In this paper, we focus on the global-in-time solvability of the Kuramoto-Sakaguchi equation under non-local coupling. We further study the nonlinear stability of the trivial stationary solution in the presence of sufficiently large diffusivity, and the existence of the solution under vanishing diffusion.
Citation: Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling[J]. Networks and Heterogeneous Media, 2017, 12(1): 25-57. doi: 10.3934/nhm.2017002
[1] | Hirotada Honda . Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12(1): 25-57. doi: 10.3934/nhm.2017002 |
[2] | Seung-Yeal Ha, Shi Jin, Jinwook Jung . A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013 |
[3] | Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001 |
[4] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[5] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[6] | Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026 |
[7] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[8] | Xiaoxue Zhao, Zhuchun Li, Xiaoping Xue . Formation, stability and basin of phase-locking for Kuramoto oscillators bidirectionally coupled in a ring. Networks and Heterogeneous Media, 2018, 13(2): 323-337. doi: 10.3934/nhm.2018014 |
[9] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[10] | Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005 |
In this paper, we focus on the global-in-time solvability of the Kuramoto-Sakaguchi equation under non-local coupling. We further study the nonlinear stability of the trivial stationary solution in the presence of sufficiently large diffusivity, and the existence of the solution under vanishing diffusion.
The theoretical study of weakly coupled limit cycle oscillators is being actively developed in several research fields. For example, in statistical physics, various models are being developed, whereas in network science, synchronization on complex networks is attracting attention. As we state later, mathematical analysis of this field is being promoted, especially by those who are concerned with functional equations. Furthermore, this phenomenon is applied to various areas of engineering, including neural networks, bio-sciences, and network engineering[9].
Limit cycle oscillators, which are also called nonlinear oscillators, are different from harmonic oscillators, whose limit cycle is vulnerable to the perturbation forces from outside. The synchronization phenomenon is another feature of coupled limit cycle oscillators under specific conditions.
As is well known, such a phenomenon was first discovered by Huygens in the 17th century, who devised the pendulum clock for navigation officers. The physical formulation of this phenomenon was rigorously discussed later in the 1960's. In 1967, Winfree[37] proposed an attractive formulation, in which he successfully and rigorously defined the phase of the oscillator. He also revealed the region of synchronization in the sense of the phase space.
Based on Winfree's contribution, Kuramoto[19] proposed a simplified but more sophisticated model, which is called the Kuramoto model. The features of his approach are phase reduction and mean field approximation. His discussion begins with the usual dynamical system:
dXdt=F(X), |
where X is the
dϕdt=ω, |
where
dϕdt=∇ϕ⋅F(X), |
which is the start point of phase reduction. In an
dϕjdt=ωj+N∑k=1Kjksin(ϕj−ϕk)(j=1,2,…N), | (1.1) |
where
Kuramoto[17][19] further sophisticated (1.1) by applying the mean field approximation and the assumption
{dϕjdt=ωj+Krsin(η−ϕj)(j=1,2,…N),rexp(iη)=1NN∑j=1exp(iϕj), | (1.2) |
where
Since this model is sufficiently simple for rigorously analyzing and simulating on computers, numerous investigations have been conducted on it. For instance, Daido[8] derived a model that replaces the term
As for the stability analysis, the work by Strogatz and Mirollo[34] is the first one, which concerns the spectrum of the incoherent state as the number of oscillators tends to infinity. Later, Crawford[6][7] applied the center manifold reduction to verify the stability of incoherence in detail.
Due to the limitation of space, we refer the reader to the survey by Acebrón[3] of this research area.
From the perspective of network science, it is interesting to generalize the network topology and distribution of coupling strength. Ichinomiya[14] proposed a model on random networks, and Nakao[29] numerically analyzed a model on a complex network.
Although (1.2) is a system of ordinary differential equations, adding white noise to it makes it possible to apply partial differential equation-based analysis. We consider
{dϕjdt=ωj+Krsin(η−ϕj)+ξj(t) ≡V1(ϕj,t,ωj)+ξj(t)(j=1,2,…N),rexp(iη)=1NN∑j=1exp(iϕj), | (1.3) |
where
<ξj(t)>=0, <ξj(t)ξk(τ)>=2Dδ(t−τ)δjk, |
{∂ϱ∂t+∂∂θ[(ω+Krsin(η−θ))ϱ]−D∂2ϱ∂θ2=0,rexp(iη)=∫R∫2π0exp(iθ)ϱ(θ,t;ω′)g(ω′)dϕdω′, | (1.4) |
where
Remark 1. Let
Kj(x)=limτ→0⟨(X(τ)−X(0))j⟩/τ. |
Then, the probability distribution function
∂w(x,t)∂t=∞∑j=11j!(−∂∂x)j{Kj(x)w(x,t)}. | (1.5) |
A Markovian process satisfying
Kj(x)=0 (j=3,4,…) |
is called to be continuous. One example of this type of stochastic process is the one driven by the Brownian motion, like (1.3). In this case, (1.5) becomes
∂w(x,t)∂t=−∂∂x[K1(x)w(x,t)]+12∂2∂x2[K2(x)w(x,t)], |
which is the Fokker-Planck equation. Applying this argument to (1.3), where
∂ϱ∂t+∂∂θ(V1ϱ)−D∂2ϱ∂θ2=0, |
which corresponds to (1.4)
By substituting (1.4)
{∂ϱ∂t+ω∂ϱ∂θ+K∂∂θ[ϱ(θ,t;ω)∫R∫2π0sin(ϕ−θ)ϱ(ϕ,t;ω′)g(ω′)dϕdω′] −D∂2ϱ∂θ2=0θ∈(0,2π),t>0,ω∈R,∂iϱ∂θ|θ=0=∂iϱ∂θ|θ=2π(i=1,2),t>0,ω∈R,ϱ|t=0=ϱ0θ∈(0,2π),ω∈R, | (1.6) |
which is the so-called Kuramoto-Sakaguchi equation[24]. This approach enables macroscopic analysis when a system consists of numerous oscillators. As we state later, (1.6) with
Kuramoto also presented a direction to take the spatial validity of coupling strength into account in his original model, which he called the non-local coupling model. In it, the strength of the connection between oscillators depends on the distance between them[21]. Due to the varying strength of connections, it was shown that characteristic patterns, such as a chimera pattern, emerge[21][22]. Numerical studies of the chimera state have also been conducted, mainly by Abrams and Strogatz[1][2].
In spite of numerous contributions concerning numerical simulations, there have been few studies regarding the mathematical analysis of this model. In this paper, we discuss the existence and uniqueness of the global-in-time solution to this model. We also discuss the nonlinear stability of the trivial stationary solution and existence of the vanishing diffusion limit. We note that the vanishing diffusion limit is discussed in the function spaces of higher order derivative than that by Ha and Xiao's[11] by applying a different approach.
The remainder of this paper is organized as follows. In the next section, we formulate the problem of the phase reduction of non-local coupling oscillators, including both with and without diffusion. In Section 3, we introduce related work. In Sections 4 and 5, we are concerned with the local and global-in-time solvability of the problem and the stability of the stationary incoherent solution, respectively. We discuss the existence of the solution in the vanishing diffusion limit in Section 6, and provide a conclusion and discuss remaining issues in Section 7.
In this section, we formulate the problem to be considered.We begin the discussion with the temporal evolution of the phase with additive noise under non-local coupling [15][20][31]:
dϕdt(x,t)=ω+∫RG(x−y)Γ(ϕ(x,t)−ϕ(y,t))dy+ξ(x,t), | (2.1) |
where
<ξ(x,t)ξ(y,τ)>=2Dδ(x−y)δ(t−τ) |
with
It is also to be noted that
∫RG(x−y)dy∫Rg(ω′)dω′∫2π0Γ(ϕ−ϕ′)ϱ(ϕ′,t;y,ω′)dϕ′, |
where
dϕdt=ω+∫RG(x−y)dy∫Rg(ω′)dω′∫2π0Γ(ϕ−ϕ′)ϱ(ϕ′,t;y,ω)dϕ′+ξ(x,t) ≡V2(ϕ,t,x,ω)+ξ(x,t). | (2.2) |
If we consider the case that
K∫Rg(ω′)dω′∫2π0Γ(ϕ−ϕ′)ϱ(ϕ′,t;ω′)dϕ′, |
and (2.2) becomes
dϕdt=ω+K∫Rg(ω′)dω′∫2π0Γ(ϕ−ϕ′)ϱ(ϕ′,t;ω)dϕ′+ξ(x,t), |
which corresponds to (1.3) as a infinite population limit of it.
Note that (2.2) is the mean field approximation to (2.1), in the sense that we replace the second term of the right-hand side of (2.1) with its average. However, while (1.4)
By tracing the same argument as we derived (1.4), the Fokker-Planck equation corresponding to (2.2) is written as (hereafter we denote the phase by
∂ϱ∂t+∂∂θ(V2ϱ)−D∂2ϱ∂θ2=0. |
Together with suitable initial and boundary conditions, the problem corresponding to (2.2) is written as[15][31].
{∂ϱ∂t+∂∂θ(ωϱ)+∂∂θ(F[ϱ,ϱ])−D∂2ϱ∂θ2=0 θ∈(0,2π),t>0,(x,ω)∈R2,∂iϱ∂θi|θ=0=∂iϱ∂θi|θ=2π(i=0,1),t>0,(x,ω)∈R2,ϱ|t=0=ϱ0 θ∈(0,2π),(x,ω)∈R2, | (2.3) |
where
F[ϱ1,ϱ2]≡ϱ1(θ,t;x,ω)∫RG(x−y)dy∫Rg(ω′)dω′∫2π0Γ(θ−ϕ)ϱ2(ϕ,t;y,ω′)dϕ. | (2.4) |
It is to be noted that, in[15], [21] and[31], they deal with problem (2.3) with
˜F[ϱ1,ϱ2]≡ϱ1(θ,t;x)∫RG(x−y)dy∫2π0Γ(θ−ϕ)ϱ2(ϕ,t;y)dϕ, |
which corresponds to the case
In (2.3), the unknown function is
F(k)[ϱ1,ϱ2]≡ ϱ1(θ,t;x,ω)∫RG(x−y)dy∫Rg(ω′)dω′∫2π0Γ(k)(θ−ϕ)ϱ2(ϕ,t;y,ω′)dϕ (k=1,2,…). |
Note that we denote the
As in the original Kuramoto model, the vanishing diffusion case is worth considering:
{∂ϱ∂t+∂∂θ(ωϱ)+∂∂θ(F[ϱ,ϱ])=0θ∈(0,2π),t>0,(x,ω)∈R2,∂iϱ∂θi|θ=0=∂iϱ∂θi|θ=2π (i=0,1),t>0,(x,ω)∈R2,ϱ|t=0=ϱ0 θ∈(0,2π),(x,ω)∈R2. | (2.5) |
It is obvious that
ϱ(θ,t;x,ω)≥0 ∀θ∈(0,2π),t∈(0,T),(x,ω)∈R2,∫2π0ϱ(θ,t;x,ω)dθ=1 ∀t∈(0,T),(x,ω)∈R2 |
for arbitrary
Mathematical arguments concerning the solvability of the Kuramoto-Sakaguchi equation (1.6), which corresponds to the original Kuramoto model (1.3), was first presented by Lavrentiev et al.[24][25]. In their former work[24], they constructed the classical global-in-time solution when the support of
Later, they removed this restriction[25] by applying the a-priori estimates derived from the energy method. They also studied the regularity of the unknown function with respect to
For the case of vanishing diffusion
Concerning the non-local coupling model, however, there are no mathematical arguments as far as we know.
In this section, we discuss the global-in-time solvability of (2.3). We first prepare the definitions of function spaces.
