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Abstract. We consider Tonelli Lagrangians on a graph, define weak KAM
solutions, which happen to be the fixed points of the Lax-Oleinik semi-group,

and identify their uniqueness set as the Aubry set, giving a representation

formula. Our main result is the long time convergence of the Lax Oleinik
semi-group. It follows that weak KAM solutions are viscosity solutions of

the Hamilton-Jacobi equation [3, 4], and in the case of Hamiltonians called of

eikonal type in [3], we prove that the converse holds.

1. Introduction. There has been an increasing interest in the study of dynamical
systems and differential equation on networks. In the same vein, the study of
control problems on networks has interesting applications in various fields. A typical
optimal control problem is the minimum time problem, which consists of finding the
shortest path between an initial position and a given target set. If the cost changes
in a continuous way along the edges and the dynamics is continuous in time, the
minimum time problem can be seen as a continuous-state continuous-time control
problem where the admissible trajectories of the system are constrained to remain
on the network. Control problems with state constrained in closures of open sets
have been intensively studied but the there is much fewer literature on problems on
networks.

Networks are the simplest examples of ramified spaces. Ramified spaces are
the natural settings for problems of interaction between different media which are
described by differential equations on the branches and transition conditions on the
ramifications. Those interaction problems have different applications in physics,
chemistry, and biology. Concerning the analysis of these models, the possibility
of the application of several mathematical methods does not only depend on the
structure of the differential equations on the branches, but also they depend strongly
on the properties of the transition conditions. In fact, their effect on existence,
uniqueness, and regularity of solutions is quite considerable. Many well-known
results for elliptic and parabolic problems in the classical non-ramified situation
have been extended to ramified spaces, providing results for boundary or initial
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value problems, now stablished for collections of media with transition conditions.
In many cases, the core of the difficulties found on ramified spaces are already
present in the simple setting of networks.

Viscosity solutions of the Hamilton Jacobi equation on networks have been stud-
ied for several authors, but the problem of the long time behaviour of the solutions
to the Cauchy problem for the Hamilton Jacobi equation has not been considered.
Upon addressing that problem, we found more convenient to follow the variational
approach, considering the viscosity solution given by the Lax Oleinik semigroup.

In the first part of this article we study the Lax-Oleinik semi-group Lt defined
by a Tonelli Lagrangian on a graph and prove that for any continuous function u,
Ltu+ ct converges as t→∞ where c is the critical value of the Lagrangian.

For Lagrangians on compact manifolds, Fathi [6, 7] proved the convergence using
the Euler-Lagrange flow and conservation of energy. In our case we do not have
those tools but we can follow ideas of Roquejoffre [11] and Davini-Siconolfi [5]. See
also [10] for the convergence when the manifold is the whole euclidian space.

Camilli and collaborators [1, 4, 3] have studied viscosity solutions of the Hamilton-
Jacobi equation, and given sufficient conditions for a set to be a uniqueness set and
a representation formula. See also the recent papers [2, 9].

In the second part of this article we prove that, under the assumption that
the Lagrangian is symmetric at the vertices, the sets of weak KAM and viscosity
solutions of the Hamilton-Jacobi equation coincide.

We consider a graph G without boundary consisting of finite sets of unoriented
edges I = {Ij} and vertices V = {el}. The interior of Ij is Ij−V. Parametrizing each
edge by arc length σj : Ij → [0, sj ] we can write its tangent bundle as TIj = Ij ×R
and

TG =
⋃
j

{j} × TIj/ ∼

where (i, x, v) ∼ (j, y, w) ⇐⇒ (i, x, v) = (j, y, w) or x = y ∈ Ii ∩ Ij , v = w = 0.
Thus, a function L : TG → R is given by a collection of functions Lj : TIj → R
such that Li(el, 0) = Lj(el, 0) for el ∈ Ii ∩ Ij . A Lagrangian in G is a function
L : TG → R such that each Lj is Ck, k ≥ 2, and Lj(x, ·) is strictly convex and
super-linear for any x ∈ Ij . We will say that a Lagrangian is symmetric at the
vertices if at each vertex el there is a function λl : {u ∈ R : u ≥ 0} → R such that
Lj(el, z) = λl(|z|) if el ∈ Ij . As an example consider the mechanical Lagrangian
given by Lj(x, v) = 1

2v
2 − Uj(x), with Uj(el) = al if el ∈ Ij . For x ∈ Ij \ V, we say

that (x, v) points towards σ−1(sj) if v > 0 and points towards σ−1(0) if v < 0.

We say that (σ−1
j (0), v) is an Ij-incoming or outgoing vector according to whether

v > 0 or v < 0, and we say that (σ−1
j (sj), v) is an Ij-incoming or outgoing vector

according to wether v < 0 or v > 0. We let T+
el
Ij (T−el Ij) to be the set of Ij-

outgoing (incoming or zero) vectors in TelIj .

2. Basic properties of the action.

2.1. A distance on a graph. We start defining a distance in the most natural
way. We say a continuous path α : [a, b] → G is a unit speed geodesic (u.s.g.) if
there is a partition a = t0 < . . . < tm = b such that for each 1 ≤ i ≤ m there is j(i)
such that

α([t0, t1]) ⊂ Ij(1), α([ti−1, ti]) = Ij(i), . . . , α([tm−1, tm]) ⊂ Ij(m),
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σj(i) ◦ α|[ti−1,ti] is differentiable and either (σj(i) ◦ α)′ ≡ 1 or (σj(i) ◦ α)′ ≡ −1. We
set the length of a u.s.g. to be

`(α) = |σj(1)(α(t1))− σj(1)(α(a))|+
m−1∑
i=2

sj(i) + |σj(m)(α(b))− σj(m)(α(tm−1))|

and define a distance on G by

d(x, y) = min{`(α) : α : [a, b]→ G is a u.s.g., α(a) = x, α(b) = y}

2.2. Absolute continuity. We say a path γ : [a, b] → G is absolutely continuous
if for any ε > 0 there is δ > 0 such that for any finite collection of disjoint intervals
{[ci, di]} with

∑
i(di − ci) < δ we have

∑
i d(γ(ci), γ(di)) < ε.

If γ : [a, b]→ G, γ(t) ∈ V, we define γ̇(t) = 0 if for any ε > 0 there is δ > 0 such
that d(γ(s), γ(t)) < ε|s− t| when |s− t| < δ.

Let γ : [a, b] → G be absolutely continuous and consider the closed set V =
γ−1(V) so that (a, b) \ V =

⋃
i(ai, bi) where the intervals (ai, bi) are disjoint and

γ([ai, bi]) ⊂ Ij(i). It is clear that each σj(i) ◦ γ : [ai, bi] → [0, sj(i)] is absolutely
continuous. We set γ̇(t) = (σj(i) ◦ γ)′(t) whenever is defined.

Next Proposition will allow us to define the action of an absolutely continuous
curve.

