A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion

  • Received: 01 December 2014 Revised: 01 May 2016
  • Primary: 34B15, 58D30; Secondary: 82D37.

  • In this paper we present a suitable mathematical model to describe the behaviour of a hybrid electrolyte-oxide-semiconductor (EOS) device, that could be considered for application to neuro-prothesis and bio-devices. In particular, we discuss the existence and uniqueness of solutions also including the effects of the size exclusion in narrow structures such as ionic channels or nanopores. The result is proved using a fixed point argument on the whole domain.
        Our results provide information about the charge distribution and the potential behaviour on the device domain, and can represent a suitable framework for the development of stable numerical tools for innovative nanodevice modelling.

    Citation: Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion[J]. Networks and Heterogeneous Media, 2016, 11(4): 603-625. doi: 10.3934/nhm.2016011

    Related Papers:

    [1] Federica Di Michele, Bruno Rubino, Rosella Sampalmieri . A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11(4): 603-625. doi: 10.3934/nhm.2016011
    [2] Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi . SIR Rumor spreading model with trust rate distribution. Networks and Heterogeneous Media, 2018, 13(3): 515-530. doi: 10.3934/nhm.2018023
    [3] Pierre Gabriel, Hugo Martin . Steady distribution of the incremental model for bacteria proliferation. Networks and Heterogeneous Media, 2019, 14(1): 149-171. doi: 10.3934/nhm.2019008
    [4] Raimund Bürger, Stefan Diehl, María Carmen Martí . A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015
    [5] Santosh Kumar Henge, Gitanjali Jayaraman, M Sreedevi, R Rajakumar, Mamoon Rashid, Sultan S. Alshamrani, Mrim M. Alnfiai, Ahmed Saeed AlGhamdi . Secure keys data distribution based user-storage-transit server authentication process model using mathematical post-quantum cryptography methodology. Networks and Heterogeneous Media, 2023, 18(3): 1313-1334. doi: 10.3934/nhm.2023057
    [6] Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers . Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks and Heterogeneous Media, 2008, 3(1): 1-41. doi: 10.3934/nhm.2008.3.1
    [7] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
    [8] Matteo Piu, Gabriella Puppo . Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022, 17(4): 495-518. doi: 10.3934/nhm.2022006
    [9] Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol . Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14(1): 23-41. doi: 10.3934/nhm.2019002
    [10] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
  • In this paper we present a suitable mathematical model to describe the behaviour of a hybrid electrolyte-oxide-semiconductor (EOS) device, that could be considered for application to neuro-prothesis and bio-devices. In particular, we discuss the existence and uniqueness of solutions also including the effects of the size exclusion in narrow structures such as ionic channels or nanopores. The result is proved using a fixed point argument on the whole domain.
        Our results provide information about the charge distribution and the potential behaviour on the device domain, and can represent a suitable framework for the development of stable numerical tools for innovative nanodevice modelling.


