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Abstract. In this paper, we focus on the global-in-time solvability of the

Kuramoto-Sakaguchi equation under non-local coupling. We further study the

nonlinear stability of the trivial stationary solution in the presence of suf-
ficiently large diffusivity, and the existence of the solution under vanishing

diffusion.

1. Introduction. The theoretical study of weakly coupled limit cycle oscillators
is being actively developed in several research fields. For example, in statistical
physics, various models are being developed, whereas in network science, synchro-
nization on complex networks is attracting attention. As we state later, mathemat-
ical analysis of this field is being promoted, especially by those who are concerned
with functional equations. Furthermore, this phenomenon is applied to various areas
of engineering, including neural networks, bio-sciences, and network engineering [9].

Limit cycle oscillators, which are also called nonlinear oscillators, are different
from harmonic oscillators, whose limit cycle is vulnerable to the perturbation forces
from outside. The synchronization phenomenon is another feature of coupled limit
cycle oscillators under specific conditions.

As is well known, such a phenomenon was first discovered by Huygens in the
17th century, who devised the pendulum clock for navigation officers. The physical
formulation of this phenomenon was rigorously discussed later in the 1960’s. In
1967, Winfree [37] proposed an attractive formulation, in which he successfully
and rigorously defined the phase of the oscillator. He also revealed the region of
synchronization in the sense of the phase space.

Based on Winfree’s contribution, Kuramoto [19] proposed a simplified but more
sophisticated model, which is called the Kuramoto model. The features of his ap-
proach are phase reduction and mean field approximation. His discussion begins
with the usual dynamical system:

dX

dt
= F(X),

where X is the n-dimensional vector, and F is the n-dimensional vector valued
function. Based on Winfree’s theory, Kuramoto defined the phase of this system as
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that satisfying

dφ

dt
= ω,

where ω = 2π/T0 is the frequency of the oscillator with period T0. From this
definition, he derived the temporal behavior of the phase as

dφ

dt
= ∇φ · F(X),

which is the start point of phase reduction. In an N -oscillator system, he described
the temporal evolution of the phase (or disturbance of phase) of each oscillator:

dφj
dt

= ωj +

N∑
k=1

Kjk sin(φj − φk) (j = 1, 2, . . . N), (1.1)

where φj (j = 1, 2, . . . , N) is the phase or phase disturbance of the j-th oscillator,
ωj , the natural frequency (for the definition of the natural frequency, see p.67 in [19],
for instance), and Kjk, the coupling strength between the jth and kth oscillators.

Kuramoto [17][19] further sophisticated (1.1) by applying the mean field approx-
imation and the assumption Kjk = K/N , which means that all oscillators couple
with uniform strength (Kuramoto called this model as global coupling [20]):

dφj
dt

= ωj +Kr sin(η − φj) (j = 1, 2, . . . N),

r exp(iη) =
1

N

N∑
j=1

exp(iφj),
(1.2)

where r = r(t) is the order parameter, and η is the average phase. Note that
i =
√
−1 hereafter. As is well known, r ∈ [0, 1] measures the coherence strength of

the oscillators.
Since this model is sufficiently simple for rigorously analyzing and simulating

on computers, numerous investigations have been conducted on it. For instance,
Daido [8] derived a model that replaces the term sin θ by a more general function,
and Bonilla [4] revealed stability with the aid of asymptotic expansion. Recently,
Li [26] considered the Kuramoto-type model with intrinsic frustrations.

As for the stability analysis, the work by Strogatz and Mirollo [34] is the first one,
which concerns the spectrum of the incoherent state as the number of oscillators
tends to infinity. Later, Crawford [6][7] applied the center manifold reduction to
verify the stability of incoherence in detail.

Due to the limitation of space, we refer the reader to the survey by Acebrón [3]
of this research area.

From the perspective of network science, it is interesting to generalize the network
topology and distribution of coupling strength. Ichinomiya [14] proposed a model
on random networks, and Nakao [29] numerically analyzed a model on a complex
network.

Although (1.2) is a system of ordinary differential equations, adding white noise
to it makes it possible to apply partial differential equation-based analysis. We



KURAMOTO-SAKAGUCHI EQUATION WITH NON-LOCAL COUPLING 27

consider 

dφj
dt

= ωj +Kr sin(η − φj) + ξj(t)

≡ V1(φj , t, ωj) + ξj(t) (j = 1, 2, . . . N),

r exp(iη) =
1

N

N∑
j=1

exp(iφj),

(1.3)

where {ξj(t)}Nj=1 are the independent Wiener processes satisfying

< ξj(t) >= 0, < ξj(t)ξk(τ) >= 2Dδ(t− τ)δjk,

< · > stands for the mean value, D > 0, the diffusion coefficient, δ(·), the Dirac’s
delta function, and δjk, the Kronecker’s delta. In virtue of the theory of stochastic
processes (see Remark 1 below), the Fokker-Planck equation, which describes the
temporal behavior of the probability density of particles subject to (1.3) [10][30][33],
is written as 

∂%

∂t
+

∂

∂θ

[(
ω +Kr sin(η − θ)

)
%

]
−D∂

2%

∂θ2
= 0,

r exp(iη) =

∫
R

∫ 2π

0

exp(iθ)%(θ, t;ω′)g(ω′)dφ dω′,

(1.4)

where %(θ, t;ω) is the probability distribution function of the oscillators’ phase θ at
time t with natural frequency ω, and g(ω) is the probability distribution function
of ω. The independent variables θ and t represent the phase of oscillators and time,
respectively, and we regard ω as a parameter.

Remark 1. Let X(t) be a Markovian process defined on t > 0, and {Kj(x)}∞j=1 be
a series of its intensity defined by

Kj(x) = lim
τ→0

〈
(X(τ)−X(0))j

〉
/τ.

Then, the probability distribution function w(x, t) of X(t) at time t satisfies [33]

∂w(x, t)

∂t
=

∞∑
j=1

1

j!

(
− ∂

∂x

)j{
Kj(x)w(x, t)

}
. (1.5)

A Markovian process satisfying

Kj(x) = 0 (j = 3, 4, . . .)

is called to be continuous. One example of this type of stochastic process is the one
driven by the Brownian motion, like (1.3). In this case, (1.5) becomes

∂w(x, t)

∂t
= − ∂

∂x

[
K1(x)w(x, t)

]
+

1

2

∂2

∂x2

[
K2(x)w(x, t)

]
,

which is the Fokker-Planck equation. Applying this argument to (1.3), where K1 =
V1 and K2 = 2D, the corresponding Fokker-Planck equation is written as

∂%

∂t
+

∂

∂θ

(
V1%
)
−D∂

2%

∂θ2
= 0,

which corresponds to (1.4)1 (hereafter, we represent the ith equation of (a.b) as
(a.b)i).
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By substituting (1.4)2 into (1.4)1, we have a single integro-differential equation
with suitable boundary and initial conditions:



∂%

∂t
+ ω

∂%

∂θ
+K

∂

∂θ

[
%(θ, t;ω)

∫
R

∫ 2π

0

sin(φ− θ)%(φ, t;ω′)g(ω′)dφdω′

]
−D∂

2%

∂θ2
= 0 θ ∈ (0, 2π), t > 0, ω ∈ R,

∂i%

∂θ

∣∣∣
θ=0

=
∂i%

∂θ

∣∣∣
θ=2π

(i = 1, 2), t > 0, ω ∈ R,

%
∣∣
t=0

= %0 θ ∈ (0, 2π), ω ∈ R,

(1.6)

which is the so-called Kuramoto-Sakaguchi equation [24]. This approach enables
macroscopic analysis when a system consists of numerous oscillators. As we state
later, (1.6) with D = 0 has also been discussed in past arguments.

Kuramoto also presented a direction to take the spatial validity of coupling
strength into account in his original model, which he called the non-local coupling
model. In it, the strength of the connection between oscillators depends on the
distance between them [21]. Due to the varying strength of connections, it was
shown that characteristic patterns, such as a chimera pattern, emerge [21][22]. Nu-
merical studies of the chimera state have also been conducted, mainly by Abrams
and Strogatz [1][2].

In spite of numerous contributions concerning numerical simulations, there have
been few studies regarding the mathematical analysis of this model. In this pa-
per, we discuss the existence and uniqueness of the global-in-time solution to this
model. We also discuss the nonlinear stability of the trivial stationary solution and
existence of the vanishing diffusion limit. We note that the vanishing diffusion limit
is discussed in the function spaces of higher order derivative than that by Ha and
Xiao’s [11] by applying a different approach.

The remainder of this paper is organized as follows. In the next section, we
formulate the problem of the phase reduction of non-local coupling oscillators, in-
cluding both with and without diffusion. In Section 3, we introduce related work.
In Sections 4 and 5, we are concerned with the local and global-in-time solvability
of the problem and the stability of the stationary incoherent solution, respectively.
We discuss the existence of the solution in the vanishing diffusion limit in Section
6, and provide a conclusion and discuss remaining issues in Section 7.

2. Formulation of problem. In this section, we formulate the problem to be
considered. We begin the discussion with the temporal evolution of the phase with
additive noise under non-local coupling [15][20][31]:

dφ

dt
(x, t) = ω +

∫
R

G(x− y)Γ(φ(x, t)− φ(y, t))dy + ξ(x, t), (2.1)

where x and y stand for the location of each oscillator; Γ(·), the phase coupling
function which is periodic with respect to its argument and depend only on the
difference of each oscillator’s phase, and G(·), its strength; ω, the natural frequency
of each oscillator, and ξ(x, t), the Wiener process satisfying:

< ξ(x, t)ξ(y, τ) >= 2Dδ(x− y)δ(t− τ)
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with D being the diffusion coefficient. Kuramoto mentioned that the non-local
coupling model encompasses the original Kuramoto model as a specific case of (2.1)
when G(x) is a constant (p.132 in [20], [21]).

It is also to be noted that sin(φj − φk) in (1.1) is the first Fourier mode approx-
imation of the periodic function Γ(φj − φk) [19]. It is possible to adopt sin(·) for
the non-local coupling case as in [16], but in many cases, they apply Γ(·) for the
non-local coupling model. By regarding ω and φ as random variables, the average
of the second term in the right-hand side is written as [15][16][18]∫

R

G(x− y)dy

∫
R

g(ω′)dω′
∫ 2π

0

Γ(φ− φ′)%(φ′, t; y, ω′) dφ′,

where g(·) is the probability distribution function of the natural frequency, and
% = %(·, t;x, ω) is the probability distribution function of the phase at time t, with
location x and natural frequency ω of each oscillator. We replace the second term
in the right-hand side of (2.1) with the representation above to obtain:

dφ

dt
= ω +

∫
R

G(x− y)dy

∫
R

g(ω′)dω′
∫ 2π

0

Γ(φ− φ′)%(φ′, t; y, ω) dφ′ + ξ(x, t)

≡ V2(φ, t, x, ω) + ξ(x, t). (2.2)

If we consider the case that G(x) is a constant K in (2.1), the average of the second
term in the right-hand side is

K

∫
R

g(ω′)dω′
∫ 2π

0

Γ(φ− φ′)%(φ′, t;ω′)dφ′,

and (2.2) becomes

dφ

dt
= ω +K

∫
R

g(ω′)dω′
∫ 2π

0

Γ(φ− φ′)%(φ′, t;ω)dφ′ + ξ(x, t),

which corresponds to (1.3) as a infinite population limit of it.
Note that (2.2) is the mean field approximation to (2.1), in the sense that we

replace the second term of the right-hand side of (2.1) with its average. However,
while (1.4)2 is derived by taking the infinite limit of oscillators’ population, this
representation of the average is theoretically exact.