Proposition 1. Let γ : [a, b]→ G be absolutely continuous and V = γ−1(V)

(a) γ̇ = 0 Lebesgue almost everywhere in V .

(b) γ̇ is integrable and for any [c, d] ⊂ [a, b] we have d(γ(c), γ(d)) ≤
d∫
c

|γ̇|.

Proof. Write (a, b)\V =
⋃
i(ai, bi) as above with the intervals (ai, bi) disjoint. Since

γ̇ = 0 on the interior of V and ∪{an, bn} is numerable to stablish item (a) it remains
to prove that γ̇ = 0 Lebesgue almost everywhere in ∂V \ ∪{an, bn}.

Let s̄ = minj sj and take δ > 0 such that d(γ(t1), γ(t2)) < s̄ if |t1 − t2| < δ.
There is N such that bi − ai < δ for i > N . Since γ(ai), γ(bi) ∈ V we have that
γ(ai) = γ(bi) for i > N . We change the labeling of the first N terms to have
a1 < b1 ≤ a2 < · · · < bm and γ(ai) = γ(bi) for i > m. Letting J0 = [a, a1],
Ji = [bi, ai+1], 1 ≤ i < m, Jm = [bm, b], and Vi = V ∩ Ji we have γ(Vi) = eli ,
0 ≤ i ≤ m. We can forget about the cases bi = ai+1.

Define the function fi : Ji → R by fi(t) = d(eli , γ(t)). For t, s ∈ Ji we have
|fi(t) − fi(s)| ≤ d(γ(t), γ(s)), so fi is absolutely continuous and then f ′i exists
Lebesgue almost everywhere in Ji. Let t ∈ ∂Vi \

⋃
n{an, bn} be a point where f ′i

exists. There is a sequence nk → ∞ such that ank
→ t and γ(ank

) = eli . Thus
f ′i(t) = 0, which means that γ̇(t) = 0.

If (aj , bj) ⊂ Ji then |γ̇| = |f ′i | Lebesgue almost everywhere in (aj , bj), so that∫
Ji

|γ̇| =
∫
Ji

|f ′i |,

and then ∫ b

a

|γ̇| =
m∑
i=0

∫
Ji

|γ̇|+
m∑
i=1

∫ bi

ai

|γ̇| <∞.
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It is also easy to see that for t, s ∈ Ji we have d(γ(t), γ(s)) ≤
t∫
s

|f ′i |, and using the

partition a ≤ a1 < b1 ≤ a2 < · · · < bm ≤ b to make a partition of [c, d] we get

d(γ(c), γ(d)) ≤
d∫
c

|γ̇|.

2.3. Lower semicontinuity and apriori bounds. In this crucial part of the
paper we prove that in the framework of graphs we have the lower semicontinuity
of the action and apriori bounds for the Lipschitz norm of minimizers. The proofs
have the same spirit as in euclidean space, paying attention to what happens at
the vertices. Denote by Cac([a, b]) the set of absolutely continuous functions γ :
[a, b]→ G provided with the topology of uniform convergence. We define the action
of γ ∈ Cac([a, b]) as

A(γ) =

∫ b

a

L(γ(t), γ̇(t))dt

A minimizer is a γ ∈ Cac([a, b]) such that for any α ∈ Cac([a, b]) with α(a) = γ(a),
α(b) = γ(b) we have

A(γ) ≤ A(α)

The following two properties of the Lagrangian are important to achieve our goal
and follow from its strict convexity and super-linearity.

Proposition 2. If C ≥ 0, ε > 0, there is η > 0 such that for x, y ∈ Ij, d(x, y) < η
and v, w ∈ R, |v| ≤ C, we have

L(y, w) ≥ L(x, v) + Lv(x, v)(w − v)− ε.

Proposition 3. If Lvv ≥ θ > 0, C ≥ 0, ε > 0, there is η > 0 such that for x, y ∈ Ij,
d(x, y) < η and v, w ∈ R, |v| ≤ C, we have

L(y, w) ≥ L(x, v) + Lv(x, v)(w − v) +
3θ

4
|w − v|2 − ε.

Lemma 2.1. Let L be a Lagrangian on G. If a sequence γn ∈ Cac([a, b]) converges
uniformly to the curve γ : [a, b]→ G and

lim inf
n→∞

A(γn) <∞

then the curve γ is absolutely continuous and

A(γ) ≤ lim inf
n→∞

A(γn).

Proof. By the super-linearity of L we may assume that L ≥ 0. Let c = lim inf
n→∞

A(γn).

Passing to a subsequence we can assume that

A(γn) < c+ 1, ∀n ∈ N

Fix ε > 0 and take B > 2(c + 1)/ε. Again by super-linearity there is a positive
number C(B) such that

L(x, v) ≥ B|v| − C(B), x ∈ G \ V, v ∈ R

From Proposition 1 and L ≥ 0, for E ⊂ [a, b] measurable we have

−C(B)Leb(E) +B

∫
E

|γ̇n| ≤
∫
E

L(γn, γ̇n) +

∫
[a,b]\E

L(γn, γ̇n) ≤ c+ 1.
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Thus ∫
E

|γ̇n| ≤
1

B
(c+ 1 + C(B)Leb(E)) ≤ ε

2
+
C(B)Leb(E)

B
.

Choosing 0 < δ <
εB

2C(B)
we have that

Leb(E) < δ ⇒ ∀n ∈ N
∫
E

|γ̇n| < ε.

Since the sequence γ̇n is uniformly integrable, we have that γ is absolutely contin-
uous and γ̇n converges to γ̇ in the σ(L1, L∞) weak topology.

Set V = γ−1(V). Let ε > 0 and Ek =
{
t : |γ̇(t)| ≤ k, d(t, V ) ≥ 1

k

}
.

By Propositions 2, 1, for n large,∫
γ−1(el)

[
L(el, 0) + Lv(el, 0)γ̇n(t)− ε

]
≤
∫
γ−1(el)

L(γn, γ̇n),∫
Ek

[
L(γ, γ̇) + Lv(γ, γ̇)(γ̇n − γ̇)− ε

]
≤
∫
Ek

L(γn, γ̇n),∫
Ek∪V

[
L(γ, γ̇) + Lv(γ, γ̇)(γ̇n − γ̇)− ε

]
≤
∫
Ek∪V

L(γn, γ̇n) ≤ A(γn).

Letting n→ +∞ we have that∫
Ek∪V

L(γ, γ̇) ≤ c+ ε (b− a)

Since Ek ↑ [a, b] \ V when k → +∞ and L ≥ 0, we have

A(γ) = lim
k→+∞

∫
Ek∪V

L(γ, γ̇) ≤ c+ ε (b− a)

Now let ε→ 0.

Lemma 2.1 implies

Theorem 2.2. Let L be a Lagrangian on G. The action A : Cac([a, b])→ R∪ {∞}
is lower semicontinuous.

Proposition 4. Let L be a Lagrangian on G.
The set {γ ∈ Cab([a, b]) : A(γ) ≤ K} is compact with the topology of uniform

convergence.