In this subsection, we define the function spaces used throughout this paper. Let
‖ |
The inner product is defined by
(u_1,u_2) \equiv \int_{\mathcal G} u_1(x) \overline{u_2(x)} \; {\rm d}x, |
where
For simplicity, we denote the
Hereafter, let us use the notation
By
For a Banach space
\begin{align*} &\|u\|_{L_p(a,b;E)} \equiv \left\{ \begin{array}{l} \displaystyle \Biggl(\int_a^b \|u(t)\|_E^p \; {\rm d}t \Biggr)^{1/p} \ \ (1 \leq p < \infty), \\ \displaystyle {\rm ess} \sup\limits_{a \leq t \leq b} \|u(t)\|_E \ \ p=\infty. \end{array} \right. \end{align*} |
Likewise, we denote by
Subject to the definition by Temam[35], we say, for a fixed parameter
u(\theta;\omega) = \sum\limits_{n=-\infty}^\infty a_n(\omega)e^{in\theta}, |
which is expanded in the Fourier series, belongs to the Sobolev space
\begin{align*} &\|u(\cdot;\omega)\|_m^2 \equiv \sum\limits_{n=-\infty}^\infty (1+|n|^2)^m \bigl| a_n(\omega) \bigr|^2 < \infty. \end{align*} |
Due to the definition of the Fourier series, the Fourier coefficients
a_n(\omega) = \frac{1}{2\pi}\int_{\Omega} u(\theta;\omega)e^{in\theta} \; {\rm d}\theta. |
Note that in case
\displaystyle \|u(\cdot;\omega)\|_{W_2^m(\Omega)}^2= \mathop{\sum}_{k \leq m} \Big\| \frac{\partial^k u}{\partial \theta^k} (\cdot;\omega) \Big\|_{L_2(\Omega)}^2. |
We also introduce the notation
\begin{align*} &\ \ \ \ \ \ \ \overline{\mathcal H}^m \equiv \Bigl\{ u(\theta;x,\omega) \in C_{x,\omega}^\infty({\bf{R}}^2;{\mathcal H}^m) \Bigr\}, \\ &\ \ L_1^{(1)} \equiv \Bigl\{ u(\cdot;x,\omega) \in L_1(\Omega) \Bigr| u \geq 0, \; \int_\Omega u(\theta;x,\omega) \; {\rm d}\theta =1 \; (x,\omega) \in {\bf{R}}^2 \ \Bigr\}, \\ &L_1^{(1)}(T) \equiv \Bigl\{ u(\cdot,t;x,\omega) \in L_1(\Omega) \\ &\ \ \ \ \Bigr| u \geq 0, \; \int_\Omega u(\theta,t;x,\omega) \; {\rm d}\theta =1 \; t \in (0,T), \; (x,\omega) \in {\bf{R}}^2 \ \Bigr\}, \end{align*} |
where
First, we state the existence and uniqueness of the local-in-time solution to problem (2.3).
Theorem 4.1. Let us assume
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
(ⅴ)
(ⅵ)
Then, there exists a certain
\begin{align*} &\varrho \in {\mathcal V}^{2m}(T_*), \end{align*} |
where
\begin{align*} {\mathcal V}^{2m}(T) \equiv \Biggl\{ \varrho \in L_\infty&(0,T;\overline{\mathcal H}^{2m}) \bigcap C^1(0,T;\overline{\mathcal H}^{2m-2}) \ldots \bigcap C^m(0,T;\overline{\mathcal H}^{0}) \\ & \bigcap L_1^{(1)}(T) \Bigr| \varrho^{(1,0)} \in L_2(0,T;\overline{\mathcal H}^{2m}) \Biggr\}. \end{align*} |
Before proceeding to the proof of Theorem 4.1, we prepare the following lemmas.
Lemma 4.2. Let
(ⅰ) If
\begin{align*} \sup\limits_{x,\omega} \Biggl| \int_{\bf{R}} G(x-y) {\rm d}y \int_{\bf{R}} g(\omega) {\rm d}\omega \int_\Omega \Gamma^{(k)} (\theta-\phi) f&(\phi,t;y,\omega) \; {\rm d}\phi \Biggr|\leq C_kM_0\\ & (k=0,1,2,\ldots, 2m), \end{align*} |
(ⅱ)
\begin{align*} \sup\limits_{x,\omega} \Biggl| \int_{\bf{R}} G(x-y) {\rm d}y \int_{\bf{R}} g(\omega) {\rm d}\omega \int_\Omega &\Gamma^{(k)} (\theta-\phi) f(\phi,t;y,\omega) \; {\rm d}\phi \Biggr| \\ & \leq \widetilde{C}_k M_0 |\!|\!|f(t)|\!|\!| (k=0,1,2,\ldots, 2m), \end{align*} |
(ⅲ)
\begin{align*} \sup\limits_{x,\omega} \Biggl\| \int_{\bf{R}} G(x-y) {\rm d}y \int_{\bf{R}} g(\omega) {\rm d}\omega &\int_\Omega \Gamma^{(k)} (\theta-\phi) f(\phi,t;y,\omega) \; {\rm d}\phi \Biggr\| \\ & \leq 2\pi \widetilde{C}_k M_0 |\!|\!|f(t)|\!|\!| \ \ (k=0,1,2,\ldots, 2m). \end{align*} |
Proof. Here we only show the proof of (ⅱ). By virtue of the Schwarz inequality, we have
\begin{align*} \sup\limits_{x,\omega} \Biggl| \int_{\bf{R}} G(x-&y) {\rm d}y \int_{\bf{R}} g(\omega) {\rm d}\omega \int_\Omega \Gamma^{(k)} (\theta-\phi) f(\phi,t;y,\omega) \; {\rm d}\phi \Biggr| \\ & \leq \sup\limits_{x,\omega} \|f(\cdot,t;x,\omega)\| \|\Gamma^{(k)}(\theta-\cdot)\| \Biggl| \int_{\bf{R}} G(x-y) {\rm d}y \Biggr| \Biggl| \int g(\omega) {\rm d}\omega \Biggr| \\ & \leq |\!|\!|f(t)|\!|\!| \|\Gamma^{(k)}\| \sup\limits_x \Biggl| \int_{\bf{R}} G(x-y) \; {\rm d}y \Biggr| \\ & \leq \widetilde{C}_k M_0|\!|\!|f(t)|\!|\!|. \end{align*} |
The estimate (ⅲ) is obtained in a similar manner, and statement (ⅰ) is obtained easily.
Hereafter, for arbitrary
\begin{align*} {\mathcal V}_{(*)}^{2m}(T) \equiv \Biggl\{ \varrho \in L_\infty&(0,T;\overline{\mathcal H}^{2m}) \bigcap C^1(0,T;\overline{\mathcal H}^{2m-2}) \ldots \bigcap C^m(0,T;\overline{\mathcal H}^{0}) \\ & \Bigr| \varrho^{(1,0)} \in L_2(0,T;\overline{\mathcal H}^{2m}) \Biggr\}. \end{align*} |
Lemma 4.3. For an arbitrary
(ⅰ)
(ⅱ)
Remark 2. If
Proof. We verify the statement by using the Stampacchia's truncation method. Let us define
\varrho_+ \equiv (|\varrho| + \varrho)/2 \geq 0, \ \ \varrho_- \equiv (|\varrho| - \varrho)/2 \geq 0. |
It is obvious that
\begin{align*} &\frac 12 \frac{{\rm d}}{{\rm d} t} \|\varrho_-(\cdot,t;x,\omega)\|^2 + D \left\| \frac{\partial \varrho_-}{\partial \theta} (\cdot,t;x,\omega) \right\|^2 \leq c_{41} \|\varrho_-(\cdot,t;x,\omega)\|^2. \end{align*} |
Here we used the estimate:
\begin{align*} &\int_\Omega \varrho_- (\theta,t;x,\omega) \frac{\partial}{\partial \theta} \bigl( F[\varrho,\varrho] \bigr) \; {\rm d}\theta \\ &\ \ = -\frac 12 \int_{\Omega} |\varrho_-(\theta,t;x,\omega) |^2 \\ & \ \ \ \ \ \ \ \ \ \ \times \Biggl( \int_{\bf{R}} G(x-y) {\rm d}y \int_{\bf{R}} g(\omega^\prime) {\rm d}\omega^\prime \int_\Omega \Gamma^\prime (\theta-\phi) \varrho(\phi,t;y,\omega) {\rm d}\phi \Biggr) \; {\rm d}\theta \\ & \ \ \leq \frac{C_1 M_0}{2} \|\varrho_- (\cdot,t;x,\omega) \|^2, \end{align*} |
which is derived by integration by parts and Lemma 4.2. Taking into account
We carry out the proof of Theorem 4.1 in three steps below.
(ⅰ) Existence of a solution
(ⅱ) proof of
(ⅲ) uniqueness of the solution in
We apply the semi-discrete approximation used by Sjöberg[32] and Tsutsumi[36] for the study of the KdV equation. Let us take
\begin{align*} &h\partial_+ f(\theta_j) = f(\theta_{j+1})-f(\theta_j), \ \ h\partial_- f(\theta_j) = f(\theta_j)-f(\theta_{j-1}). \end{align*} |
Now, instead of problem (2.3), we consider the following differential-difference equation:
\begin{align} \left\{ \begin{array}{l} \displaystyle \frac{\partial \varrho_N}{\partial t} + \omega \partial_- \varrho_N +\partial_- (F_N \varrho_N) -D \partial_+ \partial_- \varrho_N=0,\\ \displaystyle \varrho_N(\theta_j,t) = \varrho_N(\theta_{j+N},t) \ \ j=1,2,\ldots,N, \; t > 0,\\ \displaystyle \varrho_N(\theta_j,0;x,\omega)=\varrho_0(\theta_j;x,\omega) \ \ j=1,2,\ldots,N, \end{array} \right. \end{align} | (4.1) |
where
\begin{align*} F_N (\theta) = \sum\limits_{j^\prime=1}^N \int_{\bf{R}} h G(x-y) {\rm d}y \int_{\bf{R}} g(\omega^\prime) \Gamma(\theta -& \phi_{j^\prime}) \varrho_N(\phi_{j^\prime},t;y,\omega^\prime) \; {\rm d}\omega^\prime \\ & (j=1,2,\ldots,N). \end{align*} |
Note that this function is defined on the continuous interval with respect to
By virtue of the estimate (4.9) we will verify later, it is clear that problem (4.1) above has a unique solution
(f_1,f_2)_h \equiv \sum\limits_{j=1}^N f_1(\theta_j) \overline{f_2(\theta_j)} h, \ \ \|f\|_h^2 \equiv (f,f)_h, |
respectively. As Sjöberg[32] and Tsutsumi[36] did, we assume
\Bigl\{ \frac{1}{\sqrt{2\pi}}e^{ik\theta} \Bigr\}_{k=-n}^n |
forms an orthonormal basis with respect to the scalar products
The following lemmas are due to the work by Sjöberg[32] and Tsutsumi[36]; thus, we omit the proof here.
Lemma 4.4. If
\begin{align} (f_1,\partial_+ f_2)_h = -(\partial_- f_1,f_2)_h, \ \ (f_1,\partial_- f_2)_h = -(\partial_+ f_1, f_2)_h, \end{align} | (4.2) |
\begin{align} (\partial_+ f_1,f_1)_h=-\frac h2 \|\partial_+ f_1\|_h^2. \end{align} | (4.3) |
Lemma 4.5. Let
\psi(\theta)= \frac{1}{\sqrt{2\pi}}\sum\limits_{k=-n}^n a_k e^{i k\theta}. |
Then,
c_{42} \left\| \frac{\partial^\tau \psi}{\partial x^\tau} \right\|^2 \leq \|\partial_+^{\tau_1} \partial_-^{\tau_2} \psi\|^2 = \|\partial_+^{\tau_1} \partial_-^{\tau_2} \psi\|_h^2 \leq c_{43} \left\| \frac{\partial^\tau \psi}{\partial x^\tau} \right\|^2. |
holds with some constants
For the proof of Lemma 4.5, see Lemma 2.2 in the work by Sjöberg[32]. In addition, the following lemma is useful.