By tracing the same argument as we derived (1.4), the Fokker-Planck equation
corresponding to (2.2) is written as (hereafter we denote the phase by θ)

∂%

∂t
+

∂

∂θ
(V2%)−D∂

2%

∂θ2
= 0.

Together with suitable initial and boundary conditions, the problem correspond-
ing to (2.2) is written as [15][31].



∂%

∂t
+

∂

∂θ
(ω%) +

∂

∂θ

(
F [%, %]

)
−D∂

2%

∂θ2
= 0

θ ∈ (0, 2π), t > 0, (x, ω) ∈ R2,

∂i%

∂θi

∣∣∣
θ=0

=
∂i%

∂θi

∣∣∣
θ=2π

(i = 0, 1), t > 0, (x, ω) ∈ R2,

%|t=0 = %0 θ ∈ (0, 2π), (x, ω) ∈ R2,

(2.3)
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where

F [%1, %2] ≡ %1(θ, t;x, ω)

∫
R

G(x− y)dy

∫
R

g(ω′)dω′
∫ 2π

0

Γ(θ − φ)%2(φ, t; y, ω′) dφ.

(2.4)

It is to be noted that, in [15], [21] and [31], they deal with problem (2.3) with
F [%1, %2] replaced with

F̃ [%1, %2] ≡ %1(θ, t;x)

∫
R

G(x− y)dy

∫ 2π

0

Γ(θ − φ)%2(φ, t; y) dφ,

which corresponds to the case g(ω′) = δ(ω′−ω). This means that all the oscillators
have the same natural frequency, and % does not depend on ω. In other words, ω
is not regarded as a random variable. However, it is generally reasonable to apply
(2.3)–(2.4) as Kawamura [16] did, as in the original Kuramoto model ((1.4) or (1.6)).
Therefore, we employ (2.3) together with (2.4) in this paper.

In (2.3), the unknown function is %, and the independent variables are θ and t,
which stand for the phase and time, respectively. We regard x and ω as parameters.
We also use the notations

F (k)[%1, %2] ≡

%1(θ, t;x, ω)

∫
R

G(x− y)dy

∫
R

g(ω′)dω′
∫ 2π

0

Γ(k)(θ − φ)%2(φ, t; y, ω′) dφ

(k = 1, 2, . . .).

Note that we denote the j-th derivative of Γ(θ) by Γ(j) (j = 1, 2, . . .), especially the
first derivative by Γ′(θ). Obviously, Γ(0) = Γ.

As in the original Kuramoto model, the vanishing diffusion case is worth consid-
ering:

∂%

∂t
+

∂

∂θ
(ω%) +

∂

∂θ

(
F [%, %]

)
= 0 θ ∈ (0, 2π), t > 0, (x, ω) ∈ R2,

∂i%

∂θi

∣∣∣
θ=0

=
∂i%

∂θi

∣∣∣
θ=2π

(i = 0, 1), t > 0, (x, ω) ∈ R2,

%|t=0 = %0 θ ∈ (0, 2π), (x, ω) ∈ R2.

(2.5)

It is obvious that %̄ = 1/2π is the trivial stationary solution to (1.6), (2.3) and (2.5).
Moreover, on the basis of appropriate assumptions on %0, g and G, the following
properties of % will be derived (see, for instance, Lemma 2.1 in [11], Lemmas 1.1–1.2
in [24] and Lemma 4.3 of this paper):

%(θ, t;x, ω) ≥ 0 ∀θ ∈ (0, 2π), t ∈ (0, T ), (x, ω) ∈ R2,∫ 2π

0

%(θ, t;x, ω) dθ = 1 ∀t ∈ (0, T ), (x, ω) ∈ R2

for arbitrary T > 0, which are natural as the properties of the probability distribu-
tion function. In this paper, we discuss the solvability and some stability properties
of (2.3), as well as the convergence of the solution of (2.3) to that of (2.5) as D
tends to zero.
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3. Related work. Mathematical arguments concerning the solvability of the
Kuramoto-Sakaguchi equation (1.6), which corresponds to the original Kuramoto
model (1.3), was first presented by Lavrentiev et al. [24][25]. In their former
work [24], they constructed the classical global-in-time solution when the support
of g(ω) is compact.

Later, they removed this restriction [25] by applying the a-priori estimates de-
rived from the energy method. They also studied the regularity of the unknown
function with respect to ω. Concenring the stability, a pioneering work was con-
ducted by Strogatz and Mirollo [34], who were concerned with the linear stability
of the trivial stationary solution %̄ = 1/2π. Through the investigation of the spec-
trum of the linearized operator, they verified the existence of the critical coupling
strength over which the coherent state becomes stable. Recently, Ha and Xiao [11]
discussed the nonlinear stability of %̄ and convergence of the solution as D tends
to zero. However, their estimate remained in the space L∞ with respect to θ, as
we discuss in detail in Section 6. They also verified the instability of %̄ when the
support of g(ω) is sufficiently narrow [12].

For the case of vanishing diffusion D = 0 in (1.6), Chiba [5] argued the nonlin-
ear stability of the trivial stationary solution under the assumption of unbounded
support of g(ω).

Concerning the non-local coupling model, however, there are no mathematical
arguments as far as we know.

4. Global-in-time solvability. In this section, we discuss the global-in-time solv-
ability of (2.3). We first prepare the definitions of function spaces.

4.1. Function spaces. In this subsection, we define the function spaces used
throughout this paper. Let T > 0, and G be an open set in R. Hereafter, L2(G)
stands for a set of square-integrable functions defined on G, equipped with the norm

‖u‖ ≡
∫
G
|u(x)|2 dx.

The inner product is defined by

(u1, u2) ≡
∫
G
u1(x)u2(x) dx,

where z̄ denotes the complex conjugate of z ∈ C.
For simplicity, we denote the L2-norm of a function f(θ, t;x, ω) with respect to

θ merely by ‖f‖ or ‖f(·, t;x, ω)‖.
Hereafter, let us use the notation Ω ≡ (0, 2π) for simplicity.
By C(G) and Ck(G)

(
k ∈ N

⋃
{+∞}

)
, we mean the spaces of real continuous

and k-times continuously differentiable functions on Ω, respectively. The notation
C∞0 (G) denotes a set of C∞(G) functions with a compact support in G.

For a Banach space E with the norm ‖ · ‖E , we denote the space of E-valued
measurable functions u(t) on the interval (a, b) by Lp(a, b;E), whose norm is defined
by

‖u‖Lp(a,b;E) ≡


(∫ b

a

‖u(t)‖pE dt

)1/p

(1 ≤ p <∞),

ess sup
a≤t≤b

‖u(t)‖E p =∞.
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Likewise, we denote by C(a, b;E) (and by Ck(a, b;E)) the space of continuous
functions (resp. k-times continuously differentiable functions) from (a, b) into E.

Subject to the definition by Temam [35], we say, for a fixed parameter ω ∈ R, a
2π-periodic function

u(θ;ω) =

∞∑
n=−∞

an(ω)einθ,

which is expanded in the Fourier series, belongs to the Sobolev space Hm(Ω) (m >
0) when it satisfies

‖u(·;ω)‖2m ≡
∞∑

n=−∞
(1 + |n|2)m

∣∣an(ω)
∣∣2 <∞.

Due to the definition of the Fourier series, the Fourier coefficients an (n = ±1,±2, . . .)
of a function u are defined by

an(ω) =
1

2π

∫
Ω

u(θ;ω)einθ dθ.

Note that in case m ∈ N, the norm above is equal to the usual Sobolev norm

‖u(·;ω)‖2Wm
2 (Ω) =

∑
k≤m

∥∥∥∂ku
∂θk

(·;ω)
∥∥∥2

L2(Ω)
.

We also introduce the notation C∞x,ω(R2) to denote a set of functions defined on

R2, which are infinitely smoothly differentiable with respect to both x and ω. Let
us introduce the following notations:

Hm ≡
{
u(θ;x, ω) ∈ C∞x,ω(R2;Hm)

}
,

L
(1)
1 ≡

{
u(·;x, ω) ∈ L1(Ω)

∣∣∣u ≥ 0,

∫
Ω

u(θ;x, ω) dθ = 1 (x, ω) ∈ R2
}
,

L
(1)
1 (T ) ≡

{
u(·, t;x, ω) ∈ L1(Ω)∣∣∣u ≥ 0,

∫
Ω

u(θ, t;x, ω) dθ = 1 t ∈ (0, T ), (x, ω) ∈ R2
}
,

where T > 0 is an arbitrary number. In addition, we use notations |||u|||m ≡
supx,ω ‖u(·;x, ω)‖m and |||u||| ≡ |||u|||0 for brevity. Hereafter, c’s represent constants in
the estimate of some quantities. When we denote c(t) with suffixes, it depends on t.

For simplicity, we hereafter use notations f (j,k) ≡
(
∂
∂θ

)j(
∂
∂t

)k
f (j, k = 0, 1, 2, . . .)

for a function f = f(θ, t) in general.

4.2. Local-in-time solution. First, we state the existence and uniqueness of the
local-in-time solution to problem (2.3).

Theorem 4.1. Let us assume m ∈ N, and the following issues:
(i) Γ(θ) is 2π-periodic, and satisfies |Γ(k)(θ)| ≤ Ck (k = 0, 1, 2, . . . , 2m);

(ii)
∫ 2π

0
Γ(k)(θ) dθ = 0 (k = 0, 1, 2, . . . , 2m);

(iii)‖Γ(k)‖ = C̃k < +∞ (k = 0, 1, 2, . . . , 2m);

(iv) g(ω) ∈ L(1)
1 ;

(v) G(x) ∈ L1(R)
⋂
L2(R)

⋂
C∞(R) satisfies G ≥ 0,

∫
R

G(x) dx ≤M0;

(vi) %0 ∈ H
2m⋂

L
(1)
1 .
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Then, there exists a certain T∗ > 0 and a solution %(θ, t;x, ω) to (2.3) on (0, T∗)
such that

% ∈ V2m(T∗),

where

V2m(T ) ≡

{
% ∈ L∞(0, T ;H2m

)
⋂
C1(0, T ;H2m−2

) . . .
⋂
Cm(0, T ;H0

)

⋂
L

(1)
1 (T )

∣∣∣%(1,0) ∈ L2(0, T ;H2m
)

}
.