Let Ct = sup{L(x, v) : x ∈ G, |v| ≤ diam(G)
t }, then for any minimizer γ : [a, b]→

G with b− a ≥ t we have

A(γ) ≤ C(b− a).

Proposition 5. Suppose γn ∈ Cab([a, b]) converge uniformly to γ : [a, b] → G and
A(γn) converges to A(γ), then γ̇n converges to γ̇ in L1[a, b]

Proof. Let F ⊂ [a, b] be a finite union of intervals. From Lemma 2.1 we have∫
F

L(γ, γ̇) ≤ lim inf
n

∫
F

L(γn, γ̇n) and

∫
[a,b]\F

L(γ, γ̇) ≤ lim inf
n

∫
[a,b]\F

L(γn, γ̇n)

Since

lim
n

∫
F

L(γn, γ̇n) +

∫
[a,b]\F

L(γn, γ̇n) = lim
n
A(γn) = A(γ)
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we have

lim
n

∫
F

L(γn, γ̇n) =

∫
F

L(γ, γ̇). (1)

If V = γ−1(V) ⊂ F then

lim sup
n

∫
V

L(γn, γ̇n) ≤ lim
n

∫
F

L(γn, γ̇n) =

∫
F

L(γ, γ̇).

Thus

lim sup
n

∫
V

L(γn, γ̇n) ≤
∫
V

L(γ, γ̇). (2)

As in Lemma 2.1, the γ̇n are uniformly integrable, so they converge to γ̇ in the
σ(L1, L∞) weak topology and then, for any Borel set B where γ̇ is bounded,

lim
n

∫
B

Lv(γ, γ̇)(γ̇n − γ̇) = 0. (3)

Given ε > 0, from Proposition 3 we have that for n large enough

3θ

4

∫
γ−1(el)

|γ̇n|2 ≤
∫
γ−1(el)

[
L(γn, γ̇n)− L(el, 0)− Lv(el, 0)γ̇n + ε

]
.

Which together with Proposition 1 and equations (2), (3) give lim sup
n

∫
V

|γ̇n|2 ≤ ε

for any ε > 0. So

lim
n

∫
V

|γ̇n|2 = 0. (4)

For k > 0 let Dk := {t ∈ [a, b] : |γ̇(t)| > k}, Bk := {t ∈ [a, b] : d(t, V ) > 1
k}. Then

lim
k→∞

Leb(Dk) = lim
k→∞

Leb([a, b] \ V \ Bk) = 0. Let Fk be a finite union of intervals

such that Dk∩Bk ⊂ Fk ⊂ Bk and Leb(Fk\(Dk∩Bk)) < 1
k . Then lim

k→∞
Leb(Fk) = 0.

Given ε > 0, from Proposition 3 we have that for n large enough

3θ

4

∫
Bk\Fk

|γ̇n − γ̇|2 ≤
∫
Bk\Fk

[
L(γn, γ̇n)− L(γ, γ̇)− Lv(γ, γ̇)(γ̇n − γ̇) + ε

]
.

From (1), (3) we get that lim sup
n

∫
Bk\Fk

|γ̇n − γ̇|2 ≤ ε for any ε > 0. So

lim
n

∫
Bk\Fk

|γ̇n − γ̇|2 = 0. (5)

Since {γ̇n} is uniformly integrable, given ε > 0, for k sufficiently large we have∫
Fk∪[a,b]\V \Bk

|γ̇n − γ̇| ≤
∫
Fk∪[a,b]\V \Bk

|γ̇n|+ |γ̇| < ε, (6)

From (4), (5), (6) and Cauchy-Schwartz inequality, we have that for any ε > 0

lim sup
n

∫ b

a

|γ̇n − γ̇| ≤ lim
n

∫
V

|γ̇n|+ lim sup
n

∫
|γ̇n − γ̇|

Fk∪[a,b]\V \Bk

+ lim
n

∫
Bk\Fk

|γ̇n − γ̇| ≤ ε

Lemma 2.3. Let L be a Lagrangian in G. For ε > 0 there exists Kε that is a
Lipschitz constant for any minimizer γ : [a, b]→ G with b− a ≥ ε.
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Proof. Note that if γ is a minimizer and γ(c, d) ⊂ Ij then γ|(c,d) is a solution of the
Euler Lagrange equation for Lj .

Suppose the Lemma is not true, then by Proposition 1, for any i ∈ N there are
a minimizer γi : [si, ti] → G with ti − si ≥ ε and a set Ei ⊂ [si, ti] \ γ−1

i (V) with
Leb(Ei) > 0 such that |γ̇| > i on Ei. Let ci ∈ Ei. Translating [si, ti] we can assume
that ci = c for all i and taking a subsequence that there is a ∈ R such that γi is
defined in [a, a+ ε

2 ], c ∈ [a, a+ ε
2 ]. As A(γi|[a, a+ ε

2 ]) is bounded, by Proposition 4
there is subsequence γi|[a, a + ε

2 ] which converges uniformly to γ : [a, a + ε
2 ] → G.

Since γ is limit of minimizers, it is a minimizer and A(γ) ≤ lim inf A(γi|[a, a+ ε
2 ]).

We can not have that A(γ) < lim supA(γi|[a, a+ ε
2 ]) because that would contradict

that the γi are minimizers. Thus A(γ) = limA(γi|[a, a+ ε
2 ]).

If γ(c) ∈ Ij \ V, there is δ > 0 such that γ([c− δ, c+ δ]) ⊂ Ij .
If γ(c) = el we have 2 possibilities (not mutually exclusive)
a) There is an edge Ij with el ∈ Ij and infinitely many i’s such that γi(c) ∈ Ij

and γ̇i(c) points towards el.
b) There is an edge Ij with el ∈ Ij and infinitely many i’s such that γi(c) ∈ Ij

and γ̇i(c) points towards the other vertex.
In case a) there is δ > 0 such that γ([c− δ, c]) ⊂ Ij .
In case b) there is δ > 0 such that γ([c, c+ δ]) ⊂ Ij .
We have that γ is a solution of the Euler-Lagrange equation for Lj either on

[c − δ, c] or on [c, c + δ] and then |γ̇(t)| ≤ K on [c − δ, c] or [c, c + δ]. For some
0 < δ1 < δ we have that γi are solutions of the Euler-Lagrange equation for Lj on
[c− δ1, c] or on [c, c+ δ1]. For i suficiently large, we have that |γ̇i| > 2K either on
[c− δ1, c] or on [c, c+ δ1]. This would contradict Proposition 5.

3. Weak KAM theory on graphs. The content of this section is similar to that
for Lagrangians on compact manifolds. We only give the proofs that are different
from those in the compact manifold case, which can be found in [7], as well as
extensions in [8].

