{p = 0}^n) = \prod\limits_{p = 0}^n\left(\dfrac{1}{[\frak{h}'_p, \frak{h}_p]}\right)^{(-1)^p}\cdot \text{Tor}(\mathcal{C}_{\ast}, \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}_p\}_{p = 0}^n). \end{equation*}

    Remark 3.25. In the presented paper M = K/T is a flag manifold, where K = SU_{n+1} and T is the maximal torus of K. Clearly, M is a smooth orientable even dimensional(complex) closed manifold. So there is Poincaré (or Hodge) duality. Therefore, we can apply Theorem 1.1 for M = K/T .

    We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.

    The authors declare that they have no competing interests.

    [1] Hamilton-Jacobi equations constrained on networks. Nonlinear Differ. Equ. Appl. (2013) 20: 413-445.
    [2] A Bellman approach for two-domains optimal control problems in \begin{document}${\mathbb{R}^n}$\end{document}. ESAIM: Control, Optimisation and Calculus of Variations (2013) 19: 710-739.
    [3] Viscosity solutions of Eikonal equations on topological networks. Calc. Var. Partial Differential Equatons (2013) 46: 671-686.
    [4] A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks. J. Math. Anal. Appl. (2013) 407: 112-118.
    [5] A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. (2006) 38: 478-502.
    [6] Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sr. I Math. (1998) 327: 267-270.
    [7] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, To appear in Cambridge Studies in Advanced Mathematics.
    [8] PDE aspects of Aubry-Mather theory for quasi-convex Hamiltonians. Calc. Var. Partial Differential Equations (2005) 22: 185-228.
    [9] C. Imbert and R. Monneau, Flux-limited Solutions for Quasi-Convex Hamilton-Jacobi Equations on Networks, arXiv: 1306.2428
    [10] Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean nspace. Anal. Non Linéaire (2008) 25: 231-266.
    [11] Convergence to steady states or periodic solutions in a class of HamiltonJacobi equations. J. Math. Pures Appl. (2001) 80: 85-104.
  • This article has been cited by:

    1. Mustafa Aydin, Nazim I. Mahmudov, ψ \psi ‐Caputo type time‐delay Langevin equations with two general fractional orders, 2023, 0170-4214, 10.1002/mma.9047
    2. Muath Awadalla, Kinda Abuasbeh, Muthaiah Subramanian, Murugesan Manigandan, On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions, 2022, 10, 2227-7390, 1681, 10.3390/math10101681
    3. Mustafa AYDIN, RELATIVE CONTROLLABILITY OF THE φ-CAPUTO FRACTIONAL DELAYED SYSTEM WITH IMPULSES, 2023, 26, 1309-1751, 1121, 10.17780/ksujes.1339354
    4. Yi Deng, Zhanpeng Yue, Ziyi Wu, Yitong Li, Yifei Wang, TCN-Attention-BIGRU: Building energy modelling based on attention mechanisms and temporal convolutional networks, 2024, 32, 2688-1594, 2160, 10.3934/era.2024098
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4471) PDF downloads(68) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog