In the current paper, we are concerned with the existence and uniqueness of mild solutions to a Cauchy problem involving a time-space fractional diffusion equation with an exponential semilinear source. By using the iteration method and some $ L^p-L^q $-type estimates of fundamental solutions associated with the Mittag-Leffler function, we study the well-posedness of the problem in two different cases corresponding to two assumptions on the Cauchy data. On the one hand, when considering initial data in $ L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $, the problem possesses a local-in-time solution. On the other hand, we obtain a global existence result for a mild solution with small data in an Orlicz space.
Citation: Anh Tuan Nguyen, Chao Yang. On a time-space fractional diffusion equation with a semilinear source of exponential type[J]. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071
In the current paper, we are concerned with the existence and uniqueness of mild solutions to a Cauchy problem involving a time-space fractional diffusion equation with an exponential semilinear source. By using the iteration method and some $ L^p-L^q $-type estimates of fundamental solutions associated with the Mittag-Leffler function, we study the well-posedness of the problem in two different cases corresponding to two assumptions on the Cauchy data. On the one hand, when considering initial data in $ L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $, the problem possesses a local-in-time solution. On the other hand, we obtain a global existence result for a mild solution with small data in an Orlicz space.
[1] | X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141 |
[2] | R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010 |
[3] | W. Lian, J. Shen, R. Xu, Y. Yang, Infinite sharp conditions by Nehari manifolds for nonlinear Schrödinger equations, J. Geom. Anal., 30 (2020), 1865–1886. https://doi.org/10.1007/s12220-019-00281-5 doi: 10.1007/s12220-019-00281-5 |
[4] | S. Chen, B. Melnick, R. Xu, Global existence and blowup solutions for the Gierer–Meinhardt system, Nonlinear Anal., 196 (2020), 111785. https://doi.org/10.1016/j.na.2020.111785 doi: 10.1016/j.na.2020.111785 |
[5] | G. Furioli, T. Kawakami, B. Ruf, E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., 262 (2017), 145–180. https://doi.org/10.1016/j.jde.2016.09.024 doi: 10.1016/j.jde.2016.09.024 |
[6] | S. Ibrahim, M. Majdoub, N. Masmoudi, Global solutions for a semilinear, two‐dimensional Klein‐Gordon equation with exponential‐type nonlinearity, Commun. Pure Appl. Math., 59 (2006), 1639–1658. https://doi.org/10.1002/cpa.20127 doi: 10.1002/cpa.20127 |
[7] | S. Ibrahim, M. Majdoub, N. Masmoudi, K. Nakanishi, Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843. https://doi.org/10.1088/0951-7715/25/6/1843 doi: 10.1088/0951-7715/25/6/1843 |
[8] | N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., 251 (2011), 1172–1194. https://doi.org/10.1016/j.jde.2011.02.015 doi: 10.1016/j.jde.2011.02.015 |
[9] | M. Nakamura, T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 155 (1998), 364–380. https://doi.org/10.1006/jfan.1997.3236 doi: 10.1006/jfan.1997.3236 |
[10] | M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Zeitschrift, 231 (1999), 479–487. https://doi.org/10.1007/PL00004737 doi: 10.1007/PL00004737 |
[11] | Y. Xiao, Packing measure of the sample paths of fractional Brownian motion, Trans. Am. Math. Soc., 348 (1996), 3193–3213. https://doi.org/10.1090/S0002-9947-96-01712-6 doi: 10.1090/S0002-9947-96-01712-6 |
[12] | P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier–Stokes equations in $ {\mathbb{R}}^N $, J. Differ. Equ., 259 (2015), 2948–2980. https://doi.org/10.1016/j.jde.2015.04.008 doi: 10.1016/j.jde.2015.04.008 |
[13] | M. Kirane, D. Aimene, D. Seba, Local and global existence of mild solutions of time-fractional Navier-Stokes system posed on the Heisenberg group, Z. Angew. Math. Phys., 72 (2021), 1–19. https://doi.org/10.1007/s00033-021-01499-6 doi: 10.1007/s00033-021-01499-6 |
[14] | L. Li, J-G. Liu, L. Wang, Cauchy problems for Keller–Segel type time–space fractional diffusion equation, J. Differ. Equ., 265 (2018), 1044–1096. https://doi.org/10.1016/j.jde.2018.03.025 doi: 10.1016/j.jde.2018.03.025 |