3.1. The Peierls barrier. Given x, y ∈ G let Cac(x, y, t) be the set of curves
α ∈ Cac([0, t]) such that α(0) = x and α(t) = y. For a given real number k define

ht(x, y) = min
α∈Cac(x,y,t)

A(α)

and

hk(x, y) = lim inf
t→∞

ht(x, y) + kt

Lemma 3.1. For ε > 0 the function F : [ε,∞)×G×G→ R defined by F (t, x, y) =
ht(x, y) is Lipschitz.

Lemma 3.2. There exists a real c independent of x and y such that

1. For all k > c we have hk(x, y) =∞.
2. For all k < c we have hk(x, y) = −∞
3. hc(x, y) is finite. The function h := hc is called the Peierls barrier.

Lemma 3.3. The value c is the infimum of k such that
∫
γ

L+ k ≥ 0 for all closed

curves γ.

Definition 3.4. The Mañé potencial Φ : G×G→ R is defined by

Φ(x, y) = inf
t>0

ht(x, y) + ct.
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Clearly we have Φ(x, y) ≤ h(x, y) for any x, y ∈ G.

Proposition 6. Functions h and Φ have the following properties.

1. Φ(x, z) ≤ Φ(x, y) + Φ(y, z).
2. h(x, z) ≤ h(x, y) + Φ(y, z), h(x, z) ≤ Φ(x, y) + h(y, z).
3. h and Φ are Lipschitz
4. If γn : [0, tn]→ G is a sequence of absolutely continuous curves with tn →∞

and γn(0)→ x, γn(tn)→ y, then

h(x, y) ≤ lim inf
n→∞

A(γn) + ctn. (7)

Definition 3.5. A curve γ : J → G defined on an interval J is called

• semi-static if

Φ(γ(t), γ(s)) =

∫ s

t

L(γ, γ̇) + c(s− t)

for any t, s ∈ J , t ≤ s.
• static if ∫ s

t

L(γ, γ̇) + c(s− t) = −Φ(γ(s), γ(t))

for any t, s ∈ J , t ≤ s.
• The Aubry set A is the set of points x ∈ G such that h(x, x) = 0.

Notice that by item (2) in Proposition 6, h(x, z) = Φ(x, z) if x ∈ A or z ∈ A.

Proposition 7. If η : R→ G is static then η(s) ∈ A for any s ∈ R.

We do not have a Lagrangian flow and therefore we can not speak of conservation
of energy. Nevertheless the following Proposition says that semi-static curves have
energy c(L).

Proposition 8. Let η : J → G be semi-static. For almost every t ∈ J

Lv(η(t), η̇(t))η̇(t) = L(η(t), η̇(t)) + c

Proof. For λ > 0, let ηλ(t) := η(λt) so that η̇λ(t) = λη̇(λt) almost everywhere.
For r, s ∈ J let

Ars(λ) :=

∫ s/λ

r/λ

[L(ηλ(t), η̇λ(t)) + c] dt =

∫ s

r

[L(η(s), λη̇(s)) + c]
ds

λ
.

Since η is a free-time minimizer, differentiating Ars(λ) at λ = 1, we have that

0 = A′rs(1) =

∫ T

0

[Lv(η(s), η̇(s))η̇(s)− L(η̇(s), η̇(s)− c] ds.

Since this holds for any r, s ∈ J we have

Lv(η(t), η̇(t))η̇(t) = L(η(t), η̇(t)) + c

for almost every t ∈ J .
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3.2. Weak KAM solutions. Following Fathi [7], we define weak KAM solutions
and give some of their properties

Definition 3.6. Let c be given by Lemma 3.2.

• A function u : G→ R is dominated if for any x, y ∈ G, we have

u(y)− u(x) ≤ ht(x, y) + ct ∀t > 0,

or equivalently

u(y)− u(x) ≤ Φ(x, y).

• γ : I → G calibrates a dominated function u : G→ R if

u(γ(s))− u(γ(t)) =

∫ s

t

L(γ, γ̇) + c(s− t) ∀s, t ∈ I

• A continuous function u : G→ R is a backward (forward) weak KAM solution
if it is dominated and for any x ∈ G there is γ : (−∞, 0]→ G (γ : [0,∞)→ G)
that calibrates u and γ(0) = x

Corollary 1. Any static curve γ : J → G calibrates any dominated function u :
G→ R

Proposition 9. For any x ∈ G, h(x, ·) is a backward weak KAM solution and
−h(·, x) is a forward weak KAM solution.

Proof. By item (2) of Proposition 6, h(x, ·) is dominated.
The standard construction of calibrating curves for compact manifolds involves

the Euler Lagange flow that we do not have, so we use a diagonal trick. Let
γn : [−tn, 0]→ G be a sequence of minimizing curves connecting x to y such that

h(x, y) = lim
n→∞

A(γn) + ctn

By Lemma 2.3, {γn} is uniformly Lipschitz and then equicontinuous. It follows
from the Arzela Ascoli Theorem that there is a sequence n1

j → ∞ such that γn1
j

converges uniformly on [−1, 0]. Again, by the Arzela Ascoli Theorem, there is
a subsequence (n2

j )j of the sequence (n1
j )j such that γn2

j
converges uniformly on

[−2, 0]. By induction, this procedure gives for each k ∈ N a sequence (nkj )j that is

a subsequence of the sequence (nk−1
j )j and such that γnk

j
converges uniformly on

[−k, 0] as j →∞. Letting mk = nkk, the sequence γmk
converges uniformly on each

[−l, 0]. For s < 0 define γ(s) = lim
k→∞

γmk
(s). Fix t < 0, for k large t+ tmk

≥ 0 and

A(γmk
) + ctmk

=

t∫
−tmk

L(γmk
, γ̇mk

) + c(t+ tmk
) +

∫ 0

t

L(γmk
, γ̇mk

)− ct. (8)

Since γmk
converges to γ uniformly on [t, 0], we have

lim inf
k→∞

∫ 0

t

L(γmk
, γ̇mk

) ≥
∫ 0

t

L(γ, γ̇).

From item (4) of Proposition 6 we have

h(x, γ(t)) ≤ lim inf
k→∞

∫ t

−tmk

L(γmk
, γ̇mk

) + c(t+ tmk
).
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Taking lim inf
k→∞

in (8) we get

h(x, y) ≥ h(x, γ(t)) +

∫ 0

t

L(γ, γ̇)− ct.

So γ calibrates h(x, ·).

From Proposition 9 we have

Corollary 2. If x ∈ A there exists a curve γ : R → G such that γ(0) = x and for
all t ≥ 0

h(γ(t), x) = −
∫ t

0

L(γ, γ̇)− ct

h(x, γ(−t)) = −
∫ 0

−t
L(γ, γ̇)− ct.

In particular the curve γ is static and calibrates any dominated function u : G→ R.

Theorem 3.7. The function Φ(x, ·) is a backward weak KAM solution if and only
if x ∈ A.

Corollary 3. Let C ⊂ G and w0 : C → R be bounded from below. Let

w(x) = inf
z∈C

w0(z) + Φ(z, x)

1. w is the maximal dominated function not exceeding w0 on C.
2. If C ⊂ A, w is a backward weak KAM solution.
3. If for all x, y ∈ C

w0(y)− w0(x) ≤ Φ(x, y),

then w coincides with w0 on C.

For u : G → R let I(u) be the set of points x ∈ G for which exists γ : R → G
such that γ(0) = x and γ calibrates u.

Corollary 4.

A =
⋂

u dominated

I(u)

Proposition 10. For each x, y ∈ G with x 6= y we can find ε > 0 and a curve
γ : [−ε, 0]→ G such that γ(0) = y and for all t ∈ [0, ε]

Φ(x, γ(0))− Φ(x, γ(−t)) =

∫ 0

−t
L(γ, γ̇) + ct.

In particular, for each x ∈ G the function G \ {x} → R; y 7→ Φ(x, y) is a backward
weak KAM solution.

Theorem 3.8. A is nonempty and if u : G→ R is a backward weak KAM solution
then

u(x) = min
q∈A

u(q) + h(q, x) (9)

Corollary 5.

h(x, y) = min
q∈A

h(x, q) + h(q, y) = min
q∈A

Φ(x, q) + Φ(q, x)

4. The Lax semigroup and its convergence.

4.1. The Lax semigroup. Let F be the set of real functions on G, bounded from
below.
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The backward Lax semigroup Lt : F → F , t > 0 is defined by

Ltf(x) = inf
y∈G

f(y) + ht(y, x).

It is clear that f ∈ F is dominated if and only if f ≤ Ltf + ct for any t > 0.
It follows at once that Lt ◦ Ls = Lt+s and

‖Ltf − Ltg‖∞ ≤ ‖f − g‖∞ (10)

The proof of the following Lemma is the same as in the compact manifold case.

Lemma 4.1. Given ε > 0 there is Kε > 0 such that for each u : G→ R continuous,
t ≥ ε, we have Ltu : G→ R is a Lipschitz with constant Kε.

Theorem 4.2. A continuous function u : G→ R is a fixed point of the semigroup
Lt + ct if and only if it is a backward weak KAM solution

Proof. Suppose u : G→ R is a fixed point of the semigroup Lt+ ct. For each T ≥ 2
there is a curve αT : [−T, 0]→ G such that αT (0) = x and

u(x)− u(αT (−T )) = A(αT ) + cT.

By Lemma 2.3 {αT } is uniformly Lipschitz. As in Propostion 9 one obtains a
sequence tk →∞ and γ : (−∞, 0]→ G such that αtk converges to γ, uniformly on
each [−n, 0].

By Lemma 2.2 ∫ 0

−n
L(γ, γ̇) + nc ≤ lim inf

k→∞

∫ 0

−n
L(αtk , α̇tk) + nc

= lim inf
k→∞

u(x)− u(αtk(−n))

= u(x)− u(γ(−n))

Suppose now that u : G → R is a backward weak KAM solution. Since u is
dominated, u ≤ Ltu+ ct. For x ∈ G let γ : (−∞, 0]→ G be such that γ(0) = x and
for all t > 0

u(x)− u(γ(−t)) =

∫ 0

−t
L(γ, γ̇) + ct.

Thus

u(x) ≥ u(γ(−t)) + ht(γ(t), x) + ct ≥ Ltu(x) + ct.

From Proposition 9 and Theorem 4.2 one obtains

Corollary 6. The semigroup Lt + ct has fixed points.

4.2. Convergence of the Lax semigroup. Without loss of generality assume
c = 0. For u ∈ C(G) define

v(x) := min
z∈G

u(z) + h(z, x). (11)

Proposition 11. Let ψ = lim
n→∞

Ltnu for some tn →∞, then

ψ ≥ v. (12)
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Proof. For x ∈ G let γn : [0, tn]→ G be such that γn(tn) = x and

Ltnu(x) = u(γn(0)) +A(γn). (13)

Passing to a subsequence if necessary we may assume that γn(0) converges to y ∈ G.
Taking lim inf in (13), we have from item (4) of Proposition 6

ψ(x) = u(y) + lim inf
n→∞

A(γn) ≥ u(y) + h(y, x).

Proposition 12. If Ltu converges as t → ∞, then the limit is function v defined
in (11).

Proof. For x ∈ G let z ∈ G be such that v(z) = u(z) + h(z, x). Since Ltu(x) ≤
u(z) + ht(z, x), we have

lim
t→∞

Ltu(x) ≤ lim inf
t→∞

u(z) + ht(z, x) = v(z)

which together with Proposition (11) gives lim
t→∞

Ltu = v.

Thus, given u ∈ C(G) our goal is to prove that Ltu converges to v defined in
(11).

Remark 1. Using Corollary 5 we can write (11) as

v(x) = min
y∈A

Φ(y, x) + w(y) (14)

w(y) := inf
z∈G

u(z) + Φ(z, y) (15)

Item (1) of Corollary 3 states that w is the maximal dominated function not ex-
ceeding u. Items (2), (3) of the same Corollary imply that v is the unique backward
weak KAM solution that coincides with w on A.

Proposition 13. Suppose that u is dominated, then Ltu converges uniformly as
t→∞ to the function v given by (11).

Proof. Since u is dominated, the function t 7→ Ltu is nondecreasing. As well, in this
case, w given by (15) coincides with u. Items (1) and (3) of Corollary 3 imply that
v is the maximal dominated function that coincides with u on A and then u ≤ v on
G.

Since the semigroup Lt is monotone and v is a backward weak KAM solution

Ltu ≤ Ltv = v for any t > 0.

Thus the uniform limit lim
t→∞

u exists.

We now address the convergence of Lt following the lines in [5] and [11].
For u ∈ C(G) let

ωL(u) := {ψ ∈ C(G) : ∃tn →∞ such that ψ = lim
n→∞

Ltnu}.

u(x) := sup{ψ(x) : ψ ∈ ωL(u)} (16)

u(x) := inf{ψ(x) : ψ ∈ ωL(u)} (17)

From these and Proposition 11

Proposition 14. Let u ∈ C(G), v be the function given by (11), u, u defined in
(16) and (17). Then

v ≤ u ≤ u (18)



LAX-OLEINIK ON GRAPHS 655

Proposition 15. For u ∈ C(G), function u given by (16) is dominated.

Proof. Let x, y ∈ G. Given ε > 0 there is ψ = lim
n→∞

Ltnu such that u(x)−ε < ψ(x).

For n > N(ε) and a > 0

u(x)− 2ε < ψ(x)− ε ≤ Ltnu(x) = La(Ltn−au)(x) ≤ Ltn−au(y) + ha(y, x).

Choose a divergent sequence nj such that (Ltnj
−au)j converges uniformly. For

j > N̄(ε), Ltnj
−au(y) < u(y) + ε, and then

u(x)− 3ε < Ltnj
−au(y) + ha(y, x)− ε < u(y) + ha(y, x).

Denote by K the family of static curves η : R → G, and for y ∈ A denote by
K(y) the set of curves η ∈ K with η(0) = y.

Proposition 16. K is a compact metric space with respect to the uniform conver-
gence on compact intervals.

Proof. Let {ηn} be a sequence in K. By Lemma 2.3, {ηn} is uniformly Lipschitz.
As in Proposition 9 we obtain a sequence nk → ∞ such that ηnk

converges to
η : R→ G uniformly on each [a, b] and then η is static.

Proposition 17. Two dominated functions that coincide on M =
⋃
η∈K

ω(η) also

coincide on A.

Proof. Let ϕ1, ϕ2 be two dominated functions coinciding on M. Let y ∈ A and
η ∈ K(y). Let (tn)n be a diverging sequence such that limn η(tn) = x ∈ M. By
Corollary 1

ϕi(y) = ϕi(η(0))− Φ(y, η(0)) = ϕi(η(tn))− Φ(y, η(tn))

for every n ∈ N, i = 1, 2. Sending n to ∞, we get

ϕ1(y) = lim
n→∞

ϕ1(η(tn))− Φ(y, η(tn)) = ϕ1(x)− Φ(y, x) = ϕ2(x)− Φ(y, x)

= lim
n→∞

ϕ2(η(tn))− Φ(y, η(tn)) = ϕ2(y).

Proposition 18. Let η ∈ K, ψ ∈ C(G) and ϕ be a dominated function. Then the
function t 7→ (Ltψ)(η(t))− ϕ(η(t)) is nonincreasing on R+.

Proof. From Corollary 1, for t < s we have

(Lsψ)(η(s))− (Ltψ)(η(t)) ≤
∫ s

t

L(η(τ), η̇(τ))dτ = ϕ(η(s))− ϕ(η(t))

Lemma 4.3. There is a M > 0 such that, if η is any curve in K and λ is sufficiently
close to 1, we have∫ t2

t1

L(ηλ, η̇λ) ≤ Φ(ηλ(t1), ηλ(t2)) +M(t2 − t1)(λ− 1)2 (19)

for any t2 > t1, where ηλ(t) = η(λt).
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Proof. Let K > 0 be a Lipschitz constant for any minimizer γ : [a, b] → G with
b − a > 1, 2R = sup{|Lvv(x, v)| : |v| ≤ K}. For λ ∈ (1 − δ, 1 + δ) fixed, using
Proposition 8∫ t2

t1

L(ηλ(t), η̇λ(t))dt =

∫ t2

t1

[L(η(λt), η̇(λt)) + (λ− 1)Lv(η(λt), η̇(λt))η̇(λt)

+
1

2
(λ− 1)2Lvv(η(λt), µη̇(λt))(η̇(λt))2] dt

≤ λ
∫ t2

t1

L(η(λt), η̇(λt)) dt+ (t2 − t1)RK2(λ− 1)2

= Φ(η(λt1), η(λt2)) + (t2 − t1)RK2(λ− 1)2

Proposition 19. Let η ∈ K, ψ ∈ C(G) and ϕ be a dominated function. Assume
that D+((ψ−ϕ) ◦ η)(0) \ {0} 6= ∅ where D+ denote the super-differential. Then for
all t > 0 we have

(Ltψ)(η(t))− ϕ(η(t)) < ψ(η(0))− ϕ(η(0)) (20)

Proof. Fix t > 0. By Corollary 1 it is enough to prove (20) for ϕ = −Φ(·, η(t)).
Since Lt(ψ + a) = Ltψ + a we can assume that ψ(η(0)) = ϕ(η(0)).

(Ltψ)(η(t))− ϕ(η(t)) = (Ltψ)(η(t)) ≤
∫ t/λ

(1/λ−1)t

L(ηλ, η̇λ) + ψ(η((1− λ)t)),

thus, by Lemma 4.3

(Ltψ)(η(t))− ϕ(η(t)) ≤ ψ(η((1− λ)t))− ϕ(η((1− λ)t)) +Mt(λ− 1)2.

If m ∈ D+((ψ − ϕ) ◦ η)(0) \ {0}, we have

(Ltψ)(η(t))− ϕ(η(t)) ≤ m((1− λ)t) + o((1− λ)t)) +Mt(λ− 1)2,

where lim
λ→1

o((1− λ)t)

1− λ
= 0. Choosing appropriately λ close to 1, we get

(Ltψ)(η(t))− ϕ(η(t)) < 0.

Proposition 20. Suppose ϕ is dominated and ψ ∈ ωL(u). For any y ∈ M there
exists γ ∈ K(y) such that the function t 7→ ψ(γ(t))− ϕ(γ(t)) is constant.

Proof. Let (sk)k and (tk)k be diverging sequences, η be a curve in K such that
y = lim

k
η(sk), and ψ is the uniform limit of Ltku. As in Proposition 9, we can

assume that the sequence of functions t 7→ η(sk+t) converges uniformly on compact
intervals to γ : R→ G, and so γ ∈ K. We may assume moreover that tk − sk →∞,
as k →∞, and that Ltk−sku converges uniformly to ψ1 ∈ ωL(u). By the semi-group
property and (10)

‖Ltku− Lskψ1‖∞ ≤ ‖Ltk−sku− ψ1‖∞
which implies that Lskψ1 converges uniformly to ψ. From Proposition 18, we have
that for any τ ∈ R s 7→ (Lsψ1)(η(τ +s))−ϕ(η(τ +s)) is a nonincreasing function in
R+, and hence it has a limit l(τ) as s→∞, which is finite since l(τ) ≥ −‖u−ϕ‖∞.
Given t > 0, we have

l(τ) = lim
k→∞

(Lsk+tψ1)(η(sk+τ+t))−ϕ(η(sk+τ+t)) = (Ltψ)(γ(τ+t))−ϕ(γ(τ+t))
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The function t 7→ (Ltψ)(γ(τ+t))−ϕ(γ(τ+t)) is therefore constant on R+. Applying
Proposition 19 to the curve γ(τ + ·) ∈ K, we have D+((ψ − ϕ) ◦ γ)(τ) \ {0} = ∅ for
any τ ∈ R. This implies that ψ − ϕ is constant on γ.

Proposition 21. Let η ∈ K, ψ ∈ ωL(u) and v be defined by (11). For any ε > 0
there exists τ ∈ R such that

ψ(η(τ))− v(η(τ)) < ε.

Proof. Since the curve η is contained in A, we have

v(η(0)) = min
z∈G

u(z) + Φ(z, η(0)),

and hence v(η(0)) = u(z0) + Φ(z0, η(0)), for some z0 ∈ G. Take a curve γ : [0, T ]→
G such that

v(η(0)) +
ε

2
= u(z0) + Φ(z0, η(0)) +

ε

2
> u(z0) +

∫ T

0

L(γ, γ̇) ≥ LTu(η(0)).