Before proceeding to the proof of Theorem 4.1, we prepare the following lemmas.

Lemma 4.2. Let f = f(θ, t;x, ω) be a function satisfying |||f(t)||| < ∞ ∀t > 0 in
general. Then, the following estimates hold:
(i) If f(θ, t;x, ω) ≥ 0 and

∫
Ω
f(θ, t;x, ω) dθ = 1 for each (t, x, ω), then

sup
x,ω

∣∣∣∣∣
∫
R

G(x− y)dy

∫
R

g(ω)dω

∫
Ω

Γ(k)(θ − φ)f(φ, t; y, ω) dφ

∣∣∣∣∣ ≤ CkM0

(k = 0, 1, 2, . . . , 2m),

(ii)

sup
x,ω

∣∣∣∣∣
∫
R

G(x− y)dy

∫
R

g(ω)dω

∫
Ω

Γ(k)(θ − φ)f(φ, t; y, ω) dφ

∣∣∣∣∣
≤ C̃kM0|||f(t)||| (k = 0, 1, 2, . . . , 2m),

(iii)

sup
x,ω

∥∥∥∥∥
∫
R

G(x− y)dy

∫
R

g(ω)dω

∫
Ω

Γ(k)(θ − φ)f(φ, t; y, ω) dφ

∥∥∥∥∥
≤ 2πC̃kM0|||f(t)||| (k = 0, 1, 2, . . . , 2m).

Proof. Here we only show the proof of (ii). By virtue of the Schwarz inequality, we
have

sup
x,ω

∣∣∣∣∣
∫
R

G(x− y)dy

∫
R

g(ω)dω

∫
Ω

Γ(k)(θ − φ)f(φ, t; y, ω) dφ

∣∣∣∣∣
≤ sup

x,ω
‖f(·, t;x, ω)‖‖Γ(k)(θ − ·)‖

∣∣∣∣∣
∫
R

G(x− y)dy

∣∣∣∣∣
∣∣∣∣∣
∫
g(ω)dω

∣∣∣∣∣
≤ |||f(t)|||‖Γ(k)‖ sup

x

∣∣∣∣∣
∫
R

G(x− y) dy

∣∣∣∣∣
≤ C̃kM0|||f(t)|||.

The estimate (iii) is obtained in a similar manner, and statement (i) is obtained
easily.
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Hereafter, for arbitrary T > 0, we use the notation

V2m
(∗) (T ) ≡

{
% ∈ L∞(0, T ;H2m

)
⋂
C1(0, T ;H2m−2

) . . .
⋂
Cm(0, T ;H0

)

∣∣∣%(1,0) ∈ L2(0, T ;H2m
)

}
.

Lemma 4.3. For an arbitrary T > 0, if there exists a solution % to (2.3) that be-
longs to V2m

(∗) (T ), then the following issues hold:

(i) %(θ, t;x, ω) ≥ 0 a.e. on θ ∈ Ω, t ∈ (0, T ), (x, ω) ∈ R2;

(ii)

∫
Ω

%(θ, t;x, ω) dθ = 1 t ∈ (0, T ), (x, ω) ∈ R2.

Remark 2. If m in Theorem 4.1 is large enough (m ≥ 2), then the first statement
in Theorem 4.1 holds in the pointwise sense due to the Sobolev’s embedding theorem
and maximum principle (see [11]).

Proof. We verify the statement by using the Stampacchia’s truncation method. Let
us define

%+ ≡ (|%|+ %)/2 ≥ 0, %− ≡ (|%| − %)/2 ≥ 0.

It is obvious that %+ and %− stand for the positive and negative parts of %, respec-
tively, satisfying % = %+ − %−. Then, by multiplying (2.3)1 by %− and integrating
over Ω, we obtain

1

2

d

dt
‖%−(·, t;x, ω)‖2 +D

∥∥∥∥∂%−∂θ (·, t;x, ω)

∥∥∥∥2

≤ c41‖%−(·, t;x, ω)‖2.

Here we used the estimate:∫
Ω

%−(θ, t;x, ω)
∂

∂θ

(
F [%, %]

)
dθ

= −1

2

∫
Ω

|%−(θ, t;x, ω)|2

×

(∫
R

G(x− y)dy

∫
R

g(ω′)dω′
∫

Ω

Γ′(θ − φ)%(φ, t; y, ω)dφ

)
dθ

≤ C1M0

2
‖%−(·, t;x, ω)‖2,

which is derived by integration by parts and Lemma 4.2. Taking into account
%−
∣∣
t=0

= 0, we arrive at %− = 0 on t ∈ (0, T ) by virtue of the Gronwall’s inequality.
This implies the first statement. The second one is proved by direct calculation
(see, [24]), and we omit the proof.

4.3. Proof of Theorem 4.1. We carry out the proof of Theorem 4.1 in three steps
below.
(i) Existence of a solution % that belongs to V2m

(∗) (T∗) on a certain time interval

(0, T∗);

(ii) proof of % ∈ L(1)
1 (T∗), and consequently % ∈ V2m(T∗);

(iii) uniqueness of the solution in V2m(T∗).
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4.3.1. Existence of solution. We apply the semi-discrete approximation used by
Sjöberg [32] and Tsutsumi [36] for the study of the KdV equation. Let us take
N ∈ N, h = 2π/N , θj = jh (j = 1, 2, . . . , N) and denote as ∂+ and ∂− the
difference operators defined by

h∂+f(θj) = f(θj+1)− f(θj), h∂−f(θj) = f(θj)− f(θj−1).

Now, instead of problem (2.3), we consider the following differential-difference
equation: 

∂%N
∂t

+ ω∂−%N + ∂−(FN%N )−D∂+∂−%N = 0,

%N (θj , t) = %N (θj+N , t) j = 1, 2, . . . , N, t > 0,

%N (θj , 0;x, ω) = %0(θj ;x, ω) j = 1, 2, . . . , N,

(4.1)

where

FN (θ) =

N∑
j′=1

∫
R

hG(x− y)dy

∫
R

g(ω′)Γ(θ − φj′)%N (φj′ , t; y, ω
′) dω′

(j = 1, 2, . . . , N).

Note that this function is defined on the continuous interval with respect to θ.
By virtue of the estimate (4.9) we will verify later, it is clear that problem (4.1)

above has a unique solution %N for every N ∈ N. Then we derive some bounds for
%N and its differences, which are uniform with respect to N . To do that, in the
space of grid-functions we define the scalar product and the norm by

(f1, f2)h ≡
N∑
j=1

f1(θj)f2(θj)h, ‖f‖2h ≡ (f, f)h,

respectively. As Sjöberg [32] and Tsutsumi [36] did, we assume N = 2n + 1 with
n ∈ N, and then { 1√

2π
eikθ

}n
k=−n

forms an orthonormal basis with respect to the scalar products (·, ·)h and (·, ·). The
following lemmas are due to the work by Sjöberg [32] and Tsutsumi [36]; thus, we
omit the proof here.

Lemma 4.4. If f1 is a real N -periodic grid-function, i.e., if f1(xj) = f1(xj+N ) (j =
1, 2, . . . , N), and if f2(x) is another real N -periodic grid-function, then the following
equalities hold:

(f1, ∂+f2)h = −(∂−f1, f2)h, (f1, ∂−f2)h = −(∂+f1, f2)h, (4.2)

(∂+f1, f1)h = −h
2
‖∂+f1‖2h. (4.3)

Lemma 4.5. Let τ1 and τ2 be non-negative integers with τ1 + τ2 = τ , and ψ, a
function of the form

ψ(θ) =
1√
2π

n∑
k=−n

ake
ikθ.

Then,

c42

∥∥∥∥∂τψ∂xτ

∥∥∥∥2

≤ ‖∂τ1+ ∂
τ2
− ψ‖2 = ‖∂τ1+ ∂

τ2
− ψ‖2h ≤ c43

∥∥∥∥∂τψ∂xτ

∥∥∥∥2

.
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holds with some constants c4i (i = 2, 3).

For the proof of Lemma 4.5, see Lemma 2.2 in the work by Sjöberg [32]. In
addition, the following lemma is useful.

Lemma 4.6. Let f = f(θ), and ψ be the discrete Fourier series of f , that is,

ψ(θ) =
1√
2π

n∑
k=−n

bke
ikθ

with bk = 1√
2π

(eikθ, f)h. Then, the discrete version of the Parseval type equality

‖∂τ1+ ∂
τ2
− ψ‖2h = ‖∂τ1+ ∂

τ2
− f‖2h

holds for non-negative integers τ1 and τ2.

Proof. We first verify the statement when τ1 = τ2 = 0. In fact, since

|ψ(θ)|2 =
1

2π

( n∑
k=−n

bke
ikθ
)( n∑

k′=−n

bk′e
−ik′θ

)
,

noting that

N∑
r=1

ei(k−k
′)θr = Nδkk′ , (4.4)

where δkk′ is the Kronecker’s delta, we have

‖ψ‖2h =
2π

N

N∑
r=1

|ψ(θr)|2

=
1

N

n∑
k,k′=−n

bkbk′
N∑
r=1

ei(k−k
′)θr

=
n∑

k=−n

|bk|2.

On the other hand, since

bk =

√
2π

N

N∑
r=1

eikθrf(θr),

we have

|bk|2 =

(√
2π

N

N∑
r=1

eikθrf(θr)

)(√
2π

N

N∑
r′=1

e−ikθr′ f(θr′)

)

=
2π

N2

N∑
r,r′=1

f(θr)f(θr′)e
ik(θr−θr′ ).
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Accordingly, by noting (4.4) again, we have

n∑
k=−n

|bk|2 =
2π

N2

N∑
r,r′=1

f(θr)f(θr′)

n∑
k=−n

eik(θr−θr′ )

=
2π

N

N∑
r=1

|f(θr)|2

= ‖f‖2h.

Finally, the statement holds in case τ1+τ2 > 0, since ∂τ1+ ∂
τ2
− ψ is the Fourier series

of ∂τ1+ ∂
τ2
− f . We verify this for (τ1, τ2) = (1, 0) for simplicity. In fact, by definition,

∂+ψ(θr) =
ψ(θr+1)− ψ(θr)

h

=
1√
2π

n∑
k=−n

(
eikθ, f

)
h

(
eikθr+1 − eikθr

h

)

=
1√
2π

n∑
k=−n

( N∑
r′=1

e−ikθr′ f(θr′)h
)(eikθr+1 − eikθr

h

)
. (4.5)

On the other hand,

1√
2π

n∑
k=−n

(
∂+f, e

ikθ
)
h
eikθr =

1√
2π

n∑
k=−n

( N∑
r′=1

he−ikθr′∂+f(θr′)
)
eikθr

=
1√
2π

n∑
k=−n

( N∑
r′=1

e−ikθr′
{
f(θr′+1)− f(θr′)

})
eikθr .

However, it is easy to see that this equals the rightmost-hand side of (4.5); therefore,
∂+ψ is the discrete Fourier series of ∂+f. For other pairs of (τ1, τ2), we are able to
show the desired statement in the similar manners.

On the basis of Lemma 4.6, we derive some estimates of %N and its differences.

Lemma 4.7. The following estimates hold:

‖%N (·, t;x, ω)‖h ≤ c4(1) ∀t > 0, (x, ω) ∈ R2,

‖∂−%N (·, t;x, ω)‖h ≤ c4(2) ∀t > 0, (x, ω) ∈ R2,

‖∂j+∂
j
−%N (·, t;x, ω)‖h ≤ c̃4(j) j = 1, 2, . . . ,m, ∀t > 0, (x, ω) ∈ R2,

where c4(k) (k = 1, 2) and c̃4(j) (j = 1, 2, . . . ,m) are positive constants independent
on t, x and ω.

Proof. Let us multiply (4.1)1 by %N . Then, by virtue of Lemma 4.2, we have

1

2

d

dt
‖%N (·, t;x, ω)‖2h +

ωh

2
‖∂+%N (·, t;x, ω)‖2h +D‖∂−%N (·, t;x, ω)‖2h

≤
∣∣∣(∂−(FN%N ), %N

)
h

∣∣∣. (4.6)

Making use of

∂−(f1f2) = f2(∂−f1) + (f1)−∂−f2
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for two real N -periodic grid-functions f1 and f2 in general, where (f1)−(θj) =
f1(θj−1), we have(
∂−(FN%N ), %N

)
h

=
(
%N∂−FN , %N

)
h

+
(
FN∂−%N , %N

)
h

≤ C̃1M0 sup
x
‖%N (·, t;x, ω)‖h‖%N (·, t;x, ω)‖2h

+ C̃0M0‖%N (·, t;x, ω)‖h
∣∣(∂−%N , %N )h

∣∣
≤ C̃1M0 sup

x
‖%N (·, t;x, ω)‖3h + ε‖∂−%N (·, t;x, ω)‖2h + Cε‖%N (·, t;x, ω)‖2h,

where ε is a certain positive constant, and Cε, a constant dependent on ε (hereafter
we use these notations in the same meaning). Here we have used the estimates

N∑
j′

h|Γ′(θ − φj)|2 ≤ ‖Γ′‖2 ≤ C̃2
1 ,

|FN | ≤
N∑
j′=1

∣∣∣∫
R

hG(x− y) dyΓ(θj − φj′)
∫
R

g(ω′)%N (φj′ , t; y, ω
′) dω′

∣∣∣
≤ C̃0M0‖%N (·, t;x, ω)‖h,

and by means of the mean value theorem and Schwarz’s inequality,

∂−FN =
FN (θj)− FN (θj−1)

h

=
1

h

N∑
j′=1

∫
R

hG(x− y) dy

×
∫
R

g(ω′)
{

Γ(θj − φj′)− Γ(θj−1 − φj′)
}
%N (φj′ , t; y, ω

′) dω′

=

N∑
j′=1

∫
R

hG(x− y) dy

∫
R

g(ω′)Γ′(θ0 − φj′)%N (φj′ , t; y, ω
′) dω′

≤ sup
θ

N∑
j′=1

∫
R

hG(x− y) dy

∫
R

g(ω′)Γ′(θ − φj′)%N (φj′ , t; y, ω
′) dω′

≤ C̃1M0 sup
y
‖%N (·, t; y, ω)‖h, (4.7)

where θ0 ∈ (θj−i, θj). In addition, we have used the Young’s inequality∣∣(∂−%N , %N )h
∣∣ ≤ ε‖∂−%N (·, t;x, ω)‖2h + Cε‖%N (·, t;x, ω)‖2h,

where we take ε < D. Thus, taking the supremum with respect to x in (4.6), we
arrive at

1

2

d

dt

(
sup
x
‖%N (·, t;x, ω)‖2h

)
+
ωh

2
sup
x
‖∂+%N (·, t;x, ω)‖2h + (D − ε) sup

x
‖∂−%N (·, t;x, ω)‖2h

≤ C̃1M0 sup
x
‖%N (·, t;x, ω)‖3h + Cε sup

x
‖%N (·, t;x, ω)‖2h.
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By virtue of the comparison theorem, supx ‖%N (·, t;x, ω)‖h is estimated from
above by the solution of the ordinary differential equation

1

2
y′ = C̃1M0y

3
2 + Cεy,

y
∣∣
t=0

= y0 ≡ sup
x
‖%0(·;x, ω)‖2h,

which has a solution on t ∈ (0, T∗) with some T∗ > 0, and satisfies the estimate of
the form

sup
x
‖%N (·, t;x, ω)‖h ≤ c44 t ∈ (0, T∗) (4.8)

with a constant c44 independent on ω. Next, we multiply (4.1)1 by ∂+∂−%N . With
the aid of (4.2)–(4.3), we show some of the elementary calculations below:(

d%N
dt

, ∂+∂−%N

)
h

= −1

2

d

dt
‖∂−%N‖2h,(

ω∂−%N , ∂+∂−%N

)
h

= −ωh
2
‖∂+∂−%N‖2h,(

D∂+∂−%N , ∂+∂−%N

)
h

= D‖∂+∂−%N‖2h,(
∂−(FN%N ), ∂+∂−%N

)
h

=
(
FN−∂−%N , ∂+∂−%N

)
h

+
(
%N∂−FN , ∂+∂−%N

)
h

≤ C̃0M0h

2
sup
x
‖∂+∂−%N (·, t;x, ω)‖2h

+ C̃1M0 sup
x
‖∂−%N (·, t;x, ω)‖2h.

Combining these, we have

1

2

d

dt

(
sup
x
‖∂−%N (·, t;x, ω)‖2h

)
+ sup

x

ωh

2
‖∂+∂−%N (·, t;x, ω)‖2h

+D sup
x
‖∂+∂−%N (·, t;x, ω)‖2h

≤ C̃0M0h

2
sup
x
‖∂+∂−%N (·, t;x, ω)‖2h + C̃1M0 sup

x
‖∂−%N (·, t;x, ω)‖2h.

By taking h sufficiently small, and due to estimate (4.8) we have already obtained,
we derive

1

2

d

dt

(
sup
x
‖∂−%N (·, t;x, ω)‖2h

)
≤ c45 sup

x
‖∂−%N (·, t;x, ω)‖2h,

which yields

sup
x
‖∂−%N (·, t;x, ω)‖2h ≤ c46

for t ∈ (0, T∗) due to the preceding discussion.
Similarly, multiplying (4.1)1 by ∂2

+∂
2
−%N leads to

d

dt
‖∂+∂−%N (·, t;x, ω)‖2h −

ωh

2
‖∂+∂

2
−%N (·, t;x, ω)‖2h + ‖∂2

+∂−%N (·, t;x, ω)‖2h

+
(
∂−(FN%N ), ∂2

+∂
2
−%N

)
h

= 0.
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We expand the last term in the left-hand side as(
∂−(FN%N ), ∂2

+∂
2
−%N

)
h

= −
(

(∂−%N )(∂−FN )−, ∂+∂
2
−%N

)
h

−
(
%N (∂2

−FN ), ∂+∂
2
−%N

)
h
−
(
FN∂−%N , ∂

2
+∂

2
−%N

)
h

≡
3∑
j=1

Ij .

Each term is estimated as follows.

|I1| ≤ C̃1M0‖%N (·, t;x, ω)‖h
∣∣(∂−%N , ∂+∂

2
−%N )h

∣∣
≤ C̃1M0‖%N (·, t;x, ω)‖h‖∂+∂−%N (·, t;x, ω)‖2h,

|I2| ≤ C̃1M0‖%N (·, t;x, ω)‖h
∣∣(%N , ∂+∂

2
−%N )h

∣∣
≤ C̃1M0h

2
‖%N (·, t;x, ω)‖h‖∂+∂−%N (·, t;x, ω)‖2h,

|I3| ≤ C̃0M0‖%N (·, t;x, ω)‖h
∣∣(∂−%N , ∂2

+∂
2
−%N )h

∣∣
≤ C̃0M0‖%N (·, t;x, ω)‖h

(
ε‖∂+∂−%N (·, t;x, ω)‖2h + Cε‖∂2

+∂−%N (·, t;x, ω)‖2h
)
.

Here we applied a similar estimate as (4.7). Thus, by using (4.8) we have the
estimate of the form

1

2

d

dt

(
sup
x
‖∂+∂−%N (·, t;x, ω)‖2h

)
− ωh

2
‖∂+∂−%N (·, t;x, ω)‖2h

+ (D − ε)‖∂2
+∂−%N (·, t;x, ω)‖2h

≤ c47‖∂+∂−%N (·, t;x, ω)‖2h,

which yields the boundedness of ‖∂+∂−%N (·, t;x, ω)‖2h on (0, T∗). In a similar man-
ner, we obtain the estimates of higher difference terms with respect to θ.

When m ≥ 2, by virtue of Lemma 4.5, we easily obtain

sup
x

∥∥∥∥d%N
dt

(·, t;x, ω)

∥∥∥∥
h

≤ c48, sup
x

∥∥∥∥∂m+ ∂m− d%N
dt

(·, t;x, ω)

∥∥∥∥
h

≤ c49 (4.9)

under the assumptions of Theorem 4.1. Then, as Sjöberg [32] and Tsutsumi [36]
did, we consider the discrete Fourier series of %N , which is denoted as {φN}:

φN (θ, t;x, ω) =
1√
2π

n∑
k=−n

ak(t;x, ω)eikθ, ak(t;x, ω) =
1√
2π

(
eikθ, %N

)
h
.

Estimate (4.9) and Lemmas 4.5–4.7 yield that the sequence of functions {φN} is
uniformly bounded and equicontinuous on 0 ≤ θ ≤ 2π, 0 ≤ t ≤ T . With the
aid of the Arzera-Ascoli theorem, we see that {φN} contains a subsequence which
converges to a certain function % as N → +∞. In addition, it is clear that(

∂

∂θ

)m
φN →

(
∂

∂θ

)m
% (N → +∞)

in L2(Ω) for each (t, x, ω). Therefore, this % is the desired solution to (4.1).
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Finally, we discuss the regularity of % with respect to x. Let us define

v ≡ %(θ, t;x+4x, ω)− %(θ, t;x, ω)

4x
, ∂G ≡ G(x+4x)−G(x)

4x
,

which clearly satisfy

∂v

∂t
= − ∂

∂θ

[
ωv + %

(∫
R

∂G(x− y)dy

∫
R

g(ω′)dω′
∫

Ω

Γ(θ − φ)%(φ, t; y, ω′)dφ

)]

+ F [v, %]−D∂
2%

∂θ2
= 0.

Thus, under the assumptions of Theorem 4.1, we can show that

%(θ, t; ·, ω) ∈ C∞(R)

with respect to x for each (θ, t) and ω in the same line with the arguments by
Lavrentiev [24]. The same argument holds concerning the regularity with respect
to ω, and we finally arrive at the desired regularity of %.

4.3.2. Proof of % ∈ V2m(T∗). Before proceeding to the uniqueness part, we mention
that the solution that was guaranteed to exist in the previous process also belongs

to L
(1)
1 (T∗) thanks to Lemma 4.3, and consequently, to V2m(T∗). This is directly

obtained from Lemma 4.3.

4.3.3. Uniqueness of solution. Finally, we discuss the uniqueness part of the state-
ment. Assume that there exist two solutions %i (i = 1, 2) to (2.3) on (0, T ∗) with

the same initial data, and let us define ˜̃% ≡ %1 − %2.
Then, it satisfies:

∂ ˜̃%

∂t
+ ω

∂ ˜̃%

∂θ
−D∂

2 ˜̃%

∂θ2
+

∂

∂θ

(
F [ ˜̃%, %1]

)
+

∂

∂θ

(
F [%2, ˜̃%]

)
= 0

θ ∈ Ω, t ∈ (0, T∗), (x, ω) ∈ R2,

∂i ˜̃%

∂θi

∣∣∣
θ=0

=
∂i ˜̃%

∂θi

∣∣∣
θ=2π

(i = 0, 1), t ∈ (0, T∗), (x, ω) ∈ R,

˜̃%|t=0 = 0 θ ∈ Ω, (x, ω) ∈ R2.

(4.10)

We multiply (4.10)1 by ˜̃%. Then, integration by parts yields∫
Ω

˜̃%(θ, t;x, ω)
∂

∂θ

(
F [ ˜̃%, %1]

)
dθ =

1

2

∫
Ω

F (1)[( ˜̃%)2, %] dθ

≤ C1M0

2
||| ˜̃%(t)|||2,∫

Ω

˜̃%(θ, t;x, ω)
∂

∂θ

(
F
[
%2, ˜̃%

])
dθ

=

∫
Ω

˜̃%(θ, t;x, ω)F
[∂%2

∂θ
, ˜̃%
]

dθ +

∫
Ω

˜̃%(θ, t;x, ω)F (1)
[
%2, ˜̃%

]
dθ

≤ 2πM0

{
C̃0|||%(1,0)

2 (t)|||∞ + C̃1|||%2(t)|||∞

}
||| ˜̃%(t)|||2.

These yield

1

2

d

dt
||| ˜̃%(t)|||2 +D||| ˜̃%(1,0)(t)|||2 ≤ C1M0||| ˜̃%(t)|||2 ∀t ∈ (0, T∗).
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By virtue of the Gronwall’s inequality and the initial condition (4.10)3, we have

||| ˜̃%(t)||| = 0 ∀t ∈ (0, T∗),

which indicates the uniqueness of the solution in the desired function space.

4.4. Global-in-time solution. Now we discuss the global-in-time solvability of
(2.3). Let %0 be provided, which satisfies the assumption (vi) in Theorem 4.1. In
accordance with Theorem 4.1, we first construct the local-in-time solution % on
t ∈ (0, T∗), where T∗ is the time provided in that theorem. Then, we have the
a-priori estimate.

Lemma 4.8. Let T > 0 be an arbitrary number. If there exists a solution to (2.3)
on (0, T ), estimates of the form

|||%(k,0)(t)||| ≤ c′4(k) (k = 1, 2, . . . , 2m) (4.11)

hold with certain constants c′4(k) independent of t.

Proof. For the sake of simplicity, we introduce the notation %̃ ≡ %− %̄ and derive the
estimate of its norm which leads to the desired estimates. From (2.3), it is obvious
that %̃ satisfies

∂%̃

∂t
+ ω

∂%̃

∂θ
+

∂

∂θ

(
F [%̃+ %̄, %̃+ %̄]

)
−D∂

2%̃

∂θ2
= 0

θ ∈ Ω, t ∈ (0, T ), (x, ω) ∈ R2,

∂i%̃

∂θi

∣∣∣
θ=0

=
∂i%̃

∂θi

∣∣∣
θ=2π

(i = 0, 1), t ∈ (0, T ), (x, ω) ∈ R2,

%̃
∣∣
t=0

= %̃0 ≡ %0 − %̄ θ ∈ Ω, (x, ω) ∈ R2.

(4.12)

Multiply (4.12)1 by %̃, and making use of Lemma 4.2 and the periodicity of F [%̃ +
%̄, %̃+ %̄] with respect to θ yields∫

Ω

%̃(θ, t;x, ω)
∂

∂θ

(
F [%̃+ %̄, %̃+ %̄]

)
dθ

=

∫
Ω

%(θ, t;x, ω)
∂

∂θ

(
F [%̃+ %̄, %̃+ %̄]

)
dθ

= −1

2

∫
Ω

F (1)[%2, %] dθ

≤ C1M0

2
‖%(·, t;x, ω)‖2.

On the other hand, in the same line as the arguments by Lavrentiev [24], we have

‖%(·, t;x, ω)‖2 ≤
∫

Ω

%(θ, t;x, ω)

(
1

2π
+
√

2π

∥∥∥∥∂%∂θ (·, t;x, ω)

∥∥∥∥
)

dθ

=
1

2π
+
√

2π

∥∥∥∥∂%∂θ (·, t;x, ω)

∥∥∥∥
≤ 1

2π
+ Cε′ + ε′

∥∥∥∥∂%̃∂θ (·, t;x, ω)

∥∥∥∥2

,

where we have applied the Young’s inequality in the last inequality.
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Thus, after taking the supremum with respect to (x, ω), we have the estimate of
the form

1

2

d

dt
|||%̃(t)|||2 +D|||%̃(1,0)(t)|||2 ≤ c410 + ε′|||%̃(1,0)(t)|||2. (4.13)

Therefore, if we take ε′ so small that ε′ < D holds, then by virtue of the classical
Gronwall’s inequality, we have the estimate of the form (see, for instance, p.85
of [35])

|||%̃(t)|||2 ≤ |||%̃0|||2 exp
(
−2(D − ε′)t

)
+

c411

D − ε′

(
1− exp

(
−2(D − ε′)t

))
≤ c412 ∀t ∈ (0, T ). (4.14)

Next, we show the estimate of %̃(1,0), which satisfies

∂%̃(1,0)

∂t
+ ω

∂%̃(1,0)

∂θ
−D∂

2%̃(1,0)

∂θ2
+

∂

∂θ

(
F (1)[%̃+ %̄, %̃] + F [%̃(1,0), %̃]

)
= 0.

Then, due to the estimates∫
Ω

%̃(1,0)(θ, t;x, ω)
∂

∂θ

(
F (1)[%̃+ %̄, %̃]

)
dθ

=

∫
Ω

F (1)[
(
%̃(1,0)(θ, t;x, ω)

)2
, %̃] dθ +

1

2

∫
Ω

F (2)
[ ∂
∂θ

(
%̃(θ, t;x, ω)

)2
, %̃
]

dθ

+
1

2π

∫
Ω

F (2)[%̃(1,0), %̃] dθ

≤ C1M0‖%̃(1,0)(·, t;x, ω)‖2 +
C3M0

2
‖%̃(·, t;x, ω)‖2

+ C̃2M0‖%̃(1,0)(·, t;x, ω)‖|||%̃(t)|||,∫
Ω

%̃(1,0)(θ, t;x, ω)
∂

∂θ

(
F [%̃(1,0), %̃]

)
dθ = −1

2

∫
Ω

F
[ ∂
∂θ

(
%̃(1,0)(θ, t;x, ω)

)2
, %̃
]

dθ

≤ C1M0

2
‖%̃(1,0)(·, t;x, ω)‖2,

and the Young’s inequality, and taking the supremum with respect to x and ω, we
have the estimate of the form

1

2

d

dt
|||%̃(1,0)(t)|||2 +D|||%̃(2,0)(t)|||2 ≤ χ(0,0)

1 |||%̃(t)|||2 + χ
(1,0)
1 |||%̃(1,0)(t)|||2. (4.15)

with constants χ
(i,0)
1 (i = 0, 1). Now we divide the second term in the left-hand side

of (4.13) into two terms by using a small constant ε > 0, and apply the Poincaré’s
inequality

‖%̃(·, t;x, ω)‖ ≤ 2π‖%̃(1,0)(·, t;x, ω)‖
to the first term:(

D − ε
)
|||%̃(1,0)(t)|||2 + ε|||%̃(1,0)(t)|||2 ≥ D − ε

4π2
|||%̃(t)|||2 + ε|||%̃(1,0)(t)|||2.

Then, we obtain

1

2

d

dt
|||%̃(t)|||2 +

D − ε
4π2

|||%̃(t)|||2 + ε|||%̃(1,0)(t)|||2 ≤ c410 + ε′|||%̃(1,0)(t)|||2.
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Summing up this and (4.15) multiplied by a positive constant m(1,0), which will be
specified later, we have

1

2

d

dt

(
|||%̃(t)|||2 +m(1,0)|||%̃(1,0)(t)|||2

)
+
{ (D − ε)

4π2
−m(1,0)χ

(0,0)
1

}
|||%̃(t)|||2

+
{
ε− ε′ −m(1,0)χ

(1,0)
1

}
|||%̃(1,0)(t)|||2 +m(1,0)D|||%̃(2,0)(t)|||2

≤ c413.

Therefore, we take ε, ε′ and m(1,0) in the following manner:
(i) Take ε and ε′ so that ε′ < ε < D holds;
(ii) Then, take m(1,0) > 0 so small that

D − ε
4π2

− χ(0,0)
1 m(1,0) > 0,

ε− ε′ − χ(1,0)
1 m(1,0) > 0

hold.
Then, in the same line with the deduction of (4.14), we have

|||%̃(1,0)|||2 ≤ c414 ∀t > 0. (4.16)

Similarly, for k = 2, 3, . . . , (2m− 2), we have the estimate of the form:

1

2

d

dt
|||%̃(i,0)(t)|||2 +D|||%̃(i+1,0)(t)|||2 ≤

i∑
j=0

χ
(j,0)
i |||%̃(j,0)(t)|||2

(i = 2, 3, . . . , (2m− 2)). (4.17)

For estimates of %̃(l,0) (l = 2m − 1, 2m), we introduce the Friedrichs mollifier Φ ∈
C∞0 (Ω) with respect to θ [28], and define

Φδ ≡ δ−1Φ(θδ−1)

with a constant δ > 0. We also define

f1 ∗ f2 ≡
∫
R

f1(θ − θ′)f2(θ′) dθ′

for functions f1, f2 ∈ L2(R) in general. Note that when they are defined on Ω, we
extend them onto R preserving the regularity [23].

Now, by operating Φδ∗ to (4.12)1, we have

∂%̃(δ)

∂t
+ ω

∂%̃(δ)

∂θ
−D

∂2%̃(δ)

∂θ2
+

∂

∂θ

(
F
[(
%̃(δ) + %̄

)
, %̃
])

= H̃(δ), (4.18)

where

%̃(δ) = Φδ ∗ %̃,

H̃(δ) ≡
∂

∂θ

(
F
[(
%̃(δ) + %̄

)
, %̃
])
− Φδ ∗

∂

∂θ

(
F
[(
%̃+ %̄

)
, %̃
])
.

Operating
( ∂
∂θ

)l
to (4.18) yields

∂%̃
(l,0)
(δ)

∂t
+ ω

∂%̃
(l,0)
(δ)

∂θ
−D

∂2%̃
(l,0)
(δ)

∂θ2
+

l∑
i=0

lCi
∂

∂θ

(
F (l−i)[%̃(i,0)

(δ) , %̃
])

= H̃
(l,0)
(δ) . (4.19)

Hereafter we use the notation lCi to denote the binomial coefficient of l choose i.
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Then, we multiply (4.19) by %̃
(l,0)
(δ) , and with the similar process as above, obtain

the estimate

1

2

∂

∂t
|||%̃(l,0)

(δ) (t)|||2 +D|||%̃(l+1,0)
(δ) (t)|||2

≤
l∑

j=0

χ
(j,0)
l |||%̃(j,0)

(δ) (t)|||2 + |||H̃(l,0)
(δ) (t)||||||%̃(i,0)

(δ) (t)||| (4.20)

with constants {χ(j,0)
l }lj=0. By noting lim

δ→0
|||H̃(l,0)

(δ) ||| = 0, we obtain the following

estimate from (4.20) by letting δ tend to zero:

1

2

d

dt
|||%̃(l,0)(t)|||2 +D|||%̃(l+1,0)(t)|||2 ≤

l∑
j=0

χ
(j,0)
l |||%̃(j,0)(t)|||2 (l = 2m− 1, 2m). (4.21)

We now multiply each estimate for %̃(j,0) (j = 1, 2, . . . , 2m) in (4.15), (4.17) and
(4.21) by a positive constant m(j,0), which will be specified later, and sum up them.
We also introduce m(0,0) = 1 for simplicity. These yield

1

2

d

dt

( 2m∑
j=0

m(j,0)|||%̃(j,0)(t)|||2
)

+D

2m∑
i=0

m(i,0)|||%̃(i+1,0)(t)|||2

≤ c410 + ε′|||%̃(1,0)(t)|||2 +

2m∑
i=1

m(i,0)
( i∑
j=0

χ
(j,0)
i |||%̃(j,0)(t)|||2

)
.

It should be noted that a straightforward estimate, like that by Ha and Xiao [11]
will require D to be monotonically and increasingly dependent on m. Instead, we
partially apply the Poincaré’s inequality as before:

1

2

d

dt

( 2m∑
j=0

m(j,0)|||%̃(j,0)(t)|||2
)

+
D − ε
4π2

2m−1∑
i=0

m(i,0)|||%̃(i,0)(t)|||2

+ ε

2m−1∑
i=0

m(i,0)|||%̃(i+1,0)(t)|||2 +Dm(2m,0)|||%̃(2m+1,0)(t)|||2

≤ c410 + ε′|||%̃(1,0)(t)|||2 +

2m∑
i=1

m(i,0)
( i∑
j=0

χ
(j,0)
i |||%̃(j,0)(t)|||2

)
(4.22)

We take ε, ε′ and {m(i,0)}2mi=1 as follows.
(i) Take ε and ε′ so that ε′ < ε < D hold;
(ii) Take m(1,0) > 0 so small that

D − ε
4π2

− χ(0,0)
1 m(1,0) > 0,(D − ε

4π2
− χ(1,0)

1

)
m(1,0) < ε− ε′
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hold;
(iii) Take m(2,0) > 0 so small that

D − ε
4π2

−
2∑
i=1

χ
(0,0)
i m(i,0) > 0,(D − ε

4π2
− χ(1,0)

1

)
m(1,0) + (ε− ε′)− χ(1,0)

2 m(2,0) > 0,(D − ε
4π2

− χ(2,0)
2

)
m(2,0) + εm(1,0) > 0

hold;
(iv) As for {m(i,0)}2m−1

i=3 , take them so small inductively that:

D − ε
4π2

−
i∑

p=1

χ(0,0)
p m(p,0) > 0,

(D − ε
4π2

− χ(1,0)
1

)
m(1,0) + (ε− ε′)−

i∑
p=1

χ(1,0)
p m(p,0) > 0,

(D − ε)m(q,0)

4π2
+ εm(q−1,0) −

i∑
s=q

χ(q,0)
s m(s,0) > 0 (q = 2, 3, . . . , i)

hold;
(v) Finally, take m(2m,0) so small that

D − ε
4π2

−
2m∑
p=1

χ(0,0)
p m(p,0) > 0,

(D − ε
4π2

− χ(1,0)
1

)
m(1,0) + (ε− ε′)−

2m∑
p=1

χ(1,0)
p m(p,0) > 0,

(D − ε)m(q,0)

4π2
+ εm(q−1,0) −

2m∑
s=q

χ(q,0)
s m(s,0) > 0 (q = 2, 3, . . . , 2m− 1),

εm(2m−1,0) − χ(2m,0)
2m m(2m,0) > 0

hold.
Thus, (4.22) becomes

1

2

d

dt

( 2m∑
i=0

m(i,0)|||%̃(i,0)(t)|||2
)

+

{
D − ε
4π2

−
2m∑
p=1

χ(0,0)
p m(p,0)

}
|||%̃(t)|||2

+

{
D − ε
4π2

m(1,0) + (ε− ε′)−
2m∑
p=1

χ(1,0)
p m(p,0)

}
|||%̃(1,0)(t)|||2

+

2m−1∑
q=2

{
D − ε
4π2

m(q,0) + εm(q−1,0) −
2m∑
s=q

χ(q,0)
s m(s,0)

}
|||%̃(q,0)(t)|||2

+

(
εm(2m−1,0) − χ(2m,0)

2m m(2m,0)

)
|||%̃(2m,0)(t)|||2 +Dm(2m,0)|||%̃(2m+1,0)(t)|||2

≤ c410,
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where the coefficients of each term in the left-hand side are all positive. Thus, as
we have obtained (4.14) and (4.16), the Gronwall’s inequality again yields( 2m∑

i=0

m(i,0)|||%̃(i,0)(t)|||2
)
≤ c415.

Now, by virtue of Lemma 4.8, %
∣∣∣
t=T∗

satisfies the assumption (vi) in Theorem 4.1

imposed on %0. Thereby, we are able to extend % over the time interval (T∗, 2T∗) as
a solution to (2.3). This solution, which is now defined over (0, 2T∗), again satisfies
the estimate (4.11), and we then extend it over the region (2T∗, 3T∗). Iterating this
procedure sufficiently many times, we are able to obtain the solution over the time
interval (0, T ) for arbitrary T > 0. We summarize these arguments as follows.

Theorem 4.9. Let T be an arbitrary positive number. Then, under the same
assumptions as in Theorem 4.1, there exists a solution %(θ, t;x, ω) ∈ V2m(T ) to
(2.3) on (0, T ).

Remark 3. From these considerations, it is obvious that Theorem 4.9 holds when
g is compactly supported. we can also extend these arguments when g is the Dirac’s
delta function, i.e. g(ω) = δ(0), since Lemma 4.2 holds in that case.

Corollary 4.10. Under the assumptions in Theorem 4.1 with (iv) replaced by
g(ω) = δ(0), the same statement as in Theorem 4.9 holds.

5. Stability of trivial solution. In this section, we discuss the nonlinear stability
of the trivial stationary solution %̄ ≡ 1

2π . As in the proof of Lemma 4.8, we introduce
the notation %̃ ≡ % − %̄, and derive the estimate of its norm with respect to time.
The asymptotic stability of %̃ reads

Theorem 5.1. In addition to the assumptions in Theorem 4.1, we assume

D > 2π2M0

(
C1 + C̃1

)
.

Then, %̃ is asymptotically stable in H2m
and satisfies the inequality

‖%̃(t)‖H2m ≤ c51‖%̃0‖H2me−c52t

with certain positive constants c5i (i = 1, 2).

Proof. The line of the argument is similar to that of Lemma 4.8, but this time
we have to confirm the non-positiveness of the left-hand side of the energy type
inequalities. First, let us multiply (4.12)1 by %̃. By making use of Lemma 4.2, we
have the estimate:∫

Ω

%̃(θ, t;x, ω)
∂

∂θ

(
F
[(
%̃+ %̄, %̃+ %̄

])
dθ

= −1

2

∫
Ω

F
[ ∂
∂θ

(
%̃(θ, t;x, ω)

)2

,
(
%̃+ %̄

)]
dθ +

1

2π

∫
Ω

F (1)
[
%̃,
(
%̃+ %̄

)]
dθ

≤ M0

2

(
C1 + C̃1

)
‖%̃(t)‖2.

Thus, we have the energy estimate

1

2

d

dt
|||%̃(t)|||2 +D|||%̃(1,0)(t)|||2 ≤ M0

2

(
C1 + C̃1

)
|||%̃(t)|||2. (5.1)
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For the estimate of |||%̃(t)||| only, if D > 2π2M0

(
C1 + C̃1

)
holds, with the aid of the

Poincaré’s inequality, we have

1

2

d

dt
|||%̃(t)|||2 +

{
D

4π2
− M0

2

(
C1 + C̃1

)}
|||%̃(t)|||2 ≤ 0,

which leads to the estimate of the form

|||%̃(t)||| ≤ c53 exp(−c54t) (5.2)

by virtue of the Gronwall’s inequality. Estimate (5.2) implies the asymptotic sta-

bility of %̄ in H0
.

Next, we show the estimate up to the first-order spatial derivative. First, by
applying the Poincaré’s inequality to the second term of the left-hand side in (5.1)
partially, as in the previous section, we have

1

2

d

dt
|||%̃(t)|||2 +

D − ε
4π2

|||%̃(t)|||2 + ε|||%̃(1,0)(t)|||2 ≤ M0

2

(
C1 + C̃1

)
|||%̃(t)|||2. (5.3)

Then, let us sum up (5.3) and (4.15), and we have

1

2

d

dt

(
|||%̃(t)|||2 +m(1,0)|||%̃(1,0)(t)|||2

)
+

{
D − ε
4π2

− M0

2

(
C1 + C̃1

)
− χ(0,0)

1 m(1,0)

}
|||%̃(t)|||2

+
(
ε− χ(1,0)

1 m(1,0)
)
|||%̃(1,0)(t)|||2 +m(1,0)D|||%̃(2,0)(t)|||2 ≤ 0. (5.4)

As in the previous section, we take ε and m(1,0) in the following manner:

(i) Take ε so small that
D − ε
4π2

− M0

2

(
C1 + C̃1

)
> 0 holds;

(ii) Then, take m(1,0) > 0 so small that
D − ε
4π2

− M0

2

(
C1 + C̃1

)
− χ(0,0)

1 m(1,0) > 0,

ε− χ(1,0)
1 m(1,0) > 0

hold.
By applying the Gronwall’s inequality to (5.4), these lead to the estimate of the
form (

|||%̃(t)|||2 +m(1,0)|||%̃(1,0)(t)|||2
)
≤ c55 exp(−c56t),

that is, the asymptotic stability of %̄ holds in H1
.

Similarly, we make use of (4.17) and (4.21) to deduce

1

2

d

dt
|||%̃(i,0)(t)|||2 +

D − ε
4π2

|||%̃(i,0)(t)|||2 + ε|||%̃(i+1,0)(t)|||2

≤
i∑

j=0

χ
(j,0)
i |||%̃(j,0)(t)|||2 (i = 1, 2, . . . , (2m− 1)), (5.5)

1

2

d

dt
|||%̃(2m,0)(t)|||2 +D|||%̃(2m+1,0)(t)|||2 ≤

2m∑
j=0

χ
(j,0)
2m |||%̃(j,0)(t)|||2. (5.6)
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Summing up (5.3), (5.5) and (5.6) multiplied by constants {m(i,0)}2mi=0 with m(0,0) =
1, we arrive at

1

2

d

dt

( 2m∑
i=0

m(i,0)|||%̃(i,0)(t)|||2
)

+

{
D − ε
4π2

− M0

2

(
C1 + C̃1

)
−
( 2m∑
p=1

χ(0,0)
p m(p,0)

)}
|||%̃(t)|||2

+

2m−1∑
i=1

{
(D − ε)m(i,0)

4π2
+ εm(i−1,0) −

( 2m∑
s=i

χ(i,0)
s m(s,0)

)}
|||%̃(i,0)(t)|||2

+

(
εm(2m−1,0) −m(2m,0)χ

(2m,0)
2m |||%̃(2m,0)(t)|||2

)
+m(2m,0)D|||%̃(2m+1,0)(t)|||2 ≤ 0.

Now, we determine ε and {m(i,0)}2mi=1 as follows.

(i) Take ε so small that
D − ε
4π2

− M0

2

(
C1 + C̃1

)
> 0;

(ii) Take m(1,0) > 0 so small that


(D − ε)m(i,0)

4π2
− M0

2

(
C1 + C̃1

)
− χ(0,0)

1 m(1,0) > 0,

(D − ε)m(1,0)

4π2
+ ε− χ(1,0)

1 m(1,0) > 0

hold;
(iii) Take m(2,0) > 0 so small that



(D − ε)m(i,0)

4π2
− M0

2

(
C1 + C̃1

)
−

2∑
i=1

χ
(0,0)
i m(i,0) > 0,

(D − ε)m(1,0)

4π2
+ ε− χ(1,0)

1 m1,0 − χ(1,0)
2 m(2,0) > 0,

(D − ε)m(2,0)

4π2
+ εm(1,0) − χ(2,0)

2 m(2,0) > 0

hold;
(vi) As for {m(q,0)}2m−1

q=3 , take them so small inductively that:


D − ε
4π2

− M0

2

(
C1 + C̃1

)
−

q∑
p=1

χ(0,0)
p m(p,0) > 0,

(D − ε)m(i,0)

4π2
+ εm(i−1,0) −

q∑
s=i

χ(i,0)
s m(s,0) > 0 (i = 1, 2, . . . , q)
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hold;
(v) Finally, take m(2m,0) so small that

D − ε
4π2

− M0

2

(
C1 + C̃1

)
−

2m∑
i=1

χ
(0,0)
i m(i,0) > 0,

D − ε
4π2

m(i,0) + εm(i−1,0) −
2m∑
s=i

χ(i,0)
s m(s,0) > 0 (i = 1, 2, . . . , 2m),

εm(2m−1,0) − χ(2m,0)
2m m(2m,0) > 0

hold.
These yield the estimate of the form( 2m∑

i=0

m(i,0)|||%̃(i,0)(t)|||2
)
≤ c57 exp(−c58t),

which directly leads to the desired statement.

Remark 4. For the original Kuramoto-Sakaguchi equation (1.6), Ha [11] deduced
a similar result concerning the asymptotic stability of %̄ = 1/2π. On the basis of
some regularity and decay of %0 with respect to ω, they estimated the H3 norm
with weight with respect to ω. Their arguments are based on the energy method,
which is similar to the one presented here. The advantage of our method is to make
the estimate sharper by dividing the terms of a higher derivative into two terms
before applying the Poincaré’s inequality. Indeed, as we have mentioned before, we
need monotonically increasing D with respect to m with the procedure used by Ha
and Xiao [11]. As we mentioned in Section 2, the original Kuramoto model (1.3)
(or (1.6)) can be regarded as a specific case of the non-local coupling model (2.2)
(resp. (2.3)) [20]. Therefore, the stability of the incoherent state in (1.6) is verified
through similar arguments and assumptions in Theorem 4.1 (see also [13]).

6. Vanishing diffusion limit. Finally, we discuss the vanishing limit of the dif-
fusion coefficient. In order to show the dependency of the solution on the diffusion
coefficient clearly, we denote the solution of (2.3) as %(D), whereas that of (2.5) is
denoted as %(0). As we have stated, Ha and Xiao [11] held a similar discussion for
the original Kuramoto-Sakaguchi equation (1.6). However, they estimated the norm
of %(D) by using the polynomial of D, which resulted in the convergence in L∞(Ω)
with respect to θ. In the discussion below, we apply the compactness argument for
deriving higher order convergence than their result. This method is also applicable
to the original Kuramoto-Sakaguchi equation [13]. We first prepare some lemmas
below.

Lemma 6.1. Let T > 0 be an arbitrary number. Then, the sequence {%(D)}D>0 is

uniformly bounded with respect to D in V2m(T ).

Proof. What we have to verify are

sup
t∈(0,T )

|||%(l,k)
(D) (t)||| ≤ cl,k(T ) (2k + l ≤ 2m), (6.1)∫ T

0

|||%(l+1,k)
(D) (t)|||2 dt ≤ c′l,k(T ) (2k + l ≤ 2m) (6.2)

with some constants {cl,k(T )}2k+l≤2m and {c′l,k(T )}2k+l≤2m dependent on T . For

k = 0, we have already verified (6.1) in the previous section.
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Now we provide the estimates of the temporal derivative of % inductively. Let us

assume that the boundedness of {%(0,i)
(D) }D>0 has been proven for i = 1, 2, . . . , k −

1 (k ≤ m− 1). Then, by noting

∂%
(0,k)
(D)

∂t
+ ω

∂%
(0,k)
(D)

∂θ
−D

∂2%
(0,k)
(D)

∂θ2
+

k∑
j=0

kCj
∂

∂θ

(
F
[
%

(0,j)
(D) , %

(0,k−j)
(D)

])
= 0

and Lemma 4.2, we have the estimate of the form

1

2

d

dt
|||%(0,k)

(D) (t)|||2 +D|||%(1,k)
(D) (t)|||2

≤
k−1∑
j=1

c′′k,j |||%
(0,k−j)
(D) (t)|||2|||%(0,j)

(D) (t)|||2 + ε|||%(1,k)
(D) (t)|||2

+

(
C0|||%(1,0)

(D) (t)|||2 + C̃1|||%(D)(t)|||2 +
C1

2

)
M0|||%(0,k)

(D) (t)|||2, (6.3)

where {c′′k,j} are the positive constants. By virtue of the assumption of the induction
and the Gronwall’s inequality, we then have the estimate of the form

|||%(0,k)
(D) (t)|||2 ≤ c61(t) exp

(∫ t

0

c62(τ) dτ

)
(k = 1, 2, . . . ,m− 1). (6.4)

As for k = m, we use the mollifier again. Recalling the notation defined in
Section 4, we consider

∂%(D)(δ)

∂t
+ ω

∂%(D)(δ)

∂θ
−D

∂2%(D)(δ)

∂θ2
+

∂

∂θ

(
F
[
%(D)(δ), %(D)

])
= H(D)(δ), (6.5)

where %(D)(δ) = Φδ ∗ %(D), and

H(D)(δ) =
∂

∂θ

(
F
[(
%(D)(δ)

)
, %(D)

])
− Φδ ∗

∂

∂θ

(
F
[
%(D), %(D)

])
.

We operate the temporal derivative
( ∂
∂t

)m
to (6.5) and obtain

∂%
(0,m)
(D)(δ)

∂t
+ ω

∂%
(0,m)
(D)(δ)

∂θ
−D

∂2%
(0,m)
(D)(δ)

∂θ2

+

m∑
j=0

mCj
∂

∂θ

(
F
[
%

(0,j)
(D)(δ), %

(0,m−j)
(D)

])
= H

(0,m)
(D)(δ). (6.6)

Then, after the energy type estimate, we make δ tend to zero. By making use of
the fact

lim
δ→0
|||H(0,m)

(D)(δ)||| = 0,

we obtain (6.4) with k = m with the aid of the assumptions of the induction.
Next, we estimate the term including both temporal and spatial derivatives. We

only show the case l + 2k + 2 ≥ 2m, when the mollifier is necessary again. By
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applying the l-th order spatial derivative to (6.6) with m replaced with k, we have

∂%
(l,k)
(D)(δ)

∂t
+ ω

∂%
(l,k)
(D)(δ)

∂θ
−D

∂2%
(l,k)
(D)(δ)

∂θ2

+

l∑
i=0

k∑
j=0

lCi · kCj
∂

∂θ

(
F (l−i)[%(i,j)

(D)(δ), %
(0,k−j)
(D)

])
= H

(l,k)
(D)(δ). (6.7)

Now we show some examples of the energy type estimates. In case (i, j) = (l, k),
we have∫

Ω

%
(l,k)
(D)(δ)(θ, t;x, ω)

∂

∂θ

(
F
[
%

(l,k)
(D)(δ), %(D)

])
dθ ≤ C1M0

2
‖%(l,k)

(D)(δ)(·, t;x, ω)‖2.

For (i, j) = (l − 1, k), we have∫
Ω

%
(l,k)
(D)(δ)(θ, t;x, ω)

∂

∂θ

(
F (1)

[
%

(l−1,k)
(D)(δ) , %(D)

])
dθ

=

∫
Ω

F (1)
[(
%

(l,k)
(D)(δ)

)2

, %(D)

]
dθ +

∫
Ω

F (2)
[
%

(l,k)
(D)(δ)%

(l−1,k)
(D)(δ) , %(D)

]
dθ

≤ C1M0‖%(l,k)
(D)(δ)(·, t;x, ω)‖2 +

C3M0

2
‖%(l−1,k)

(D)(δ) (·, t;x, ω)‖2.

Otherwise, we have∫
Ω

%
(l,k)
(D)(δ)(θ, t;x, ω)

∂

∂θ

(
F (l−i)[%(i,j)

(D)(δ), %
(0,k−j)
(D)

])
dθ

≤ C̃l−iM0|||%(l+1,k)
(D)(δ) (t)||||||%(i,j)

(D)(δ)(t)||||||%
(0,k−j)
(D)(δ) (t)|||.