[15] | G. Del Piero, L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Ration. Mech. Anal., 138 (1997), 1–35. https://doi.org/10.1007/s002050050035 doi: 10.1007/s002050050035 |
[16] | N. T. Bao, T. Caraballo, N. H. Tuan, Y. Zhou, Existence and regularity results for terminal value problem for nonlinear fractional wave equations, Nonlinearity, 34 (2021), 1448. https://doi.org/10.1088/1361-6544/abc4d9 doi: 10.1088/1361-6544/abc4d9 |
[17] | T. Caraballo, T. B. Ngoc, T. N. Thach, N. H. Tuan, On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation, Discrete Contin. Dyn. Syst.-B, 26 (2021), 4299. https://doi.org/10.3934/dcdsb.2020289 doi: 10.3934/dcdsb.2020289 |
[18] | N. H. Can, Y. Zhou, N. H. Tuan, T. N. Thach, Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data, Chaos Solitons Fractals, 136 (2020), 109847. https://doi.org/10.1016/j.chaos.2020.109847 doi: 10.1016/j.chaos.2020.109847 |
[19] | R. Grande, Space-Time Fractional Nonlinear Schrödinger Equation, SIAM J. Math. Anal., 51 (2019), 4172–4212. https://doi.org/10.1137/19M1247140 doi: 10.1137/19M1247140 |
[20] | A. T. Nguyen, T. Caraballo, N. H. Tuan, On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative, P. Roy. Soc. Edinb. A, (2021), 1–43. https://doi.org/10.1017/prm.2021.44 doi: 10.1017/prm.2021.44 |
[21] | H. T. Nguyen, N. A. Tuan, C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete Contin. Dyn. Syst., accepted. https://doi.org/10.3934/dcds.2021206 |
[22] | N. H. Tuan, V. V. Au, R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583. https://doi.org/10.3934/cpaa.2020282 doi: 10.3934/cpaa.2020282 |
[23] | N. H. Tuan, T. N. Thach, Y. Zhou, On a backward problem for two-dimensional time fractional wave equation with discrete random data, Evol. Equ. Control. Theory, 9 (2020), 561. https://doi.org/10.3934/eect.2020024 doi: 10.3934/eect.2020024 |
[24] | N. H. Tuan, N. H. Tuan, D. Baleanu, T. N. Thach, On a backward problem for fractional diffusion equation with Riemann-Liouville derivative, Math. Method Appl. Sci., 43 (2020), 1292–1312. https://doi.org/10.1002/mma.5943 doi: 10.1002/mma.5943 |
[25] | Y. Zhang, X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010. https://doi.org/10.1088/0266-5611/27/3/035010 doi: 10.1088/0266-5611/27/3/035010 |
[26] | J. R. Cannon, P. DuChateau, An inverse problem for a nonlinear diffusion equation, SIAM J. Appl. Math., 39 (1980), 272–289. https://doi.org/10.1137/0139024 doi: 10.1137/0139024 |
[27] | A. N. Cohen, R. L. Pego, Stable patterns in a viscous diffusion equation, Trans. Am. Math. Soc., 324 (1991), 331–351. https://doi.org/10.1090/S0002-9947-1991-1015926-7 doi: 10.1090/S0002-9947-1991-1015926-7 |
[28] | Y. Liu, R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst.-B, 7 (2007), 171. https://doi.org/10.3934/dcdsb.2007.7.171 doi: 10.3934/dcdsb.2007.7.171 |
[29] | Y. Liu, R. Xu, T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal. Theory Methods Appl., 68 (2008), 3332–3348. https://doi.org/10.1016/j.na.2007.03.029 doi: 10.1016/j.na.2007.03.029 |
[30] | N. H. Tuan, T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Am. Math. Soc., 149 (2021), 143–161. https://doi.org/10.1090/proc/15131 doi: 10.1090/proc/15131 |
[31] | S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equ., 199 (2004), 211–255. https://doi.org/10.1016/j.jde.2003.12.002 doi: 10.1016/j.jde.2003.12.002 |
[32] | V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210–239. https://doi.org/10.1137/130941900 doi: 10.1137/130941900 |
[33] | B. de Andrade, C. Cuevas, H. Soto, On fractional heat equations with non-local initial conditions, P. Edinburgh Math. Soc., 59 (2016), 65–76. https://doi.org/10.1017/S0013091515000590 doi: 10.1017/S0013091515000590 |
[34] | N. H. Tuan, T. B. Ngoc, Y. Zhou, D. O'Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Probl., 36 (2020), 055011. https://doi.org/10.1088/1361-6420/ab730d doi: 10.1088/1361-6420/ab730d |
[35] | E. Bazhlekova, Fractional evolution equations in Banach spaces, Eindhoven: Technische Universiteit Eindhoven, 2001. |
[36] | R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ., 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048 |
[37] | R. A. Adams, J. J. F. Fournier, Sobolev spaces. Elsevier, 2003. |