Choosing a divergent sequence (tn)n such that Ltnu converges uniformly to ψ we
have for n sufficiently large

‖Ltnu− ψ‖∞ <
ε

2
, tn − T > 0.

Take τ = tn − T

ψ(η(τ))− ε

2
< Ltnu(η(τ)) = LτLTu(η(τ)) = LTu(η(0)) +

∫ τ

0

L(η, η̇)

<
ε

2
+ v(η(0)) +

∫ τ

0

L(η, η̇) =
ε

2
+ v(η(τ))

From Propositions 20 and 21 we obtain

Theorem 4.4. Let ψ ∈ ωL(u) and v be defined by (11). Then ψ = v on M.

Theorem 4.5. Let u ∈ C(G), then Ltu converges uniformly as t → ∞ to v given
by (11).

Proof. The function u is dominated and coincides with v on M by Theorem 4.4.
Proposition 17 implies that u coincide with v on A and so does with w. By item
(1) of Corollary 3 we have u ≤ v.

5. Viscosity solutions of the Hamilton - Jacobi equation. In this section we
compare weak KAM and viscosity solutions.

Definition 5.1. • A continuous real function ϕ defined on the neighborhood
of el is C1 if for every j with el ∈ Ij , ϕ|Ij is C1.

• A continuous real function ϕ defined on the neighborhood of (el, t) is C1 if for
every j with el ∈ Ij , ϕ|Ij × (t− δ, t+ δ) is C1.

Note that if α : [0, δ] → Ij is differentiable and α(0) = el, then α′+(0) ∈ T−el Ij
and we have

Djϕ(el)z = (ϕ ◦ α)′+(0).

We consider the Hamiltonian consisting in functions Hj : Ij × R→ R given by

Hj(x, p) = max

{
−pz − Lj(x, z) :

z ∈ T−x Ij , x ∈ V
z ∈ TxIj , x ∈ Ij \ V

}
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and the Hamilton Jacobi equations

H(x,Du(x)) = c, (21)

ut(x, t) +H(x,Dxu(x, t)) = 0. (22)

Note that if L is symmetric at the vertices, then for any vertex el there is a
function ha such that Hj(el, p) = ha(|p|) for any j with el ∈ Ij . This kind of
Hamiltonians are called of eikonal type [3].

The following definition appeared in [3] and [4].

Definition 5.2. A function u : G→ R is a

• viscosity subsolution of (21) if satisfies the usual definition in G \ V and for
any C1 function ϕ on the neighborhood of any el s.t. u− ϕ has a maximum
at el we have

max{Hj(el, D
jϕ(el)) : el ∈ Ij} ≤ c.

• viscosity supersolution of (21) if satisfies the usual definition in G \ V and for
any C1 function ϕ on the neighborhood of any el s.t. u − ϕ has a minimum
at el we have

max{Hj(el, D
jϕ(el)) : el ∈ Ij} ≥ c

• viscosity solution if it is both, a subsolution and a supersolution.

A function u : G× [0,∞)→ R is a

• viscosity subsolution of (22) if satisfies the usual definition in G \ V × [0,∞)
and for any C1 function ϕ on the neighborhood of any (el, t) s.t. u− ϕ has a
maximum at (el, t) we have

ϕt(el, t) + max{Hj(el, D
jϕ(el, t)) : el ∈ Ij} ≤ c.

• viscosity supersolution of (21) if satisfies the usual definition in G \V × [0,∞)
and for any C1 function ϕ on the neighborhood of any (el, t) s.t. u− ϕ has a
minimum at (el, t) we have

ϕt(el, t) + max{Hj(el, D
jϕ(el, t)) : el ∈ Ij} ≥ c

• viscosity solution if it is both, a subsolution and a supersolution.

Proposition 22. If u : G→ R is dominated then then it is a viscosity subsolution
of (21). If u is a backward weak KAM solution then it is a viscosity solution.

Proof. Suppose u : G→ R is dominated. Let ϕ be a C1 function on the neighbor-
hood of el s.t. u−ϕ has a maximum at el, j s.t. el ∈ Ij , α : [0, δ]→ Ij differentiable
with α(0) = el, z = α′(0). Define γ : [−δ, 0]→ Ij by γ(s) = α(−s).

ϕ(el)− ϕ(γ(s)) ≤ u(el)− u(γ(s)) ≤
∫ 0

s

Lj(γ, γ̇)− cs

ϕ(el)− ϕ(α(t)))

t
≤ 1

t

∫ 0

−t
Lj(γ, γ̇) + c

−Djϕ(el)z ≤ Lj(el, z) + c.

So u is a subsolution.
Let ϕ be a C1 function on the neighborhood of el s.t. u− ϕ has a minimum at

el. Let γ : (−∞, 0]→ G be such that γ(0) = el and for t < 0

u(el)− u(γ(t)) =

∫ 0

t

Lj(γ, γ̇)− ct
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Let δ > 0, j be such that γ([−δ, 0]) ⊂ Ij .

ϕ(el)− ϕ(γ(s)) ≥
∫ 0

s

Lj(γ, γ̇)− cs

Define α : [0, δ]→ Ij by α(t) = γ(−t), z = α′(0),

ϕ(el)− ϕ(α(t))

t
≥ 1

t

∫ 0

−t
Lj(γ, γ̇) + c

−Djϕ(el)z ≥ Lj(el, z) + c.

So u is a supersolution.

Our approach to get a converse to Proposition 22 is to prove uniqueness of
solutions to the Cauchy problem for (22), using a comparison principle. For that
purpose the symmetry Lagrangian is a sufficient condition. It may be possible that
other assumptions imply the required uniqueness or that a different approach gives
a converse to Proposition 22.

Proposition 23. Let f : G → R be continuous and define u : G × [0,∞) → R by
u(x, t) = Ltf(x), then u is a viscosity solution of (22)

Proof. Since Ltf = Lt−s(Lsf) if 0 ≤ s < t, for any γ : [s, t]→ G

u(γ(t), t)− u(γ(s), s) ≤
∫ t

s

L(γ, γ̇) (23)

and for any x ∈ G there is γ : [s, t] → G with γ(t) = x such that equality in (23)
holds.

Let ϕ be a C1 function on the neighborhood of (el, t) s.t. u−ϕ has a maximum
at (el, t), j s.t. el ∈ Ij , α : [0, δ] → Ij differentiable with α(0) = el, z = α′(0).
Define γ : [t− δ, t]→ Ij by γ(s) = α(t− s).

ϕ(el, t)− ϕ(γ(s), s) ≤ u(el, t)− u(γ(s), s) ≤
∫ t

s

Lj(γ, γ̇)

ϕ(el, t)− ϕ(α(t− s), s))
t− s

≤ 1

t− s

∫ t

s

Lj(γ, γ̇)

ϕt(el, t)−Dj
xϕ(el, t)z ≤ Lj(el, z).