Lemma 4.6. Let
\psi(\theta) = \frac{1}{\sqrt{2\pi}} \sum\limits_{k=-n}^n b_k e^{ik \theta} |
with
\|\partial_+^{\tau_1} \partial_-^{\tau_2} \psi\|_h^2 = \|\partial_+^{\tau_1} \partial_-^{\tau_2} f\|_h^2 |
holds for non-negative integers
Proof. We first verify the statement when
|\psi(\theta)|^2 = \frac{1}{2\pi} \Bigl( \sum\limits_{k=-n}^n b_k e^{i k \theta} \Bigr) \Bigl( \sum\limits_{k^\prime=-n}^n \overline{b_{k^\prime} } e^{-i k^\prime \theta} \Bigr), |
noting that
\sum\limits_{r=1}^N e^{i (k-k^\prime)\theta_r} = N \delta_{kk^\prime}, | (4.4) |
where
\begin{align*} \|\psi\|_h^2 =& \frac{2\pi}{N} \sum\limits_{r=1}^N |\psi(\theta_r)|^2 \\ & = \frac{1}{N} \sum\limits_{k,k^\prime=-n}^n b_k \overline{b_{k^\prime}} \sum\limits_{r=1}^N e^{i (k-k^\prime)\theta_r} \\ & = \sum\limits_{k=-n}^n |b_k|^2. \end{align*} |
On the other hand, since
\begin{align*} &b_k = \frac{\sqrt{2\pi}}{N} \sum\limits_{r=1}^N e^{i k \theta_r} \overline{f(\theta_r)}, \end{align*} |
we have
\begin{align*} &|b_k|^2 = \Biggl( \frac{\sqrt{2\pi}}{N} \sum\limits_{r=1}^N e^{i k \theta_r} \overline{f(\theta_r)} \Biggr) \Biggl( \frac{\sqrt{2\pi}}{N} \sum\limits_{r^\prime=1}^N e^{-i k \theta_{r^\prime}} f(\theta_{r^\prime}) \Biggr) \\ & = \frac{2\pi}{N^2} \sum\limits_{r,r^\prime=1}^N \overline{f(\theta_r)} f(\theta_{r^\prime}) e^{i k(\theta_r-\theta_{r^\prime})}. \end{align*} |
Accordingly, by noting (4.4) again, we have
\begin{align*} \sum\limits_{k=-n}^n |b_k|^2 &= \frac{2\pi}{N^2} \sum\limits_{r,r^\prime=1}^N \overline{f(\theta_r)}f(\theta_{r^\prime}) \sum\limits_{k=-n}^n e^{i k(\theta_r-\theta_{r^\prime})} \\ & = \frac{2\pi}{N} \sum\limits_{r=1}^N |f(\theta_r)|^2 \\ & = \|f\|_h^2. \end{align*} |
Finally, the statement holds in case
\begin{align} \partial_+ \psi(\theta_r) &= \frac{\psi(\theta_{r+1})-\psi(\theta_r)}{h} \notag \\ & = \frac{1}{ \sqrt{2\pi} }\sum\limits_{k=-n}^n \bigl( e^{ik \theta}, f \bigr)_h \Biggl( \frac{e^{ik \theta_{r+1}} -e^{ik \theta_r}}{h} \Biggr) \notag \\ & = \frac{1}{ \sqrt{2\pi} } \sum\limits_{k=-n}^n \Bigl( \sum\limits_{r^\prime=1}^N e^{- ik\theta_{r^\prime}} f(\theta_{r^\prime}) h \Bigr) \Biggl( \frac{e^{ ik \theta_{r+1}} -e^{ ik \theta_r}}{h} \Biggr). \end{align} | (4.5) |
On the other hand,
\begin{align*} \frac{1}{ \sqrt{2\pi} } \sum\limits_{k=-n}^n \bigl( \partial_+ f, e^{ik\theta} \bigr)_h e^{ik\theta_r} &= \frac{1}{ \sqrt{2\pi} } \sum\limits_{k=-n}^n \Bigl( \sum\limits_{r^\prime=1}^N h e^{-ik\theta_{r^\prime}} \partial_+ f(\theta_{r^\prime}) \Bigr) e^{ik\theta_r} \\ & = \frac{1}{ \sqrt{2\pi} } \sum\limits_{k=-n}^n \Bigl( \sum\limits_{r^\prime=1}^N e^{-ik\theta_{r^\prime}} \bigl\{ f(\theta_{r^\prime+1})-f(\theta_{r^\prime}) \bigr\} \Bigr) e^{ik\theta_r}. \end{align*} |
However, it is easy to see that this equals the rightmost-hand side of (4.5); therefore,
On the basis of Lemma 4.6, we derive some estimates of
Lemma 4.7. The following estimates hold:
\begin{align*} &\ \ \ \ \ \ \ \ \|\varrho_N(\cdot,t;x,\omega)\|_h \leq c_{4(1)} \ \ \forall t > 0, \; (x,\omega) \in {\bf{R}}^2, \\ & \ \ \ \ \|\partial_- \varrho_N(\cdot,t;x,\omega)\|_h \leq c_{4(2)} \ \ \forall t > 0, \; (x,\omega) \in {\bf{R}}^2, \\ &\ \ \|\partial_+^j \partial_-^j \varrho_N(\cdot,t;x,\omega)\|_h \leq \tilde{c}_{4(j)} j=1,2,\ldots,m, \; \forall t > 0, \; (x,\omega) \in {\bf{R}}^2, \end{align*} |
where
Proof. Let us multiply (4.1)
\begin{align} \frac 12 \frac{{\rm d}}{{\rm d} t} \|\varrho_N(\cdot, t;x, \omega)\|_h^2 + \frac{\omega h}{2} \|&\partial_+ \varrho_N(\cdot, t;x, \omega)\|_h^2 + D \|\partial_-\varrho_N(\cdot, t;x, \omega)\|_h^2 \notag\\ & \leq \Bigl| \Bigl(\partial_-(F_N \varrho_N), \varrho_N \Bigr)_h \Bigr|. \end{align} | (4.6) |
Making use of
\partial_- (f_1 f_2) = f_2( \partial_- f_1) + (f_1)_- \partial_- f_2 |
for two real
\Bigl( \partial_- (F_N \varrho_N), \varrho_N \Bigr)_h = \Bigl( \varrho_N \partial_- F_N, \varrho_N \Bigr)_h + \Bigl( F_N \partial_- \varrho_N, \varrho_N \Bigr)_h \\ \ \ \ \ \ \ \ \ \ \ \leq \widetilde{C}_1M_0 \sup\limits_x\|\varrho_N(\cdot,t;x,\omega)\|_h \|\varrho_N(\cdot,t;x,\omega)\|_h^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \widetilde{C}_0M_0 \|\varrho_N(\cdot,t;x,\omega)\|_h \bigl| (\partial_- \varrho_N, \varrho_N)_h \bigr| \\ \ \ \ \ \ \ \ \ \ \ \leq \widetilde{C}_1M_0 \sup\limits_x\|\varrho_N(\cdot,t;x,\omega)\|_h^3 + \varepsilon \| \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 + C_\varepsilon \| \varrho_N (\cdot,t;x,\omega)\|_h^2, |
where
\begin{align*} &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sum\limits_{j^\prime}^N h |\Gamma^\prime (\theta-\phi_j)|^2 \leq \|\Gamma^\prime \|^2 \leq \widetilde{C}_1^2, \\ &|F_N| \leq \sum\limits_{j^\prime=1}^N \Bigl| \int_{\bf{R}} h G(x-y) \; {\rm d}y \Gamma(\theta_j-\phi_{j^\prime}) \int_{\bf{R}} g(\omega^\prime) \varrho_N(\phi_{j^\prime},t;y,\omega^\prime) \; {\rm d}\omega^\prime \Bigr|\\ & \ \ \ \ \ \ \ \ \leq \widetilde{C}_0M_0 \|\varrho_N(\cdot,t;x,\omega)\|_h, \end{align*} |
and by means of the mean value theorem and Schwarz's inequality,
\begin{align} &\partial_- F_N = \frac{F_N(\theta_j) - F_N(\theta_{j-1}) }{h} \notag \\ & \ \ \ \ \ \ \ \ = \frac{1}{h} \sum\limits_{j^\prime=1}^N \int_{\bf{R}} h G(x-y)\; {\rm d}y \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times \int_{\bf{R}} g(\omega^\prime)\Bigl\{ \Gamma(\theta_j -\phi_{j^\prime} ) -\Gamma(\theta_{j-1} -\phi_{j^\prime} ) \Bigr\} \varrho_N(\phi_{j^\prime},t;y,\omega^\prime) \; {\rm d}\omega^\prime \notag \\ &\ \ \ \ \ \ \ = \sum\limits_{j^\prime=1}^N \int_{\bf{R}} h G(x-y)\; {\rm d}y \int_{\bf{R}} g(\omega^\prime) \Gamma^\prime(\theta_0 - \phi_{j^\prime}) \varrho_N(\phi_{j^\prime},t;y,\omega^\prime) \; {\rm d}\omega^\prime \notag \\ & \ \ \ \ \ \ \ \ \leq \sup\limits_\theta \sum\limits_{j^\prime=1}^N \int_{\bf{R}} h G(x-y)\; {\rm d}y \int_{\bf{R}} g(\omega^\prime) \Gamma^\prime(\theta - \phi_{j^\prime}) \varrho_N(\phi_{j^\prime},t;y,\omega^\prime) \; {\rm d}\omega^\prime \notag \\ & \ \ \ \ \ \ \ \ \leq \widetilde{C}_1 M_0 \sup\limits_y \|\varrho_N(\cdot,t;y,\omega)\|_h, \end{align} | (4.7) |
where
\bigl| (\partial_- \varrho_N, \varrho_N)_h \bigr| \leq \varepsilon \| \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 + C_\varepsilon \| \varrho_N (\cdot,t;x,\omega) \|_h^2, |
where we take
\begin{align*} &\frac 12 \frac{{\rm d}}{{\rm d} t} \Bigl( \sup\limits_x \|\varrho_N(\cdot,t;x,\omega)\|_h^2 \Bigr) \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \frac{\omega h}{2} \sup\limits_x \|\partial_+ \varrho_N(\cdot,t;x,\omega)\|_h^2 + (D-\varepsilon) \sup\limits_x \|\partial_- \varrho_N(\cdot,t;x,\omega)\|_h^2\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \widetilde{C}_1M_0 \sup\limits_x \|\varrho_N(\cdot,t;x,\omega)\|_h^3 + C_\varepsilon \sup\limits_x \|\varrho_N(\cdot,t;x,\omega)\|_h^2. \end{align*} |
By virtue of the comparison theorem,
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac 12 y^\prime = \widetilde{C}_1M_0 y^\frac{3}{2} + C_\varepsilon y, \\ \displaystyle y\bigr|_{t=0} = y_0 \equiv \sup\limits_x \|\varrho_0(\cdot;x,\omega) \|_h^2, \end{array} \right. \end{align*} |
which has a solution on
\sup\limits_x \|\varrho_N(\cdot,t;x,\omega)\|_h \leq c_{44} \ \ t \in (0,T_*) | (4.8) |
with a constant
\begin{align*} & \ \ \ \ \ \ \ \ \ \ \ \Biggl( \frac{{\rm d} \varrho_N}{{\rm d}t}, \partial_+\partial_- \varrho_N \Biggr)_h = -\frac12 \frac{{\rm d} }{{\rm d}t} \|\partial_- \varrho_N \|_h^2, \\ & \ \ \ \ \ \ \Bigl( \omega \partial_- \varrho_N, \partial_+ \partial_- \varrho_N \Bigr)_h = -\frac{\omega h}{2}\| \partial_+ \partial_- \varrho_N\|_h^2, \\ & \ \ \ \ \Bigl( D \partial_+ \partial_- \varrho_N, \partial_+ \partial_- \varrho_N \Bigr)_h = D \|\partial_+ \partial_- \varrho_N\|_h^2, \\ &\Bigl( \partial_- (F_N \varrho_N ) , \partial_+ \partial_- \varrho_N \Bigr)_h = \Bigl( F_{N-} \partial_- \varrho_N, \partial_+ \partial_- \varrho_N \Bigr)_h + \Bigl( \varrho_N \partial_- F_N, \partial_+ \partial_- \varrho_N \Bigr)_h\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{\widetilde{C}_0M_0h}{2} \sup\limits_x \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \widetilde{C}_1M_0 \sup\limits_x \| \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2. \end{align*} |
Combining these, we have
\begin{align*} &\frac 12 \frac{{\rm d}}{{\rm d} t} \Bigl( \sup\limits_x \|\partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 \Bigr) + \sup\limits_x \frac{\omega h}{2} \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + D \sup\limits_x \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{\widetilde{C}_0M_0h}{2} \sup\limits_x \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 + \widetilde{C}_1M_0 \sup\limits_x \| \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2. \end{align*} |
By taking
\frac 12 \frac{{\rm d}}{{\rm d} t} \Biggl( \sup\limits_x \|\partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \Biggr) \leq c_{45} \sup\limits_x \|\partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2, |
which yields
\sup\limits_x \|\partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \leq c_{46} |
for
Similarly, multiplying (4.1)