By combining these and (6.7), and applying the Young’s and Schwarz’s inequal-
ities, we derive the energy estimate of the form

1

2

d

dt
|||%(l,k)

(D)(δ)(t)|||
2 +

D

2
|||%(l+1,k)

(D)(δ) (t)|||2 ≤ c63|||%(l,k)
(D)(δ)(t)|||

2 + ε|||%(l+1,k)
(D)(δ) (t)|||2

+ Cε
∑

(i,j)6=(l,k)

|||%(i,j)
(D)(δ)(t)|||

2|||%(0,k−j)
(D) (t)|||2 +

C3M0

2
|||%(l−1,k)

(D)(δ) (t)|||2

+ |||%(l,k)
(D)(δ)(t)||||||H

(l,k)
(D)(δ)(t)|||. (6.8)

After making δ → 0 and applying the Gronwall’s inequality, we have the estimate
of the form

|||%(l,k)
(D) (t)|||2 ≤ c64(t) exp

(∫ t

0

c65(τ) dτ
)
.

Thus, we have shown the first part of the statement. Estimate (6.2) is derived
from (6.3), (6.8), and the estimates we have already obtained. These complete the
proof.

By virtue of Lemma 6.1, we see that the sequence {%(D)}D>0 includes a sub-
sequence, denoted as {%(D)} again, which is convergent in the weak-star sense as D
tends to zero:

%(D) → ∃%̂ in L∞(0, T ;H2m
) weakly star; (6.9)

∂%(D)

∂t
→ ∃%̂′ in L∞(0, T ;H2m−2

) weakly star. (6.10)
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Then, in the relationship

%(D) = %0 +

∫ t

0

∂%(D)

∂t
(τ) dτ in L∞(0, T ;H2m−2

),

if we make D tend to zero, we have

%̂ = %0 +

∫ t

0

%̂′(τ) dτ in L∞(0, T ;H2m−2
),

which means %̂′ = ∂%̂
∂t .

The next lemma clarifies the space to which this sequence converges.

Lemma 6.2. Let T > 0 be an arbitrary number. Then, the sequence {%(D)}D>0

forms the Cauchy sequence in V2m(T ).

Proof. Let us define %̆ ≡ %(D) − %(D′) for arbitrary D, D′ > 0, which satisfies

∂%̆

∂t
+ ω

∂%̆

∂θ
−D∂

2%̆

∂θ2
− (D −D′)

∂2%(D′)

∂θ2

+
∂

∂θ

(
F [%̆, %(D)]

)
+

∂

∂θ

(
F [%(D′), %̆]

)
= 0.

Then, with the aid of the estimates∫
Ω

%̆(θ, t;x, ω)
∂

∂θ

(
F [%̆, %(D)]

)
dθ = −

∫
Ω

∂%̆

∂θ
(θ, t;x, ω)F [%̆, %(D)] dθ

≤ C1M0

2
‖%̆(·, t;x, ω)‖2,

∫
Ω

%̆(θ, t;x, ω)
∂

∂θ

(
F [%(D′), %̆]

)
dθ ≤

(
C̃0

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂%(D′)

∂θ
(t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣+ C̃1|||%(D′)(t)|||

)
M0|||%̆(t)|||2,

∫
Ω

(D −D′)%̆(θ, t;x, ω)
∂2%(D′)

∂θ2
(θ, t;x, ω) dθ

≤ |D −D
′|2

2
+

1

2
‖%̆(·, t;x, ω)‖2

∥∥∥∥∂2%(D′)

∂θ2
(·, t;x, ω)

∥∥∥∥2

,

we have

1

2

d

dt
|||%̆(t)|||2 +D|||%̆(1,0)(t)|||2 ≤ c66|||%̆(t)|||2 +

|D −D′|2

2
.

Thus, by virtue of the Gronwall’s inequality and the fact that %̆|t=0 = 0, we have
the estimate of the form

|||%̆(t)|||2 ≤ c67|D −D′|2 exp(c68t).

This implies that the sequence {%(D)}D>0 is the Cauchy sequence in H0
. The esti-

mates of higher derivative terms are obtained in a similar manner. To show this,
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we subtract (6.7) with D replaced with a certain D′ > 0 from itself and obtain

∂%̆
(l,k)
(δ)

∂t
+ ω

∂%̆
(l,k)
(δ)

∂θ
−D

∂2%̆
(l,k)
(δ)

∂θ2
− (D −D′)

∂2%̆
(l,k)
(δ)

∂θ2

+

l∑
i=0

k∑
j=0

lCi · kCj
∂

∂θ

(
F (l−i)[%̆(i,j)

(δ) , %
(0,k−j)
(D)

])

+

l∑
i=0

k∑
j=0

lCi · kCj
∂

∂θ

(
F (l−i)[%(i,j)

(D′)(δ), %̆
(0,k−j)]) = H̆

(l,k)
(δ) ,

where %̆(δ) ≡ Φδ ∗ %̆, and H̆(δ) = H(D)(δ) −H(D′)(δ).

We show inductively that %̆
(l,k)
(δ) → 0 hold as D and D′ tend to zero based on

the assumption that {%(i,j)
(D) }D>0 form the Cauchy sequences with 0 ≤ i ≤ l− 1 and

0 ≤ j ≤ k. Let us show some examples of the estimates. In case (i, j) = (l, k), we
have ∫

Ω

%̆
(l,k)
(δ) (θ, t;x, ω)

∂

∂θ

(
F (l−i)[%̆(l,k)

(δ) , %(D)

])
dθ ≤ C1M0

2
‖%̆(l,k)

(δ) (·, t;x, ω)‖2.

In case (i, j) = (l − 1, k), we have∫
Ω

%̆
(l,k)
(δ) (θ, t;x, ω)

∂

∂θ

(
F (1)

[
%̆

(l−1,k)
(δ) , %(D)

])
dθ

=

∫
Ω

F (1)
[(
%̆

(l,k)
(δ)

)2
, %(D)

]
dθ +

1

2

∫
Ω

F (2)
[(
%̆

(l−1,k)
(δ)

)2
, %(D)

]
dθ

≤ C1M0‖%̆(l,k)
(δ) (·, t;x, ω)‖2 +

C3M0

2
‖%̆(l−1,k)

(δ) (·, t;x, ω)‖2.

Otherwise, we have∫
Ω

%̆
(l,k)
(δ) (θ, t;x, ω)

∂

∂θ

(
F (l−i)[%̆(i,j)

(δ) , %
(0,k−j)
(D)

])
dθ

= −
∫

Ω

F (l−i)
[
%̆

(l+1,k)
(δ) %̆

(i,j)
(δ) , %

(k−j)
(D)

]
dθ

≤ C̃l−iM0|||%̆(l+1,k)
(δ) (t)||||||%̆(i,j)

(δ) (t)||||||%(0,k−j)
(D) (t)|||.

After applying the Schwarz’s inequality, we make δ tend to zero. Then, on the basis
of the assumption of the induction, we have the estimate of the form:

1

2

d

dt
|||%̆(l,k)(t)|||2 +

D

2
|||%̆(l+1,k)(t)|||2 ≤ c69|||%̆(l,k)(t)|||2 + C(D,D′),

where C(D,D′)→ 0 as D and D′ tend to zero.
From these considerations, the sequence {%(D)}D>0 forms the Cauchy sequence

in V2m(T ). This completes the proof of Lemma 6.2.

By Lemma 6.2, we see that %̂ belongs to V2m(T ). Now, we show that %̂ certainly
satisfies (2.5). To do this, we take an arbitrary function h(θ, t) ∈ C1(0, T ;C∞0 (Ω))
satisfying h(θ, t)|t=T = 0, h(θ, t)|t=0 6= 0, and consider∫ T

0

dt

∫
Ω

{
∂%(D)

∂t
+ ω

∂%(D)

∂θ
−D

∂2%(D)

∂θ2
+

∂

∂θ

(
F [%(D), %(D)]

)}
h(θ, t) dθ = 0

∀(x, ω) ∈ R2, (6.11)
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In virtue of (6.9)–(6.10), if we make D tend to zero,∫ T

0

dt

∫
Ω

{
∂%(D)

∂t
+ ω

∂%(D)

∂θ
−D

∂2%(D)

∂θ2

}
h(θ, t)dθ

→
∫ T

0

dt

∫
Ω

{
∂%̂

∂t
+ ω

∂%̂

∂θ

}
h(θ, t)dθ ∀(x, ω) ∈ R2.

On the other hand, thanks to the Rellich’s theorem [27], we have

%(D) → %̂ in L2(0, T ;H0
)

strongly as D → 0; therefore,∫ T

0

dt

∫
Ω

∂

∂θ

(
F [%(D), %(D)]

)
h(θ, t) dθ →

∫ T

0

dt

∫
Ω

∂

∂θ

(
F [%̂, %̂]

)
h(θ, t) dθ

holds. Thus, we arrive at∫ T

0

dt

∫
Ω

{
∂%̂

∂t
+ ω

∂%̂

∂θ
+

∂

∂θ

(
F [%̂, %̂]

)}
h(θ, t)dθ = 0, (6.12)

which means that %̂ certainly satisfies (2.5)1. Next, integrate (6.11) and (6.12) by
part with respect to t, and the assumptions on h yield

− %0(θ;x, ω)h(θ, 0)−
∫ T

0

dt

∫
Ω

%(D)(θ, t;x, ω)
∂h

∂t
(θ, t) dθ

+

∫ T

0

dt

∫
Ω

{
ω
∂%(D)

∂θ
−D

∂2%(D)

∂θ2
+

∂

∂θ

(
F [%(D), %(D)]

)}
h(θ, t) dθ = 0, (6.13)

− %̂(θ, 0;x, ω)h(θ, 0)−
∫ T

0

dt

∫
Ω

%̂(θ, t;x, ω)
∂h

∂t
(θ, t) dθ

+

∫ T

0

dt

∫
Ω

{
ω
∂%̂

∂θ
+

∂

∂θ

(
F [%̂, %̂]

)}
h(θ, t) dθ = 0, (6.14)

respectively. Comparing (6.13) and (6.14) with the aid of (6.9)–(6.10) implies
%̂|t=0 = %(0), and so the initial condition (2.5)3 is satisfied. The periodicity (2.5)2

obviously holds due to the function space to which %̂ belongs. Thus, %̂ = %(0). We
summarize these arguments as follows.

Theorem 6.3. Let T > 0 be an arbitrary number, and impose the same assumptions
as in Theorem 4.1. Then, the solution %(D) of (2.3) converges to that of (2.5) in

V2m(T ), which is denoted as %(0), as D tends to zero.

7. Conclusion. In this paper, we discussed the mathematical analysis of the non-
linear Fokker-Planck equation of Kuramoto’s non-local coupling model of oscillators.
We first showed the local and global-in-time solvability, and then the nonlinear as-
ymptotic stability of the incoherent state. Finally, we verified the existence of the
vanishing diffusion limit solution as the diffusion coefficient tends to zero.

Our future work will be concerned with the mathematical stability analysis of
the chimera state of this model and the coupled oscillator model on the complex
graph. We will also tackle the bifurcation problem.
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