So u is subsolution.
Let ϕ be a C1 function on the neighborhood of (el, t) s.t. u− ϕ has a minimum

at (el, t). Let γ : [t− 1, t]→ G be such that γ(t) = el and

u(el, t)− u(γ(t− 1), t− 1) =

∫ t

t−1

L(γ, γ̇)

Let δ > 0, j be such that γ([t− δ, t]) ⊂ Ij . For s ∈ [t− δ, t]

ϕ(el, t)− ϕ(γ(s), s) ≥
∫ t

s

Lj(γ, γ̇)

Define α : [0, δ]→ Ij by α(s) = γ(t− s), z = α′(0),

ϕ(el, t)− ϕ(α(t− s), s)
t− s

≥ 1

t− s

∫ t

s

Lj(γ, γ̇)

ϕt(el, t)−Dj
xϕ(el, t)z ≥ Lj(el, z).

So u is supersolution.
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Proposition 24. Suppose the Lagrangian is symmetric at the vertices. Let u, v :
G× [0, T ]→ R be respectively a Lipschitz viscosity sub, supersolution of (22) such
that u(x, 0) ≤ v(x, 0), for any x ∈ G. Then u ≤ v.

Proof. Suppose that there are x∗, t∗ such that δ = u(x∗, t∗) − v(x∗, t∗) > 0. Let

0 < ρ ≤ δ

4t∗
and define Φ : G2 × [0, T ]2 by

Φ(x, y, t, s) = u(x, t)− v(y, s)− d(x, y)2 + |t− s|2

2ε
− ρ(t+ s).

From the previous definitions we have

δ

2
≤ δ − 2ρt∗ = Φ(x∗, x∗, t∗, t∗) ≤ sup

G2×[0,T ]2
Φ = Φ(xε, yε, tε, sε). (24)

It follows from Φ(xε, xε, tε, tε) + Φ(yε, yε, sε, sε) ≤ 2Φ(xε, yε, tε, sε) that

d(xε, yε)
2 + |tε − sε|2

2ε
≤ u(xε, tε)− u(yε, sε) + v(xε, tε)− v(yε, sε)

≤ C(d(xε, yε)
2 + |tε − sε|2)1/2

Thus, there is a sequence ε → 0 such that xε, yε converge to x̄ ∈ G and tε, sε
converge to t̄ ∈ [0, T ] and (24) gives

δ

2
≤ Φ(x̄, x̄, t̄, t̄) ≤ u(x̄, t̄)− v(x̄, t̄),

and so t̄ 6= 0. Define the test functions

ϕ(x, t) = v(yε, sε) +
d(x, yε)

2 + |t− sε|2

2ε
+ ρ(t+ sε)

ψ(y, s) = u(xε, tε)−
d(xε, y)2 + |tε − s|2

2ε
− ρ(tε + s).

ϕt(xε, tε) =
tε − sε
ε

+ ρ, ψs(yε, sε) =
tε − sε
ε

− ρ

Since u−ϕ has maximum at (xε, tε), v−ψ has minimum at (yε, sε), u is subsolution
and v is supersolution,

2ρ = ϕt(xε, tε)− ψs(yε, sε) ≤max{Hj

(
yε,−Dj

y

(d(xε, y)2

2ε

)
(yε)

)
: yε ∈ Ij}

−max{Hj

(
xε, D

j
x

(d(x, yε)
2

2ε

)
(xε)

)
: xε ∈ Ij} (25)

Since ρ > 0 we can not have xε = yε.
If x̄ is not a vertex, x̄ ∈ Ij , for ε > 0 small we have

Dj
x

(d(x, yε)
2

2ε

)
(xε) = ±d(xε, yε)

ε
= −Dj

y

(d(xε, y)2

2ε

)
(yε).

If we denote by a(xε, yε) this common value, then (25) becomes

2ρ ≤ Hj(yε, a(xε, yε))−Hj

(
xε, a(xε, yε))

with a(xε, yε) bounded as ε→ 0, giving a contradiction.
Suppose now that x̄ = el. For ε > 0 small we distinguish the following cases
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1. Neither xε nor yε is a vertex. If xε, yε ∈ Ij , d(xε, yε) = |σj(xε) − σj(yε)|. If
xε ∈ Ii, yε ∈ Ij , and el ∈ Ii ∩ Ij , then d(xε, yε) = d(xε, el) + d(el, yε). In both
subcases

|Di
x

(d(x, yε)
2

2ε

)
(xε)| =

d(xε, yε)

ε

|Dj
y

(d(xε, y)2

2ε

)
(yε)| =

d(xε, yε)

ε

Then (25) becomes

2ρ ≤ Hj

(
yε,±

d(xε, yε)

ε

)
−Hi

(
xε,±

d(xε, yε)

ε

)
.

2. Suppose xε = el, yε ∈ Ij \ V.

|Dj
x

(d(x, yε)
2

2ε

)
(el)| =

d(el, yε)

ε

|Dj
y

(d(el, y)2

2ε

)
(yε)| =

d(el, yε)

ε

Since

Hj

(
el,±

d(el, yε)

ε

)
= ha

(
el,

d(el, yε)

ε

)
,

we have that (25) becomes

2ρ ≤ Hj

(
yε,±

d(el, yε)

ε

)
= ha

(
el,

d(el, yε)

ε

)
.

3. If yε = el, xε ∈ Ij \ V we get in the same way that (25) becomes

2ρ ≤ ha
(
el,

d(xε, el)

ε

)
−Hj

(
xε,±

d(xε, el)

ε

)
.

Since
d(xε, yε)

ε
remains bounded as ε→ 0, we get a contradiction.

Corollary 7. Suppose the Lagrangian is symmetric at the vertices. Let u, v : G×
[0, T ]→ R be viscosity solutions of (22) such that u(x, 0) = v(x, 0) for any x ∈ G.
Then u = v.

Corollary 8. Suppose the Lagrangian is symmetric at the vertices. Let f : G→ R
be a viscosity solution of (21), then f is a fixed point of the Lax semigroup Lt + ct.

Proof. We next show that u(x, t) = f(x)− ct is a viscosity solution of (22). Propo-
sition 23 and Corollary 7 then imply that f − ct = Ltf .

Let ϕ be a C1 function on the neighborhood of (el, t) s.t. u−ϕ has a maximum
at (el, t). Then s→ −cs−ϕ(el, s) has a maximum at t and so ϕt(el, t) = −c. Since
f − ϕ(·, t) has a maximum at el we have

max{Hj(el, D
jϕ(el, t)) : x ∈ Ij} ≤ c = −ϕt(el, t),

so u is a subsolution of (22). Similarly u is a supersolution of (22).

Corollary 9. Suppose the Lagrangian is symmetric at the vertices. Let u : G→ R
be a viscosity solution of (21) then the representation formula (9) holds.

Proof. By Proposition 22 and Corollary 8, u is a backward weak KAM solution and
by Theorem (3.8), formula (9) holds.



662 RENATO ITURRIAGA AND HÉCTOR SÁNCHEZ MORGADO
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