\begin{align*} \frac{{\rm d}}{{\rm d} t} \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 - \frac{\omega h}{2} \|\partial_+ \partial_-^2 \varrho_N (\cdot,t;x,\omega)\|&_h^2 + \|\partial_+^2 \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \\ & + \Bigl( \partial_- (F_N \varrho_N ), \partial_+^2 \partial_-^2 \varrho_N \Bigr)_h = 0. \end{align*} |
We expand the last term in the left-hand side as
\begin{align*} \Bigl( \partial_- (F_N \varrho_N ), \partial_+^2 \partial_-^2 \varrho_N \Bigr)_h = -\Bigl( (\partial_- \varrho_N) (\partial_-F_N)_-, \partial_+ \partial_-^2 \varrho_N \Bigr)_h \\ -\Bigl( \varrho_N (\partial_-^2 F_N), \partial_+ \partial_-^2 \varrho_N \Bigr)_h -\Bigl( F_N \partial_- \varrho_N , \partial_+^2 \partial_-^2 \varrho_N \Bigr)_h \\ \equiv \sum\limits_{j=1}^3 I_j. \end{align*} |
Each term is estimated as follows.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |I_1| \leq \widetilde{C}_1M_0 \|\varrho_N(\cdot,t;x,\omega)\|_h \bigl| (\partial_- \varrho_N, \partial_+ \partial_-^2 \varrho_N )_h \bigr| \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \widetilde{C}_1M_0 \|\varrho_N (\cdot,t;x,\omega) \|_h \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |I_2| \leq \widetilde{C}_1M_0 \|\varrho_N (\cdot,t;x,\omega) \|_h \bigl| (\varrho_N, \partial_+ \partial_-^2 \varrho_N )_h \bigr| \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{\widetilde{C}_1M_0 h}{2} \|\varrho_N (\cdot,t;x,\omega) \|_h \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2, \\ |I_3| \leq \widetilde{C}_0M_0 \|\varrho_N (\cdot,t;x,\omega) \|_h \bigl| (\partial_- \varrho_N, \partial_+^2 \partial_-^2 \varrho_N )_h \bigr| \\ \ \ \ \ \leq \widetilde{C}_0 M_0 \|\varrho_N (\cdot,t;x,\omega)\|_h \Bigl( \varepsilon \| \partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 + C_\varepsilon \| \partial_+^2 \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2 \Bigr). |
Here we applied a similar estimate as (4.7). Thus, by using (4.8) we have the estimate of the form
\begin{align*} &\frac12 \frac{{\rm d}}{{\rm d} t} \Bigl( \sup\limits_x \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \Bigr) -\frac{\omega h}{2} \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + (D-\varepsilon) \|\partial_+^2 \partial_- \varrho_N (\cdot,t;x,\omega) \|_h^2 \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \leq c_{47} \|\partial_+ \partial_- \varrho_N (\cdot,t;x,\omega)\|_h^2, \end{align*} |
which yields the boundedness of
When
\begin{align} & \sup\limits_x \left\| \frac{{\rm d} \varrho_N}{{\rm d}t} (\cdot,t;x,\omega) \right\|_h \leq c_{48}, \sup\limits_x \left\| \partial_+^m \partial_-^m \frac{{\rm d} \varrho_N}{{\rm d}t} (\cdot,t;x,\omega) \right\|_h \leq c_{49} \end{align} | (4.9) |
under the assumptions of Theorem 4.1. Then, as Sjöberg[32] and Tsutsumi[36] did, we consider the discrete Fourier series of
\begin{align*} &\phi_N(\theta,t;x,\omega) = \frac{1}{\sqrt{2\pi}} \sum\limits_{k=-n}^n a_k(t;x,\omega)e^{ik \theta},\ \ a_k(t;x,\omega) = \frac{1}{\sqrt{2\pi}} \Bigl( e^{ik \theta}, \varrho_N \Bigr)_h. \end{align*} |
Estimate (4.9) and Lemmas 4.5-4.7 yield that the sequence of functions
\left(\frac{\partial}{\partial \theta} \right)^m \phi_N \rightarrow \left(\frac{\partial}{\partial \theta} \right)^m \varrho (N \rightarrow +\infty) |
in
Finally, we discuss the regularity of
v \equiv \frac{\varrho(\theta,t;x+\triangle x,\omega)-\varrho(\theta,t;x,\omega)}{\triangle x}, \; \partial G \equiv \frac{G(x+\triangle x)-G(x)}{\triangle x}, |
which clearly satisfy
\begin{align*} \frac{\partial v}{\partial t} = -\frac{\partial}{\partial \theta} \Biggl[ \omega v + \varrho & \Biggl( \int_{\bf{R}} \partial G(x-y) {\rm d}y \int_{\bf{R}} g(\omega^\prime) {\rm d}\omega^\prime \int_\Omega \Gamma(\theta-\phi) \varrho(\phi,t;y,\omega^\prime) {\rm d}\phi \Biggr) \Biggr] \notag \\ & + F[v,\varrho] - D \frac{\partial^2 \varrho}{\partial \theta^2}=0. \end{align*} |
Thus, under the assumptions of Theorem 4.1, we can show that
\varrho(\theta,t;\cdot,\omega) \in C^\infty({\bf{R}}) |
with respect to
Before proceeding to the uniqueness part, we mention that the solution that was guaranteed to exist in the previous process also belongs to
Finally, we discuss the uniqueness part of the statement. Assume that there exist two solutions
Then, it satisfies:
\begin{align} \left\{ \begin{array}{l} \displaystyle \frac{\partial \tilde{\tilde{\varrho}} }{\partial t} + \omega \frac{\partial \tilde{\tilde{\varrho}}}{\partial \theta} -D \frac{\partial^2 \tilde{\tilde{\varrho}} }{\partial \theta^2} + \frac{\partial}{\partial \theta} \Bigl( F[\tilde{\tilde{\varrho}}, \varrho_1] \Bigr) + \frac{\partial}{\partial \theta} \Bigl( F[\varrho_2, \tilde{\tilde{\varrho}}] \Bigr) = 0\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \theta \in \Omega, \; t \in (0,T_*), \; (x,\omega) \in {\bf{R}}^2,\\ \displaystyle \frac{\partial^i \tilde{\tilde{\varrho}}}{\partial \theta^i}\Bigr|_{\theta=0} =\frac{\partial^i \tilde{\tilde{\varrho}}}{\partial \theta^i}\Bigr|_{\theta=2\pi} \ \ (i=0,1), \; t \in (0,T_*), \; (x,\omega) \in {\bf{R}},\\ \displaystyle \tilde{\tilde{\varrho}}|_{t=0} = 0 \ \ \theta \in \Omega, \; (x,\omega) \in {\bf{R}}^2. \end{array} \right. \end{align} | (4.10) |
We multiply (4.10)
\begin{align*} &\int_\Omega \tilde{\tilde{\varrho}} (\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F[\tilde{\tilde{\varrho}}, \varrho_1] \Bigr) \; {\rm d}\theta =\frac12 \int_\Omega F^{(1)}[ ( \tilde{\tilde{\varrho}} )^2, \varrho] \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{C_1M_0}{2} |\!|\!| \tilde{\tilde{\varrho}} (t) |\!|\!|^2,\\ &\int_\Omega \tilde{\tilde{\varrho}}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \varrho_2, \tilde{\tilde{\varrho}} \bigr] \Bigr) \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\int_\Omega \tilde{\tilde{\varrho}}(\theta,t;x,\omega) F \Bigl[ \frac{\partial \varrho_2}{\partial \theta},\tilde{\tilde{\varrho}} \Bigr] \; {\rm d}\theta + \int_\Omega \tilde{\tilde{\varrho}}(\theta,t;x,\omega) F^{(1)} \bigl[ \varrho_2, \tilde{\tilde{\varrho}} \bigr] \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq 2\pi M_0 \Biggl\{ \widetilde{C}_0 |\!|\!|\varrho_2^{(1,0)}(t)|\!|\!|_\infty + \widetilde{C}_1 |\!|\!|\varrho_2(t)|\!|\!|_\infty \Biggr\} |\!|\!| \tilde{\tilde{\varrho}}(t) |\!|\!|^2. \end{align*} |
These yield
\begin{align*} &\frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\tilde{\varrho}} (t) |\!|\!|^2 + D |\!|\!| \tilde{\tilde{\varrho}}^{(1,0)} (t) |\!|\!|^2 \leq C_1M_0 |\!|\!| \tilde{\tilde{\varrho}} (t) |\!|\!|^2 \ \ \forall t \in (0,T_*). \end{align*} |
By virtue of the Gronwall's inequality and the initial condition (4.10)
|\!|\!| \tilde{\tilde{\varrho}} (t) |\!|\!| = 0 \ \ \forall t \in (0,T_*), |
which indicates the uniqueness of the solution in the desired function space.
Now we discuss the global-in-time solvability of (2.3). Let
Lemma 4.8. Let
\begin{align} &|\!|\!| \varrho^{(k,0)}(t)|\!|\!| \leq c_{4(k)}^\prime \ \ (k=1,2,\ldots,2m) \end{align} | (4.11) |
hold with certain constants
Proof. For the sake of simplicity, we introduce the notation
\begin{align} \left\{ \begin{array}{l} \displaystyle \frac{\partial \tilde{\varrho}}{\partial t} + \omega \frac{\partial \tilde{\varrho}}{\partial \theta} +\frac{\partial}{\partial \theta} \bigl( F[\tilde{\varrho}+ \bar{\varrho},\tilde{\varrho}+ \bar{\varrho}] \bigr) - D \frac{\partial^2 \tilde{\varrho}}{\partial \theta^2}=0\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \theta \in \Omega, \; t \in (0,T), \; (x,\omega) \in {\bf{R}}^2,\\ \displaystyle \frac{\partial^i \tilde{\varrho}}{\partial \theta^i}\Bigr|_{\theta=0} =\frac{\partial^i \tilde{\varrho}}{\partial \theta^i}\Bigr|_{\theta=2\pi} \ \ (i=0,1), \; t \in (0,T), \; (x,\omega) \in {\bf{R}}^2,\\ \displaystyle \tilde{\varrho} \bigr|_{t=0} = \tilde{\varrho}_0 \equiv \varrho_0 - \bar{\varrho} \ \ \theta \in \Omega, \; (x,\omega) \in {\bf{R}}^2. \end{array} \right. \end{align} | (4.12) |
Multiply (4.12)
\begin{align*} \int_\Omega \tilde{\varrho}(\theta,&t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F[\tilde{\varrho}+\bar{\varrho},\tilde{\varrho}+\bar{\varrho}] \Bigr) \; {\rm d}\theta \\ & = \int_\Omega \varrho (\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F[\tilde{\varrho}+\bar{\varrho},\tilde{\varrho}+\bar{\varrho}] \Bigr) \; {\rm d}\theta \\ & = -\frac 12 \int_\Omega F^{(1)}[\varrho^2,\varrho] \; {\rm d}\theta \\ & \leq \frac{C_1M_0}{2} \|\varrho(\cdot,t;x,\omega)\|^2. \end{align*} |
On the other hand, in the same line as the arguments by Lavrentiev[24], we have
\begin{align*} \|\varrho(\cdot,t;x,\omega)\|^2 & \leq \int_\Omega \varrho (\theta,t;x,\omega) \Biggl( \frac{1}{2\pi} + \sqrt{2\pi} \left\| \frac{\partial \varrho}{\partial \theta} (\cdot,t;x,\omega) \right\| \Biggr) \; {\rm d}\theta\\ & = \frac{1}{2\pi} + \sqrt{2\pi} \left\| \frac{\partial \varrho}{\partial \theta} (\cdot,t;x,\omega) \right\| \\ & \leq \frac{1}{2\pi} + C_{\varepsilon^\prime} + \varepsilon^\prime \left\| \frac{\partial \tilde{\varrho}}{\partial \theta} (\cdot,t;x,\omega) \right\|^2, \end{align*} |
where we have applied the Young's inequality in the last inequality.
