We consider a parabolic partial differential equation and system derived from a production planning problem dependent on time. Our goal is to find a closed-form solution for the problem considered in our model. Our new theoretical results can be applied in the real world.
Citation: Dragos-Patru Covei. On a parabolic partial differential equation and system modeling a production planning problem[J]. Electronic Research Archive, 2022, 30(4): 1340-1353. doi: 10.3934/era.2022070
We consider a parabolic partial differential equation and system derived from a production planning problem dependent on time. Our goal is to find a closed-form solution for the problem considered in our model. Our new theoretical results can be applied in the real world.
[1] | A. Bensoussan, S. P. Sethi, R. Vickson, N. Derzko, Stochastic production planning with production constraints, SIAM J. Control Optim., 22 (1984), 920–935. https://doi.org/10.1137/0322060 doi: 10.1137/0322060 |
[2] | A. Cadenillas, P. Lakner, M. Pinedo, Optimal production management when demand depends on the business cycle, Oper. Res., 61 (2013), 1046–1062. https://doi.org/10.1287/opre.2013.1181 doi: 10.1287/opre.2013.1181 |
[3] | J. Dong, A. Malikopoulos, S. M. Djouadi, T. Kuruganti, Application of optimal production control theory for home energy management in a micro grid, 2016 American Control Conference (ACC), IEEE, (2016), 5014–5019. |
[4] | A. Capponi, J. E. Figueroa-López, Dynamic Portfolio Optimization with a Defaultable Security and Regime-Switching, Math. Finance, 24 (2012), 207–249. https://doi.org/10.1111/j.1467-9965.2012.00522.x doi: 10.1111/j.1467-9965.2012.00522.x |
[5] | R. Elliott, A. S. Hamada, Option pricing using a regime switching stochastic siscount factor, Int. J. Theor. Appl. Finance, 17 (2014), 1–26. https://doi.org/10.1142/S0219024914500204 doi: 10.1142/S0219024914500204 |
[6] | A. Gharbi, J. P. Kenne, Optimal production control problem in stochastic multiple-product multiple-machine manufacturing systems, IIE Trans., 35 (2003), 941–952. https://doi.org/10.1080/07408170309342346 doi: 10.1080/07408170309342346 |
[7] | D. D. Yao, Q. Zhang, X. Y. Zhou, A Regime-Switching Model for European Options, Stochastic Processes. Optimization, and Control Theory: applications in Financial Engineering, Queueing Networks, and Manufacturing systems, Springer, Boston, MA. |
[8] | C. F. Wang, H. Chang, Z. M. Fang, Optimal Portfolio and Consumption Rule with a CIR Model Under HARA Utility, J. Oper. Res. Soc. China, 6 (2018), 107–137. https://doi.org/10.1007/s40305-017-0189-8 doi: 10.1007/s40305-017-0189-8 |
[9] | D. P. Covei, E. C. Canepa, T. A. Pirvu, Stochastic production planning with regime switching, J. Ind. Manag. Optim., 2022 (2022), 1–17. https://doi.org/10.3934/jimo.2022013 doi: 10.3934/jimo.2022013 |
[10] | D. P. Covei, An elliptic partial differential equation modeling the production planning problem, J. Appl. Anal. Comput., 11 (2021), 903–910. https://doi.org/10.11948/20200112 doi: 10.11948/20200112 |
[11] | D. P. Covei, T. A. Pirvu, A stochastic control problem with regime switching, Carpathian J. Math., 37 (2021), 427–440. https://doi.org/10.37193/CJM.2021.03.06 doi: 10.37193/CJM.2021.03.06 |
[12] | G. Barles, A. Porretta, T. T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations, J. Math. Pures Appl., 94 (2010), 497–519. https://doi.org/10.1016/j.matpur.2010.03.006 doi: 10.1016/j.matpur.2010.03.006 |
[13] | T. T. Tchamba, Large Time Behavior of Solutions of Viscous Hamilton-Jacobi Equations with Superquadratic Hamiltonian, Asymptot. Anal., 66 (2010), 161–186. https://doi.org/10.3233/ASY-2009-0965 doi: 10.3233/ASY-2009-0965 |
[14] | C. O. Alves, T. Boudjeriou, Existence of solution for a class of heat equation with double criticality, J. Math. Anal. Appl., 504 (2021), 125–403. https://doi.org/10.1016/j.jmaa.2021.125403 doi: 10.1016/j.jmaa.2021.125403 |
[15] | E. C. Canepa, D. P. Covei, T. A. Pirvu, A Stochastic production planning problem, Fixed Point Theory Appl., 23 (2022), 179–198. https://doi.org/10.24193/fpt-ro.2022.1.11 doi: 10.24193/fpt-ro.2022.1.11 |
[16] | G. dos Reis, D. Šiška, Stochastic Control and Dynamic Asset Allocation, Partial lecture notes, School of Mathematics, University of Edinburgh, 2020. Available from: https://www.maths.ed.ac.uk/dsiska/LecNotesSCDAA.pdf. |
[17] | D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, 309, Springer, Berlin, Heidelberg, 1973. https://doi.org/10.1007/BFb0060079 |
[18] | C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, Boston, MA, 1992. https://doi.org/10.1007/978-1-4615-3034-3 |
[19] | H. Amann, Quasilinear parabolic systems under nonlinear boundary conditions, Arch. Ration. Mech. Anal., 92 (1986), 153–192. https://doi.org/10.1007/BF00251255 doi: 10.1007/BF00251255 |
[20] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag, 1983. https://doi.org/10.1007/978-3-642-61798-0 |
[21] | I. Győri, F. Hartung, N. A. Mohamady, Existence and uniqueness of positive solutions of a system of nonlinear algebraic equations, Period. Math. Hung., 75 (2017), 114–127. https://doi.org/10.1007/s10998-016-0179-3 doi: 10.1007/s10998-016-0179-3 |
[22] | I. Győri, F. Hartung, N. A. Mohamady, Boundedness of positive solutions of a system of nonlinear delay differential equations, Discrete Contin. Dyn. Syst. B, 23 (2018), 809–836. https://doi.org/10.1007/s10998-016-0179-3 doi: 10.1007/s10998-016-0179-3 |
[23] | L. Sheng, Y. Zhu, K. Wang, Uncertain dynamical system-based decision making with application to production-inventory problems, Appl. Math. Model., 56 (2018), 275–288. https://doi.org/10.1016/j.apm.2017.12.006 doi: 10.1016/j.apm.2017.12.006 |
[24] | M. K. Ghosh, A. Arapostathis, S. I. Marcus, Optimal Control of Switching Diffusions with Application to Flexible Manufacturing Systems, SIAM J. Control Optim., 31 (1992), 1183–1204. https://doi.org/10.1137/0331056 doi: 10.1137/0331056 |