Thus, after taking the supremum with respect to
\begin{align} &\frac 12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho} (t)| \!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 \leq c_{410} + \varepsilon^\prime |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2. \end{align} | (4.13) |
Therefore, if we take
\begin{align} |\!|\!| \tilde{\varrho} (t)| \!|\!|^2 & \leq |\!|\!| \tilde{\varrho}_0| \!|\!|^2 \exp \Bigl( -2(D- \varepsilon^\prime) t \Bigr) + \frac{c_{411}}{D-\varepsilon^\prime} \Biggl( 1 - \exp \Bigl( -2(D-\varepsilon^\prime) t \Bigr) \Biggr) \notag \\ & \leq c_{412} \ \ \forall t \in (0,T). \end{align} | (4.14) |
Next, we show the estimate of
\begin{align*} &\frac{\partial \tilde{\varrho}^{(1,0)}}{\partial t} + \omega \frac{\partial \tilde{\varrho}^{(1,0)}}{\partial \theta} -D \frac{\partial^2 \tilde{\varrho}^{(1,0)}}{\partial \theta^2} + \frac{\partial}{\partial \theta} \Bigl( F^{(1)}[\tilde{\varrho} + \bar{\varrho},\tilde{\varrho}] + F[\tilde{\varrho}^{(1,0)},\tilde{\varrho}] \Bigr)=0. \end{align*} |
Then, due to the estimates
\begin{align*} &\int_\Omega \tilde{\varrho}^{(1,0)}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F^{(1)}[\tilde{\varrho} + \bar{\varrho},\tilde{\varrho}] \Bigr) \; {\rm d}\theta \\ &\ \ = \int_\Omega F^{(1)}[\bigl( \tilde{\varrho}^{(1,0)} (\theta,t;x,\omega) \bigr)^2, \tilde{\varrho}] \; {\rm d}\theta + \frac12 \int_\Omega F^{(2)} \Bigl[\frac{\partial}{\partial \theta} \bigl( \tilde{\varrho} (\theta,t;x,\omega) \bigr)^2,\tilde{\varrho} \Bigr] \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \frac{1}{2\pi} \int_\Omega F^{(2)}[\tilde{\varrho}^{(1,0)}, \tilde{\varrho}] \; {\rm d}\theta \\ & \ \ \leq C_1M_0 \|\tilde{\varrho}^{(1,0)}(\cdot,t;x,\omega) \|^2 + \frac{C_3M_0}{2} \|\tilde{\varrho}(\cdot,t;x,\omega) \|^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \widetilde{C}_2M_0 \|\tilde{\varrho}^{(1,0)} (\cdot,t;x,\omega)\| |\!|\!| \tilde{\varrho}(t) |\!|\!|, \\ &\int_\Omega \tilde{\varrho}^{(1,0)}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F[\tilde{\varrho}^{(1,0)},\tilde{\varrho}] \Bigr) \; {\rm d}\theta = -\frac 12 \int_\Omega F\Bigl[ \frac{\partial}{\partial \theta} \bigl( \tilde{\varrho}^{(1,0)} (\theta,t;x,\omega) \bigr)^2, \tilde{\varrho} \Bigr] \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{C_1M_0}{2} \|\tilde{\varrho}^{(1,0)}(\cdot,t;x,\omega)\|^2, \end{align*} |
and the Young's inequality, and taking the supremum with respect to
\begin{align} &\frac 12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}^{(1,0)}(t) |\!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(2,0)} (t) |\!|\!|^2\leq \chi_1^{(0,0)} |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + \chi_1^{(1,0)} |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2. \end{align} | (4.15) |
with constants
\|\tilde{\varrho}(\cdot,t;x,\omega) \| \leq 2\pi \| \tilde{\varrho}^{(1,0)} (\cdot,t;x,\omega)\| |
to the first term:
\bigl( D-\varepsilon \bigr) |\!|\!|\tilde{\varrho}^{(1,0)}(t)|\!|\!|^2 + \varepsilon |\!|\!|\tilde{\varrho}^{(1,0)}(t)|\!|\!|^2 \geq \frac{D-\varepsilon}{4\pi^2} |\!|\!|\tilde{\varrho}(t)|\!|\!|^2 + \varepsilon |\!|\!|\tilde{\varrho}^{(1,0)}(t)|\!|\!|^2. |
Then, we obtain
\frac12 \frac{\rm d}{{\rm d}t} |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + \frac{D-\varepsilon}{4\pi^2} |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + \varepsilon |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 \leq c_{410} + \varepsilon^\prime |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2. |
Summing up this and (4.15) multiplied by a positive constant
\begin{align*} &\frac12 \frac{\rm d}{{\rm d}t} \Bigl( |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + m^{(1,0)} |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 \Bigr) + \Bigl\{ \frac{( D -\varepsilon)}{4\pi^2} -m^{(1,0)} \chi_1^{(0,0)} \Bigr\} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \Bigl\{ \varepsilon -\varepsilon^\prime -m^{(1,0)} \chi_1^{(1,0)} \Bigr\} |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 + m^{(1,0)} D |\!|\!| \tilde{\varrho}^{(2,0)} (t)|\!|\!|^2 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq c_{413}. \end{align*} |
Therefore, we take
(ⅰ) Take
(ⅱ) Then, take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(0,0)}m^{(1,0)} > 0, \\ \displaystyle \varepsilon - \varepsilon^\prime - \chi_1^{(1,0)} m^{(1,0)} > 0 \end{array} \right. \end{align*} |
hold.
Then, in the same line with the deduction of (4.14), we have
\begin{align} &|\!|\!| \tilde{\varrho}^{(1,0)}|\!|\!| ^2 \leq c_{414} \ \ \forall t > 0. \end{align} | (4.16) |
Similarly, for
\begin{align} \frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}^{(i, 0)}(t) |\!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(i+1, 0)} (t)|\!|\!|^2 \leq &\sum_{j=0}^i \chi_i^{(j, 0)} |\!|\!| \tilde{\varrho}^{(j, 0)} (t)|\!|\!|^2 \; \notag \\ & (i=2, 3, \ldots, (2m-2)). \end{align} | (4.17) |
For estimates of
\Phi_\delta \equiv \delta^{-1} \Phi(\theta\delta^{-1}) |
with a constant
f_1*f_2 \equiv \int_{\bf{R}} f_1(\theta-\theta^\prime)f_2(\theta^\prime) \; {\rm d}\theta^\prime |
for functions
Now, by operating
\begin{align} &\frac{\partial \tilde{\varrho}_{(\delta)}}{\partial t} + \omega \frac{\partial \tilde{\varrho}_{(\delta)}}{\partial \theta} -D \frac{\partial^2 \tilde{\varrho}_{(\delta)}}{\partial \theta^2}+ \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \bigl( \tilde{\varrho}_{(\delta)} + \bar{\varrho} \bigr), \tilde{\varrho} \bigr] \Bigr)= \widetilde{H}_{(\delta)}, \end{align} | (4.18) |
where
\begin{align*} &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tilde{\varrho}_{(\delta)}= \Phi_\delta * \tilde{\varrho}, \\ &\widetilde{H}_{(\delta)} \equiv \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \bigl( \tilde{\varrho}_{(\delta)} + \bar{\varrho} \bigr), \tilde{\varrho} \bigr] \Bigr) - \Phi_{\delta} * \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \bigl( \tilde{\varrho} + \bar{\varrho} \bigr), \tilde{\varrho} \bigr] \Bigr). \end{align*} |
Operating
\begin{align} &\frac{\partial \tilde{\varrho}_{(\delta)}^{(l,0)}}{\partial t} + \omega \frac{\partial \tilde{\varrho}_{(\delta)}^{(l,0)}}{\partial \theta} -D \frac{\partial^2 \tilde{\varrho}_{(\delta)}^{(l,0)}}{\partial \theta^2} + \sum\limits_{i=0}^l {}_l C_i \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \tilde{\varrho}_{(\delta)}^{(i,0)}, \tilde{\varrho} \bigr] \Bigr) = \widetilde{H}_{(\delta)}^{(l,0)}. \end{align} | (4.19) |
Hereafter we use the notation
Then, we multiply (4.19) by
\begin{align} \frac 12 \frac{\partial}{\partial t} |\!|\!| \tilde{\varrho}_{(\delta)}^{(l,0)} (t) |\!|\!|^2 +& D |\!|\!| \tilde{\varrho}_{(\delta)}^{(l+1,0)} (t) |\!|\!| ^2 \notag \\ & \leq \sum\limits_{j=0}^l \chi_l^{(j,0)} |\!|\!| \tilde{\varrho}_{(\delta)}^{(j,0)}(t)|\!|\!|^2 + |\!|\!| \widetilde{H}_{(\delta)}^{(l,0)} (t) |\!|\!| |\!|\!| \tilde{\varrho}_{(\delta)}^{(i,0)} (t) |\!|\!| \end{align} | (4.20) |
with constants
\begin{align} &\frac 12 \frac{{\rm d}}{{\rm d} t} |\!|\!| \tilde{\varrho}^{(l,0)}(t) |\!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(l+1,0)}(t)|\!|\!|^2 \leq \sum\limits_{j=0}^l \chi_l^{(j,0)} |\!|\!| \tilde{\varrho}^{(j,0)}(t)|\!|\!|^2 \; (l=2m-1,2m). \end{align} | (4.21) |
We now multiply each estimate for
\begin{align*} \frac 12 \frac{{\rm d}}{{\rm d}t} \Bigl(& \sum\limits_{j=0}^{2m} m^{(j,0)} |\!|\!| \tilde{\varrho}^{(j,0)}(t) |\!|\!|^2 \Bigr) + D \sum\limits_{i=0}^{2m} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i+1,0)}(t) |\!|\!|^2 \notag\\ & \leq c_{410} + \varepsilon^\prime |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 + \sum\limits_{i=1}^{2m} m^{(i,0)} \Bigl( \sum\limits_{j=0}^i \chi_i^{(j,0)} |\!|\!|\tilde{\varrho}^{(j,0)} (t)|\!|\!|^2 \Bigr). \end{align*} |
It should be noted that a straightforward estimate, like that by Ha and Xiao[11] will require
\begin{align} \frac 12 \frac{{\rm d}}{{\rm d}t} \Bigl( & \sum\limits_{j=0}^{2m} m^{(j,0)} |\!|\!| \tilde{\varrho}^{(j,0)}(t)|\!|\!|^2 \Bigr) + \frac{D-\varepsilon}{4\pi^2} \sum\limits_{i=0}^{2m-1} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i,0)} (t) |\!|\!|^2 \notag \\ & + \varepsilon \sum\limits_{i=0}^{2m-1} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i+1,0)} (t) |\!|\!|^2 + D m^{(2m,0)} |\!|\!| \tilde{\varrho}^{(2m+1,0)} (t) |\!|\!|^2 \notag\\ & \ \ \ \ \ \ \ \ \leq c_{410} + \varepsilon^\prime |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 + \sum\limits_{i=1}^{2m} m^{(i,0)} \Bigl( \sum\limits_{j=0}^i \chi_i^{(j,0)} |\!|\!|\tilde{\varrho}^{(j,0)} (t)|\!|\!|^2 \Bigr) \end{align} | (4.22) |
We take
(ⅰ) Take
(ⅱ) Take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(0,0)}m^{(1,0)} > 0, \\ \displaystyle \Bigl( \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(1,0)} \Bigr) m^{(1,0)} < \varepsilon - \varepsilon^\prime \end{array} \right. \end{align*} |
hold;
(ⅲ) Take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \sum\limits_{i=1}^2 \chi_i^{(0,0)} m^{(i,0)} > 0, \\ \displaystyle \Bigl( \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(1,0)} \Bigr) m^{(1,0)}+(\varepsilon - \varepsilon^\prime) - \chi_2^{(1,0)}m^{(2,0)} > 0, \\ \displaystyle \Bigl( \frac{D-\varepsilon}{4\pi^2} - \chi_2^{(2,0)} \Bigr) m^{(2,0)} + \varepsilon m^{(1,0)} > 0 \end{array} \right. \end{align*} |
hold;
(ⅳ) As for
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \sum\limits_{p=1}^{i} \chi_p^{(0,0)} m^{(p,0)} > 0, \\ \displaystyle \Bigl( \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(1,0)} \Bigr) m^{(1,0)} + (\varepsilon - \varepsilon^\prime) - \sum\limits_{p=1}^i \chi_p^{(1,0)} m^{(p,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(q,0)}}{4\pi^2} + \varepsilon m^{(q-1,0)} - \sum\limits_{s=q}^{i} \chi_s^{(q,0)} m^{(s,0)} > 0 \ \ (q=2,3,\ldots,i) \end{array} \right. \end{align*} |
hold;
(ⅴ) Finally, take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \sum\limits_{p=1}^{2m} \chi_p^{(0,0)} m^{(p,0)} > 0, \\ \displaystyle \Bigl( \frac{D-\varepsilon}{4\pi^2} - \chi_1^{(1,0)} \Bigr) m^{(1,0)} + (\varepsilon - \varepsilon^\prime) - \sum\limits_{p=1}^{2m} \chi_p^{(1,0)} m^{(p,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(q,0)}}{4\pi^2} + \varepsilon m^{(q-1,0)} - \sum\limits_{s=q}^{2m} \chi_s^{(q,0)} m^{(s,0)} > 0 \ \ (q=2,3,\ldots,2m-1), \\ \displaystyle \varepsilon m^{(2m-1,0)} - \chi_{2m}^{(2m,0)} m^{(2m,0)} > 0 \end{array} \right. \end{align*} |
hold.
Thus, (4.22) becomes
\begin{align*} \frac12 \frac{{\rm d}}{{\rm d}t}&\Bigl( \sum\limits_{i=0}^{2m} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i,0)}(t)|\!|\!|^2 \Bigr) + \Biggl\{ \frac{D-\varepsilon}{4\pi^2} - \sum\limits_{p=1}^{2m} \chi_p^{(0,0)}m^{(p,0)} \Biggr\} |\!|\!| \tilde{\varrho}(t)|\!|\!|^2 \notag \\ & + \Biggl\{ \frac{D-\varepsilon}{4\pi^2} m^{(1,0)} + (\varepsilon-\varepsilon^\prime) - \sum\limits_{p=1}^{2m} \chi_p^{(1,0)} m^{(p,0)} \Biggr\} |\!|\!| \tilde{\varrho}^{(1,0)}(t)|\!|\!|^2 \notag \\ & + \sum\limits_{q=2}^{2m-1} \Biggl\{ \frac{D-\varepsilon}{4\pi^2} m^{(q,0)} + \varepsilon m^{(q-1,0)} - \sum\limits_{s=q}^{2m} \chi_s^{(q,0)} m^{(s,0)} \Biggr\} |\!|\!| \tilde{\varrho}^{(q,0)}(t)|\!|\!|^2 \notag \\ & +\Biggl( \varepsilon m^{(2m-1,0)} - \chi_{2m}^{(2m,0)}m^{(2m,0)} \Biggr) |\!|\!| \tilde{\varrho}^{(2m,0)}(t)|\!|\!|^2 + D m^{(2m,0)} |\!|\!| \tilde{\varrho}^{(2m+1,0)}(t)|\!|\!|^2 \notag \\ \leq c_{410}, \end{align*} |
where the coefficients of each term in the left-hand side are all positive. Thus, as we have obtained (4.14) and (4.16), the Gronwall's inequality again yields
\begin{align*} &\Bigl( \sum\limits_{i=0}^{2m} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i,0)}(t)|\!|\!|^2 \Bigr)\leq c_{415}. \end{align*} |
Now, by virtue of Lemma 4.8,
Theorem 4.9. Let
Remark 3. From these considerations, it is obvious that Theorem 4.9 holds when
Corollary 4.10. Under the assumptions in Theorem 4.1 with (ⅳ) replaced by
In this section, we discuss the nonlinear stability of the trivial stationary solution
The asymptotic stability of
Theorem 5.1. In addition to the assumptions in Theorem 4.1, we assume
D > 2\pi^2 M_0 \Bigl( C_1 + \widetilde{C}_1 \Bigr). |
Then,
\|\tilde{\varrho}(t)\|_{\overline{\mathcal H}^{2m}} \leq c_{51} \|\tilde{\varrho}_0\|_{\overline{\mathcal H}^{2m}} e^{-c_{52}t} |
with certain positive constants
Proof. The line of the argument is similar to that of Lemma 4.8, but this time we have to confirm the non-positiveness of the left-hand side of the energy type inequalities. First, let us multiply (4.12)
\begin{align*} \int_\Omega &\tilde{\varrho}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \bigl( \tilde{\varrho} + \bar{\varrho}, \tilde{\varrho} + \bar{\varrho} \bigr] \Bigr) \; {\rm d}\theta \\ & = -\frac 12 \int_\Omega F\Bigl[ \frac{\partial}{\partial \theta} \Bigl( \tilde{\varrho}(\theta,t;x,\omega) \Bigr)^2, \bigl( \tilde{\varrho} + \bar{\varrho} \bigr) \Bigr] \; {\rm d}\theta + \frac{1}{2\pi} \int_\Omega F^{(1)} \bigl[ \tilde{\varrho}, \bigl( \tilde{\varrho} + \bar{\varrho} \bigr) \bigr] \; {\rm d}\theta \\ & \leq \frac{M_0}{2} \Bigl( C_1 + \widetilde{C}_1 \Bigr) \|\tilde{\varrho}(t)\|^2. \end{align*} |
Thus, we have the energy estimate
\begin{align} &\frac 12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(1,0)}(t) |\!|\!|^2 \leq \frac{M_0}{2} \Bigl( C_1 + \widetilde{C}_1 \Bigr) |\!|\!| \tilde{\varrho} (t) |\!|\!|^2. \end{align} | (5.1) |
For the estimate of
\begin{align*} &\frac 12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 + \Biggl\{ \frac{D}{4\pi^2} - \frac{M_0}{2} \Bigl( C_1 + \widetilde{C}_1 \Bigr) \Biggr\} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 \leq 0, \end{align*} |
which leads to the estimate of the form
\begin{align} & |\!|\!| \tilde{\varrho}(t) |\!|\!| \leq c_{53} \exp(-c_{54}t) \end{align} | (5.2) |
by virtue of the Gronwall's inequality. Estimate (5.2) implies the asymptotic stability of
Next, we show the estimate up to the first-order spatial derivative. First, by applying the Poincaré's inequality to the second term of the left-hand side in (5.1) partially, as in the previous section, we have
\begin{align} &\frac 12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 + \frac{D-\varepsilon}{4\pi^2} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 +\varepsilon |\!|\!| \tilde{\varrho}^{(1,0)}(t) |\!|\!|^2 \leq \frac{M_0}{2} \Bigl( C_1 + \widetilde{C}_1 \Bigr) |\!|\!| \tilde{\varrho} (t) |\!|\!|^2. \end{align} | (5.3) |
Then, let us sum up (5.3) and (4.15), and we have
\begin{align}\frac12 \frac{{\rm d}}{{\rm d}t} \Bigl( & |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + m^{(1,0)} |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 \Bigr) \notag \\ & + \Biggl\{ \frac{D-\varepsilon}{4\pi^2} - \frac{M_0}{2} \Bigl( C_1 + \widetilde{C}_1 \Bigr) - \chi_1^{(0,0)}m^{(1,0)} \Biggr\} |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 \notag \\ & + \Bigl( \varepsilon - \chi_1^{(1,0)} m^{(1,0)} \Bigr) |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 + m^{(1,0)} D |\!|\!| \tilde{\varrho}^{(2,0)} (t) |\!|\!|^2 \leq 0. \end{align} | (5.4) |
As in the previous section, we take
(ⅰ) Take
(ⅱ) Then, take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \frac{M_0}{2}\Bigl( C_1 + \widetilde{C}_1 \Bigr) - \chi_1^{(0,0)} m^{(1,0)} > 0, \\ \displaystyle \varepsilon - \chi_1^{(1,0)} m^{(1,0)} > 0 \end{array} \right. \end{align*} |
hold.
By applying the Gronwall's inequality to (5.4), these lead to the estimate of the form
\Bigl( |\!|\!| \tilde{\varrho} (t) |\!|\!|^2 + m^{(1,0)} |\!|\!| \tilde{\varrho}^{(1,0)} (t) |\!|\!|^2 \Bigr) \leq c_{55} \exp(-c_{56}t), |
that is, the asymptotic stability of
Similarly, we make use of (4.17) and (4.21) to deduce
\begin{align} \frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}^{(i,0)}(t) |\!|\!|^2 +& \frac{D-\varepsilon}{4\pi^2} |\!|\!| \tilde{\varrho}^{(i,0)} (t)|\!|\!|^2 + \varepsilon |\!|\!| \tilde{\varrho}^{(i+1,0)} (t)|\!|\!|^2 \notag \\& \leq \sum\limits_{j=0}^i \chi_i^{(j,0)} |\!|\!| \tilde{\varrho}^{(j,0)} (t)|\!|\!|^2 (i=1,2,\ldots,(2m-1)), \end{align} | (5.5) |
\frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \tilde{\varrho}^{(2m,0)}(t) |\!|\!|^2 + D |\!|\!| \tilde{\varrho}^{(2m+1,0)}(t) |\!|\!|^2 \leq \sum\limits_{j=0}^{2m} \chi_{2m}^{(j,0)} |\!|\!| \tilde{\varrho}^{(j,0)}(t) |\!|\!|^2. | (5.6) |
Summing up (5.3), (5.5) and (5.6) multiplied by constants
\begin{align*} \frac12 \frac{{\rm d}}{{\rm d}t} \Bigl( &\sum\limits_{i=0}^{2m} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i,0)}(t) |\!|\!|^2 \Bigr) \notag \\ & +\Biggl\{ \frac{D-\varepsilon}{4\pi^2} -\frac{M_0}{2}\Bigl( C_1 + \widetilde{C}_1 \Bigr) - \Bigl( \sum\limits_{p=1}^{2m} \chi_p^{(0,0)}m^{(p,0)} \Bigr) \Biggr\} |\!|\!| \tilde{\varrho}(t) |\!|\!|^2 \notag \\ & +\sum\limits_{i=1}^{2m-1} \Biggl\{ \frac{(D-\varepsilon)m^{(i,0)}}{4\pi^2} + \varepsilon m^{(i-1,0)} - \Bigl( \sum\limits_{s=i}^{2m} \chi_s^{(i,0)}m^{(s,0)} \Bigr) \Biggr\} |\!|\!| \tilde{\varrho}^{(i,0)}(t) |\!|\!|^2 \notag \\ & + \Biggl( \varepsilon m^{(2m-1,0)} -m^{(2m,0)} \chi_{2m}^{(2m,0)} |\!|\!| \tilde{\varrho}^{(2m,0)}(t) |\!|\!|^2 \Biggr) \notag \\ & +m^{(2m,0)} D |\!|\!| \tilde{\varrho}^{(2m+1,0)}(t) |\!|\!|^2 \leq 0. \end{align*} |
Now, we determine
(ⅰ) Take
(ⅱ) Take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{(D-\varepsilon)m^{(i,0)}}{4\pi^2} - \frac{M_0}{2}\Bigl( C_1+\widetilde{C}_1\Bigr) - \chi_1^{(0,0)} m^{(1,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(1,0)}}{4\pi^2} +\varepsilon - \chi_1^{(1,0)} m^{(1,0)} > 0 \end{array} \right. \end{align*} |
hold;
(ⅲ) Take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{(D-\varepsilon)m^{(i,0)}}{4\pi^2} - \frac{M_0}{2}\Bigl( C_1+\widetilde{C}_1\Bigr)- \sum\limits_{i=1}^2 \chi_i^{(0,0)} m^{(i,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(1,0)}}{4\pi^2} + \varepsilon - \chi_1^{(1,0)} m^{1,0} - \chi_2^{(1,0)}m^{(2,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(2,0)}}{4\pi^2} + \varepsilon m^{(1,0)} - \chi_2^{(2,0)}m^{(2,0)} > 0 \end{array} \right. \end{align*} |
hold;
(ⅵ) As for
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \frac{M_0}{2}\Bigl( C_1+\widetilde{C}_1\Bigr)- \sum\limits_{p=1}^q \chi_p^{(0,0)} m^{(p,0)} > 0, \\ \displaystyle \frac{(D-\varepsilon)m^{(i,0)}}{4\pi^2} +\varepsilon m^{(i-1,0)} -\sum\limits_{s=i}^q \chi_s^{(i,0)} m^{(s,0)} > 0\ \ (i=1,2,\ldots,q) \end{array} \right. \end{align*} |
hold;
(ⅴ) Finally, take
\begin{align*} \left\{ \begin{array}{l} \displaystyle \frac{D-\varepsilon}{4\pi^2} - \frac{M_0}{2}\Bigl( C_1+\widetilde{C}_1\Bigr)- \sum\limits_{i=1}^{2m} \chi_i^{(0,0)} m^{(i,0)} > 0, \\ \displaystyle \frac{D-\varepsilon}{4\pi^2} m^{(i,0)} +\varepsilon m^{(i-1,0)} -\sum\limits_{s=i}^{2m} \chi_s^{(i,0)} m^{(s,0)} > 0 \ \ (i=1,2,\ldots,2m), \\ \displaystyle \varepsilon m^{(2m-1,0)} -\chi_{2m}^{(2m,0)}m^{(2m,0)} > 0 \end{array} \right. \end{align*} |
hold.
These yield the estimate of the form
\begin{align*} &\Bigl( \sum\limits_{i=0}^{2m} m^{(i,0)} |\!|\!| \tilde{\varrho}^{(i,0)}(t) |\!|\!|^2 \Bigr) \leq c_{57} \exp(-c_{58} t), \end{align*} |
which directly leads to the desired statement.
Remark 4. For the original Kuramoto-Sakaguchi equation (1.6), Ha[11] deduced a similar result concerning the asymptotic stability of
Finally, we discuss the vanishing limit of the diffusion coefficient. In order to show the dependency of the solution on the diffusion coefficient clearly, we denote the solution of (2.3) as
Lemma 6.1. Let
Proof. What we have to verify are
\begin{align} &\sup\limits_{t\in(0,T)} |\!|\!| {\varrho}_{(D)}^{(l,k)}(t) |\!|\!| \leq c_{l,k}(T) \ \ (2k+l \leq 2m), \end{align} | (6.1) |
\begin{align}&\int_0^T |\!|\!| {\varrho}_{(D)}^{(l+1,k)}(t) |\!|\!|^2 \; {\rm d}t \leq c_{l,k}^\prime(T) \ \ (2k+l \leq 2m) \end{align} | (6.2) |
with some constants
Now we provide the estimates of the temporal derivative of
\begin{align*} &\frac{\partial \varrho_{(D)}^{(0,k)}}{\partial t}+\omega \frac{\partial \varrho_{(D)}^{(0,k)}}{\partial \theta} -D \frac{\partial^2 \varrho_{(D)}^{(0,k)}}{\partial \theta^2} +\sum\limits_{j=0}^k {}_k C_j \frac{\partial}{\partial \theta} \Biggl( F \bigl[ \varrho_{(D)}^{(0,j)} , \varrho_{(D)}^{(0,k-j)}\bigr] \Biggr)=0 \end{align*} |
and Lemma 4.2, we have the estimate of the form
\begin{align} &\frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \varrho_{(D)}^{(0,k)}(t)|\!|\!|^2 + D |\!|\!| \varrho_{(D)}^{(1,k)} (t) |\!|\!|^2 \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \sum\limits_{j=1}^{k-1} c_{k,j}^{\prime\prime} |\!|\!| \varrho_{(D)}^{(0,k-j)}(t)|\!|\!|^2 |\!|\!| \varrho_{(D)}^{(0,j)}(t)|\!|\!|^2 + \varepsilon |\!|\!| \varrho_{(D)}^{(1,k)}(t)|\!|\!|^2 \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\Biggl( C_0 |\!|\!| \varrho_{(D)}^{(1,0)}(t)|\!|\!|^2 + \widetilde{C}_1 |\!|\!| \varrho_{(D)}(t)|\!|\!|^2 +\frac{C_1}{2} \Biggr)M_0 |\!|\!| \varrho_{(D)}^{(0,k)}(t) |\!|\!|^2, \end{align} | (6.3) |
where
\begin{align} &|\!|\!| \varrho_{(D)}^{(0,k)}(t) |\!|\!|^2 \leq c_{61}(t) \exp \Biggl( \int_0^t c_{62}(\tau) \; {\rm d}\tau \Biggr) (k=1,2,\ldots,m-1). \end{align} | (6.4) |
As for
\begin{align} &\frac{\partial {\varrho}_{(D)(\delta)}}{\partial t} + \omega \frac{\partial {\varrho}_{(D)(\delta)}}{\partial \theta} -D \frac{\partial^2 {\varrho}_{(D)(\delta)}}{\partial \theta^2} + \frac{\partial}{\partial \theta} \Bigl( F\bigl[ {\varrho}_{(D)(\delta)} , \varrho_{(D)} \bigr] \Bigr) = H_{(D)(\delta)}, \end{align} | (6.5) |
where
{H}_{(D)(\delta)}= \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \bigl( \varrho_{(D)(\delta)} \bigr), \varrho_{(D)} \bigr] \Bigr) - \Phi_{\delta} * \frac{\partial}{\partial \theta} \Bigl( F\bigl[ {\varrho}_{(D)}, {\varrho}_{(D)}\bigr] \Bigr). |
We operate the temporal derivative
\begin{align} &\frac{\partial \varrho_{(D)(\delta)}^{(0,m)}}{\partial t}+\omega \frac{\partial \varrho_{(D)(\delta)}^{(0,m)}}{\partial \theta} -D \frac{\partial^2 \varrho_{(D)(\delta)}^{(0,m)}}{\partial \theta^2} \notag \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\sum\limits_{j=0}^m {}_m C_j \frac{\partial}{\partial \theta} \Bigl( F\bigl[ \varrho_{(D)(\delta)}^{(0,j)}, \varrho_{(D)}^{(0,m-j)} \bigr] \Bigr) =H_{(D)(\delta)}^{(0,m)}. \end{align} | (6.6) |
Then, after the energy type estimate, we make
\lim\limits_{\delta \rightarrow 0} |\!|\!| H_{(D)(\delta)}^{(0,m)}|\!|\!| = 0, |
we obtain (6.4) with
Next, we estimate the term including both temporal and spatial derivatives. We only show the case
\begin{align} \frac{\partial \varrho_{(D)(\delta)}^{(l,k)}}{\partial t}+&\omega \frac{\partial \varrho_{(D)(\delta)}^{(l,k)}}{\partial \theta} -D \frac{\partial^2 \varrho_{(D)(\delta)}^{(l,k)}}{\partial \theta^2} \notag \\ & +\sum\limits_{i=0}^l \sum\limits_{j=0}^k {}_l C_i \cdot {}_k C_j \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \varrho_{(D)(\delta)}^{(i,j)} , \varrho_{(D)}^{(0,k-j)} \bigr] \Bigr) =H_{(D)(\delta)}^{(l,k)}. \end{align} | (6.7) |
Now we show some examples of the energy type estimates. In case
\begin{align*} &\int_\Omega \varrho_{(D)(\delta)}^{(l,k)} (\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F \bigl[ \varrho_{(D)(\delta)}^{(l,k)} , \varrho_{(D)} \bigr] \Bigr) \; {\rm d}\theta \leq \frac{C_1M_0}{2} \| \varrho_{(D)(\delta)}^{(l,k)}(\cdot,t;x,\omega)\|^2. \end{align*} |
For
\begin{align*} \int_\Omega \varrho_{(D)(\delta)}^{(l,k)}&(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F^{(1)} \bigl[ \varrho_{(D)(\delta)}^{(l-1,k)} ,\varrho_{(D)} \bigr] \Bigr) \; {\rm d}\theta \\ & = \int_\Omega F^{(1)} \Bigl[ \Bigl( \varrho_{(D)(\delta)}^{(l,k)} \Bigr)^2 , \varrho_{(D)} \Bigr] \; {\rm d}\theta + \int_\Omega F^{(2)} \Bigl[ \varrho_{(D)(\delta)}^{(l,k)} \varrho_{(D)(\delta)}^{(l-1,k)},\varrho_{(D)} \Bigr] \; {\rm d}\theta \notag \\ & \leq C_1M_0 \| \varrho_{(D)(\delta)}^{(l,k)}(\cdot,t;x,\omega)\|^2 + \frac{C_3M_0}{2} \| \varrho_{(D)(\delta)}^{(l-1,k)}(\cdot,t;x,\omega)\|^2. \end{align*} |
Otherwise, we have
\begin{align*} \int_\Omega \varrho_{(D)(\delta)}^{(l,k)} (\theta,t;x,\omega)& \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \varrho_{(D)(\delta)}^{(i,j)}, \varrho_{(D)}^{(0,k-j)} \bigr] \Bigr) \; {\rm d}\theta \\ & \leq \widetilde{C}_{l-i} M_0 |\!|\!| \varrho_{(D)(\delta)}^{(l+1,k)} (t)|\!|\!| |\!|\!| \varrho_{(D)(\delta)}^{(i,j)}(t)|\!|\!| |\!|\!| \varrho_{(D)(\delta)}^{(0,k-j)}(t)|\!|\!|. \end{align*} |
By combining these and (6.7), and applying the Young's and Schwarz's inequalities, we derive the energy estimate of the form
\begin{align} &\frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \varrho_{(D)(\delta)}^{(l,k)}(t)|\!|\!|^2 + \frac{D}{2} |\!|\!| \varrho_{(D)(\delta)}^{(l+1,k)}(t)|\!|\!|^2 \leq c_{63} |\!|\!| \varrho_{(D)(\delta)}^{(l,k)}(t)|\!|\!|^2 + \varepsilon |\!|\!| \varrho_{(D)(\delta)}^{(l+1,k)}(t)|\!|\!|^2 \notag \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ + C_\varepsilon \sum\limits_{(i,j)\ne (l,k)} |\!|\!| \varrho_{(D)(\delta)}^{(i,j)}(t)|\!|\!|^2 |\!|\!| \varrho_{(D)}^{(0,k-j)}(t)|\!|\!|^2 + \frac{C_3M_0}{2} |\!|\!| \varrho_{(D)(\delta)}^{(l-1,k)}(t)|\!|\!|^2 \notag \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ + |\!|\!| \varrho_{(D)(\delta)}^{(l,k)}(t)|\!|\!| |\!|\!| H_{(D)(\delta)}^{(l,k)}(t)|\!|\!|. \end{align} | (6.8) |
After making
|\!|\!| \varrho_{(D)}^{(l,k)} (t) |\!|\!|^2 \leq c_{64}(t) \exp \Bigl( \int_0^t c_{65}(\tau) \; {\rm d}\tau \Bigr). |
Thus, we have shown the first part of the statement. Estimate (6.2) is derived from (6.3), (6.8), and the estimates we have already obtained. These complete the proof.
By virtue of Lemma 6.1, we see that the sequence
\begin{align} &\varrho_{(D)} \rightarrow \exists \hat{\varrho} {\rm in} \; L_\infty(0,T;\overline{\mathcal H}^{2m}) \ {\rm weakly \; star}; \end{align} | (6.9) |
\begin{align}&\frac{\partial \varrho_{(D)}}{\partial t} \rightarrow \exists \hat{\varrho}^\prime {\rm in} \; L_\infty(0,T;\overline{\mathcal H}^{2m-2}) \ {\rm weakly \; star}. \end{align} | (6.10) |
Then, in the relationship
\begin{align*} &\varrho_{(D)} = \varrho_0 + \int_0^t \frac{\partial \varrho_{(D)}}{\partial t}(\tau)\; {\rm d}\tau {\rm in} \; L_\infty(0,T;\overline{\mathcal H}^{2m-2}), \end{align*} |
if we make
\begin{align*} &\hat{\varrho} = \varrho_0 + \int_0^t \hat{\varrho}^\prime (\tau)\; {\rm d}\tau {\rm in} \; L_\infty(0,T;\overline{\mathcal H}^{2m-2}), \end{align*} |
which means
The next lemma clarifies the space to which this sequence converges.
Lemma 6.2. Let
Proof. Let us define
\begin{align*} \frac{\partial \breve{\varrho}}{\partial t} + \omega \frac{\partial \breve{\varrho}}{\partial \theta} -&D \frac{\partial^2 \breve{\varrho}}{\partial \theta^2} -(D-D^\prime) \frac{\partial^2 \varrho_{(D^\prime)}}{\partial \theta^2} \notag \\ & +\frac{\partial}{\partial \theta} \bigl( F[\breve{\varrho},\varrho_{(D)}] \bigr) + \frac{\partial}{\partial \theta} \bigl( F[\varrho_{(D^\prime)},\breve{\varrho}] \bigr) =0. \end{align*} |
Then, with the aid of the estimates
\begin{align*} \int_\Omega \breve{\varrho}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \bigl( F[\breve{\varrho},\varrho_{(D)}] \bigr) \; {\rm d} \theta &= -\int_\Omega \frac{\partial \breve{\varrho} }{\partial \theta} (\theta,t;x,\omega) F[\breve{\varrho},\varrho_{(D)}] \; {\rm d} \theta \\ & \leq \frac{C_1M_0}{2} \| \breve{\varrho} (\cdot,t;x,\omega)\|^2, \end{align*} |
\begin{align*} &\int_\Omega \breve{\varrho}(\theta,t;x,\omega) \frac{\partial}{\partial \theta} \bigl( F[\varrho_{(D^\prime)},\breve{\varrho}] \bigr) {\rm d} \theta \leq \Biggl( \widetilde{C}_0 \Biggl| \! \Biggl| \! \Biggl| \frac{\partial \varrho_{(D^\prime)}}{\partial \theta} (t) \Biggr| \! \Biggr| \! \Biggr| + \widetilde{C}_1 |\!|\!| \varrho_{(D^\prime)} (t)|\!|\!| \Biggr) M_0 |\!|\!| \breve{\varrho} (t)|\!|\!|^2, \\ &\int_\Omega (D-D^\prime) \breve{\varrho}(\theta,t;x,\omega) \frac{\partial^2 \varrho_{(D^\prime)}}{\partial \theta^2}(\theta,t;x,\omega) \; {\rm d}\theta \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq \frac{|D-D^\prime|^2}{2} + \frac12 \|\breve{\varrho}(\cdot,t;x,\omega)\|^2 \left\| \frac{\partial^2 \varrho_{(D^\prime)}}{\partial \theta^2} (\cdot,t;x,\omega) \right\|^2, \end{align*} |
we have
\begin{align*} &\frac12 \frac{{\rm d}}{{\rm d}t} |\!|\!| \breve{\varrho}(t)|\!|\!|^2 + D |\!|\!| \breve{\varrho}^{(1,0)}(t) |\!|\!|^2 \leq c_{66} |\!|\!| \breve{\varrho}(t) |\!|\!|^2 + \frac{|D-D^\prime|^2}{2}. \end{align*} |
Thus, by virtue of the Gronwall's inequality and the fact that
|\!|\!| \breve{\varrho}(t)|\!|\!|^2 \leq c_{67} |D-D^\prime|^2 \exp(c_{68}t). |
This implies that the sequence
\begin{align*} \frac{\partial \breve{\varrho}_{(\delta)}^{(l,k)}}{\partial t}+&\omega \frac{\partial \breve{\varrho}_{(\delta)}^{(l,k)}}{\partial \theta} -D \frac{\partial^2 \breve{\varrho}_{(\delta)}^{(l,k)}}{\partial \theta^2} -(D-D^\prime) \frac{\partial^2 \breve{\varrho}_{(\delta)}^{(l,k)}}{\partial \theta^2} \notag \\ & +\sum\limits_{i=0}^l \sum\limits_{j=0}^k {}_l C_i \cdot {}_k C_j \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \breve{\varrho}_{(\delta)}^{(i,j)} , \varrho_{(D)}^{(0,k-j)} \bigr] \Bigr) \notag \\ & +\sum\limits_{i=0}^l \sum\limits_{j=0}^k {}_l C_i \cdot {}_k C_j \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \varrho_{(D^\prime)(\delta)}^{(i,j)}, \breve{\varrho}^{(0,k-j)} \bigr] \Bigr) =\breve{H}_{(\delta)}^{(l,k)}, \end{align*} |
where
We show inductively that
\begin{align*} &\int_\Omega \breve{\varrho}_{(\delta)}^{(l,k)} (\theta,t;x,\omega) \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \breve{\varrho}_{(\delta)}^{(l,k)}, \varrho_{(D)} \bigr] \Bigr) \; {\rm d}\theta \leq \frac{C_1M_0}{2} \|\breve{\varrho}_{(\delta)}^{(l,k)} (\cdot,t;x,\omega) \|^2. \end{align*} |
In case
\begin{align*} \int_\Omega \breve{\varrho}_{(\delta)}^{(l,k)} & (\theta,t;x,\omega)\frac{\partial}{\partial \theta} \Bigl( F^{(1)} \bigl[ \breve{\varrho}_{(\delta)}^{(l-1,k)}, \varrho_{(D)} \bigr] \Bigr) \; {\rm d}\theta \\ & = \int_\Omega F^{(1)} \Bigl[ \bigl( \breve{\varrho}_{(\delta)}^{(l,k)} \bigr)^2, \varrho_{(D)} \Bigr] \; {\rm d}\theta + \frac12 \int_\Omega F^{(2)} \Bigl[ \bigl( \breve{\varrho}_{(\delta)}^{(l-1,k)} \bigr)^2, \varrho_{(D)} \Bigr] \; {\rm d}\theta \\ & \leq C_1M_0 \|\breve{\varrho}_{(\delta)}^{(l,k)}(\cdot,t;x,\omega)\|^2 + \frac{C_3M_0}{2} \|\breve{\varrho}_{(\delta)}^{(l-1,k)} (\cdot,t;x,\omega)\|^2. \end{align*} |
Otherwise, we have
\begin{align*} \int_\Omega \breve{\varrho}_{(\delta)}^{(l,k)} (\theta,t;&x,\omega) \frac{\partial}{\partial \theta} \Bigl( F^{(l-i)} \bigl[ \breve{\varrho}_{(\delta)}^{(i,j)}, \varrho_{(D)}^{(0,k-j)} \bigr] \Bigr) \; {\rm d}\theta \\ & = - \int_\Omega F^{(l-i)} \Bigl[ \breve{\varrho}_{(\delta)}^{(l+1,k)} \breve{\varrho}_{(\delta)}^{(i,j)} , \varrho_{(D)}^{(k-j)} \Bigr] \; {\rm d}\theta \\ & \leq \widetilde{C}_{l-i}M_0 |\!|\!| \breve{\varrho}_{(\delta)}^{(l+1,k)} (t) |\!|\!| |\!|\!| \breve{\varrho}_{(\delta)}^{(i,j)} (t) |\!|\!| |\!|\!| {\varrho}_{(D)}^{(0,k-j)}(t)|\!|\!|. \end{align*} |
After applying the Schwarz's inequality, we make
\begin{align*} &\frac12 \frac{\rm d}{{\rm d}t} |\!|\!| \breve{\varrho}^{(l,k)}(t) |\!|\!|^2 + \frac{D}{2} |\!|\!| \breve{\varrho}^{(l+1,k)} (t)|\!|\!|^2 \leq c_{69} |\!|\!| \breve{\varrho}^{(l,k)} (t)|\!|\!|^2 + C(D,D^\prime), \end{align*} |
where
From these considerations, the sequence
By Lemma 6.2, we see that
\begin{align} \int_0^T {\rm d}t \int_\Omega \Biggl\{ \frac{\partial \varrho_{(D)}}{\partial t}+\omega \frac{\partial \varrho_{(D)}}{\partial \theta} -D\frac{\partial^2 \varrho_{(D)}}{\partial \theta^2} + \frac{\partial}{\partial \theta}& \Bigl( F[\varrho_{(D)},\varrho_{(D)}] \Bigr) \Biggr\} h(\theta,t) \; {\rm d}\theta =0 \notag \\ & \forall (x, \omega) \in {\bf{R}}^2, \end{align} | (6.11) |
In virtue of (6.9)-(6.10), if we make
\begin{align*} \int_0^T {\rm d}t \int_\Omega \Biggl\{ \frac{\partial \varrho_{(D)}}{\partial t}+\omega &\frac{\partial \varrho_{(D)}}{\partial \theta} -D\frac{\partial^2 \varrho_{(D)}}{\partial \theta^2} \Biggr\} h(\theta,t) {\rm d}\theta \\ & \rightarrow \int_0^T {\rm d}t \int_\Omega \Biggl\{ \frac{\partial \hat{\varrho}}{\partial t}+\omega \frac{\partial \hat{\varrho}}{\partial \theta} \Biggr\} h(\theta,t) {\rm d}\theta \ \ \forall (x, \omega) \in {\bf{R}}^2. \end{align*} |
On the other hand, thanks to the Rellich's theorem[27], we have
\varrho_{(D)} \rightarrow \hat{\varrho} \ \ {\rm in} \; L_2(0,T;\overline{\mathcal H}^0) |
strongly as
\int_0^T {\rm d}t \int_\Omega \frac{\partial}{\partial \theta} \Bigl( F[\varrho_{(D)},\varrho_{(D)}] \Bigr) h(\theta,t)\; {\rm d}\theta \rightarrow \int_0^T {\rm d}t \int_\Omega \frac{\partial}{\partial \theta} \Bigl( F[\hat{\varrho}, \hat{\varrho} ] \Bigr) h(\theta,t) \; {\rm d}\theta |
holds. Thus, we arrive at
\begin{align} &\int_0^T {\rm d}t \int_\Omega \Biggl\{ \frac{\partial \hat{\varrho}}{\partial t}+\omega \frac{\partial \hat{\varrho}}{\partial \theta} + \frac{\partial}{\partial \theta} \Bigl( F[\hat{\varrho},\hat{\varrho}] \Bigr) \Biggr\} h(\theta,t) {\rm d}\theta =0, \end{align} | (6.12) |
which means that
\begin{align} &-\varrho_{0}(\theta;x,\omega) h(\theta,0) -\int_0^T {\rm d}t \int_\Omega \varrho_{(D)} (\theta,t;x,\omega) \frac{\partial h}{\partial t} (\theta,t) \; {\rm d}\theta \notag \\ & \ \ \ \ + \int_0^T {\rm d}t \int_\Omega \Biggl\{ \omega \frac{\partial \varrho_{(D)}}{\partial \theta} -D\frac{\partial^2 \varrho_{(D)}}{\partial \theta^2} + \frac{\partial}{\partial \theta} \Bigl( F[\varrho_{(D)},\varrho_{(D)}] \Bigr) \Biggr\} h(\theta,t) \; {\rm d}\theta =0, \end{align} | (6.13) |
\begin{align} -\hat{\varrho}(\theta,0;x,\omega) h(\theta,0) -&\int_0^T {\rm d}t \int_\Omega \hat{\varrho} (\theta,t;x,\omega) \frac{\partial h}{\partial t} (\theta,t) \; {\rm d}\theta \notag \\ & + \int_0^T {\rm d}t \int_\Omega \Biggl\{ \omega \frac{\partial \hat{\varrho}}{\partial \theta} + \frac{\partial}{\partial \theta} \Bigl( F[\hat{\varrho},\hat{\varrho}] \Bigr) \Biggr\} h(\theta,t) \; {\rm d}\theta =0, \end{align} | (6.14) |
respectively. Comparing (6.13) and (6.14) with the aid of (6.9)-(6.10) implies
Theorem 6.3. Let
In this paper, we discussed the mathematical analysis of the nonlinear Fokker-Planck equation of Kuramoto's non-local coupling model of oscillators. We first showed the local and global-in-time solvability, and then the nonlinear asymptotic stability of the incoherent state. Finally, we verified the existence of the vanishing diffusion limit solution as the diffusion coefficient tends to zero.
Our future work will be concerned with the mathematical stability analysis of the chimera state of this model and the coupled oscillator model on the complex graph. We will also tackle the bifurcation problem.
[1] | Chimera States for Coupled Oscillators. Phys. Rev. Lett. (2004) 93: 174102. |
[2] |
Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. (2008) 101: 084103. ![]() |
[3] | Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. (2005) 77: 137-185. |
[4] |
Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. (67) 1992: 313-330. ![]() |
[5] |
A proof of the Kuramoto conjecture for a bifurcation structure of the infinite dimensional Kuramoto model. Ergod. Theory Dyn. Syst. (2015) 35: 762-834. ![]() |
[6] |
Amplitude expansions for instabilities in populations of globally-coupled oscillators. J. Stat. Phys. (1994) 74: 1047-1084. ![]() |
[7] |
Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings. Physica D (1999) 125: 1-46. ![]() |
[8] |
Population dynamics of randomly interacting self-oscillators. Ⅰ. Tractable models without frustration. Prog. Theo. Phys. (1987) 77: 622-634. ![]() |
[9] |
Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B (2008) 61: 485-491. ![]() |
[10] | C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 2009. |
[11] |
Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation. J. Diff. Eq. (2015) 259: 2430-2457. ![]() |
[12] |
Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation. J. Stat. Phys. (2015) 160: 477-496. ![]() |
[13] | H. Honda and A. Tani, Mathematical analysis of synchronization from the perspective of network science, to appear in Mathematical Analysis of Continuum Mechanics and Industrial Applications (Proceedings of the international conference CoMFoS15) (eds. H. Itou et al.), Springer Singapore, (2017). |
[14] |
Frequency synchronization in a random oscillator network. Phys. Rev. E (2004) 70: 026116. ![]() |
[15] |
Noise-induced turbulence in nonlocally coupled oscillators. Phys. Rev. E (2007) 75: 036209, 17pp.. ![]() |
[16] |
From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation. Phys. Rev. E (2014) 89: 010901. ![]() |
[17] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Int. Symp. on Mathematical problems in theoretical physics (eds. H. Araki), Springer, New York, 39 (1975), 420-422. |
[18] |
Rhythms and turbulence in population of chemical oscillations. Physica A (1981) 106: 128-143. ![]() |
[19] |
(1984) Chemical Oscillations, Waves, and Turbulence. Berlin: Springer-Verlag. ![]() |
[20] |
Mean-field theory revives in self-oscillatory fields with non-local coupling. Prog. Theor. Phys. Suppl. (2006) 161: 127-143. ![]() |
[21] | Y. Kuramoto, Departmental Bulletin Paper, (Japanese), Kyoto University, 2007. |
[22] | Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. (2002) 5: 380-385. |
[23] | O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968. |
[24] | Existence and uniqueness of solutions to the KuramotoSakaguchi nonlinear parabolic integrodifferential equatio. Differential and Integral Equations (2000) 13: 649-667. |
[25] | Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution. Differential and Integral Equations (2014) 27: 879-8992. |
[26] |
Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media (2014) 9: 33-64. ![]() |
[27] | (1972) Non-Homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag. |
[28] | The initial value problem for the equations of motion of viscous and heat conductive gases. J. Math. Kyoto Univ. (1980) 20: 67-104. |
[29] | Diffusion-induced instability and chaos in random oscillator networks. Phys. Rev. E (2009) 79: 036214. |
[30] |
H. Risken, The Fokker-Planck Equation, Springer, Berlin, 1989. doi: 10.1007/978-3-642-61544-3
![]() |
[31] | Wave propagation in nonlocally coupled oscillators with noise. Prog. Thoer. Phys. Suppl. (2003) 150: 435-438. |
[32] |
On the Korteweg-de Vries equation. J. Math. Anal. Appl. (1970) 29: 569-579. ![]() |
[33] | R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach, New York, 1967. |
[34] |
Stability of incoherent in a population of coupled oscillators. J. Stat. Phys. (1991) 63: 613-635. ![]() |
[35] |
(1997) nfinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag. ![]() |
[36] | Parabolic regularizations for the generalized Kortewegde Vries equation. Funkcialaj Ekvacioj (1971) 14: 89-110. |
[37] |
Biological rhythms and the behavior of populations of coupled oscillators. J. Theoret. Biol (1967) 16: 15-43. ![]() |
1. | Hirotada Honda, On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay, 2023, 19, 1556-1801, 1, 10.3934/nhm.2024001 |