    [1] U. Ascher, J. Christiansen and R. D. Russell, Collocation software for boundary-value ODEs, ACM Transactions on Mathematical Software (TOMS), 7 (1981), 209-222. doi: 10.1145/355945.355950
    [2] J. N. Y. Aziz, R. Genov, B. L. Bardakjian, M. Derchansky and P. L. Carlen, Brain-silicon interface for high-resolution in vitro neural recording, IEEE Transactions on Biomedical Circuits and Systems, 1 (2007), 56-62.
    [3] G. Bader and U. Ascher, A new basis implementation for a mixed order boundary value ODE solver, SIAM J. Sci. Stat. Comput., 8 (1987), 483-500. doi: 10.1137/0908047
    [4] R. Baronas, F. Ivanauskas and J. Kulys, Mathematical Modeling of Biosensors: An Introduction for Chemists and Mathematicians, Springer Science & Business Media, 2010. doi: 10.1007/978-90-481-3243-0_5
    [5] S. Baumgartner and C. Heitzinger, Existence and local uniqueness for 3d self-consistent multiscale models of field-effect sensors, Commun. Math. Sci, 10 (2012), 693-716. doi: 10.4310/CMS.2012.v10.n2.a13
    [6] M. Bayer, C. Uhl and P. Vogl, Theoretical study of electrolyte gate AlGaN/GaN field effect transistors, Journal of Applied Physics, 97 (2005), 033703. doi: 10.1063/1.1847730
    [7] S. Birner, Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces, Ph.D thesis, TU München, 2011.
    [8] S. Birner, S. Hackenbuchner, M. Sabathil, G. Zandler, J.A. Majewski, T. Andlauer, T. Zibold, R. Morschl, A. Trellakis and P. Vogl, Modeling of Semiconductor Nanostructures with nextnano3, Acta Physica Polonica A, 110 (2006), 111-124. doi: 10.12693/APhysPolA.110.111
    [9] S. Birner, C. Uhl, M. Bayer and P. Vogl, Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor, Journal of Physics: Conference Series, 107 (2008), 012002. doi: 10.1088/1742-6596/107/1/012002
    [10] M. Burger, R. S. Eisenberg and H. W. Engl, Inverse problems related to ion channel selectivity, SIAM Journal on Applied Mathematics, 67 (2007), 960-989. doi: 10.1137/060664689
    [11] M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity, 25 (2012), 961-990. doi: 10.1088/0951-7715/25/4/961
    [12] E. Cianci, S. Lattanzio, G. Seguini, S. Vassanelli and M. Fanciulli, Atomic layer deposited for implantable brain-chip interfacing devices, Thin Solid Films, 520 (2012), 4745-4748.
    [13] C. De Falco, E. Gatti, A. L. Lacaita and R. Sacco, Quantum-corrected drift-diffusion models for transport in semiconductor devices, Journal of Computational Physics, 204 (2005), 533-561. doi: 10.1016/j.jcp.2004.10.029
    [14] W. Dreyer, C. Guhlke and R. Müller, Overcoming the shortcomings of the Nernst-Planck model, Physical Chemistry Chemical Physics, 15 (2013), 7075-7086. doi: 10.1039/c3cp44390f
    [15] P. Fromherz, Semiconductor chips with ion channels, nerve cells and brain, Physica E: Low-dimensional Systems and Nanostructures, 16 (2003), 24-34. doi: 10.1016/S1386-9477(02)00578-7
    [16] P. Fromherz, Three levels of neuroelectronic interfacing, Annals of the New York Academy of Sciences, 1093 (2006),143-160.
    [17] P. Fromherz, Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips, Solid-State Electronics, 52 (2008), 1364-1373.
    [18] I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 48 (1997), 45-59. doi: 10.1007/PL00001469
    [19] D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, Journal of Physics: Condensed Matter, 14 (2002), 12129-12145. doi: 10.1088/0953-8984/14/46/317
    [20] W. M. Grill, S. E. Norman and R. V. Bellamkonda, Implanted neural interfaces: Biochallenges and engineered solutions, Annual Review of Biomedical Engineering, 11 (2009), 1-24. doi: 10.1146/annurev-bioeng-061008-124927
    [21] Y. He, I. Gamba, H.-C. Lee and K. Ren, On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells, SIAM Journal on Applied Mathematics, 75 (2015), 2515-2539. doi: 10.1137/130935148
    [22] C. Heitzinger, R. Kennell, G. Klimeck, N. Mauser, M. McLennan and C. Ringhofer, Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB, Journal of Physics: Conference Series, 107 (2008), 012004. doi: 10.1088/1742-6596/107/1/012004
    [23] C. Heitzinger and G. Klimeck, Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection, Journal of Computational Electronics, 6 (2007), 387-390. doi: 10.1007/s10825-006-0139-x
    [24] C. Heitzinger, N. J. Mauser and C. Ringhofer, Multiscale modeling of planar and nanowire field-effect biosensors, SIAM Journal on Applied Mathematics, 70 (2010), 1634-1654. doi: 10.1137/080725027
    [25] A. Jüngel and I. V. Stelzer, Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures, SIAM Journal on Mathematical Analysis, 45 (2013), 2421-2440. doi: 10.1137/120898164
    [26] P. A. Markowich, The Stationary Semiconductor Device Equations, Springer Science & Business Media, 1986. doi: 10.1007/978-3-7091-3678-2
    [27] P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag: Berlin, Heidelberg, New York, 1990. doi: 10.1007/978-3-7091-6961-2
    [28] M. Mojarradi, D. Binkley, B. Blalock, R. Andersen, N. Ulshoefer, T. Johnson and L. Del Castillo, A miniaturized neuroprosthesis suitable for implantation into the brain, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11 (2003), 38-42. doi: 10.1109/TNSRE.2003.810431
    [29] X. Navarro, T.B Krueger, N. Lago, S. Micera, T. Stieglitz and P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, Journal of the Peripheral Nervous System, 10 (2005), 229-258. doi: 10.1111/j.1085-9489.2005.10303.x
    [30] Y. Ohno, K. Maehashi, Y. Yamashiro and K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption, Nano Letters, 9 (2009), 3318-3322. doi: 10.1021/nl901596m
    [31] W. R. Patterson, Y. Song, C. W. Bull, I. Ozden, A. P. Deangellis, C. Lay, J. L. McKay, A. V. Nurmikko, J. D. Donoghue and B. W. Connors, A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications, IEEE Transactions on Biomedical Engineering, 51 (2004), 1845-1853. doi: 10.1109/TBME.2004.831521
    [32] I. Peitz and P. Fromherz, Electrical interfacing of neurotransmitter receptor and field effect transistor, The European Physical Journal E: Soft Matter and Biological Physics, 30 (2009), 223-231. doi: 10.1140/epje/i2009-10461-3
    [33] R. Popovtzer, A. Natan and Y. Shacham-Diamand, Mathematical model of whole cell based bio-chip: An electrochemical biosensor for water toxicity detection, Journal of Electroanalytical Chemistry, 602 (2007), 17-23. doi: 10.1016/j.jelechem.2006.11.022
    [34] M.J. Schöning and A. Poghossian, Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions, Electroanalysis, 18, (2006), 1893-1900.
    [35] W. M. Siu and R. S. C. Cobbold, Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects, IEEE Transactions on Electron Devices, 26 (1979), 1805-1815.
    [36] A. Stett, B. Muller and P. Fromherz, Two-way silicon-neuron interface by electrical induction, Physical Review E, 55 (1997), 1779-1782. doi: 10.1103/PhysRevE.55.1779
    [37] T. Tokuda, Y. L. Pan, A. Uehara, K. Kagawa, M. Nunoshita and J. Ohta, Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture, Sensors and Actuators A: Physical, 122 (2005), 88-98. doi: 10.1016/j.sna.2005.03.065
    [38] R. E. G. van Hal, J. C. T. Eijkel and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Advances in Colloid and Interface Science, 69 (1996), 31-62.
    [39] M. W. Shinwari, M. J. Deen and D. Landheer, Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design, Microelectronics Reliability, 47 (2007), 2025-2057.
  • This article has been cited by:

    1. Federica Di Michele, Bruno Rubino, Rosella Sampalmieri, Existence of solutions for a viscous hybrid quantum system for arbitrary large current density, 2022, 27, 1081-2865, 2189, 10.1177/10812865221105812
    2. Federica Di Michele, Ming Mei, Bruno Rubino, Rosella Sampalmieri, Stationary solutions for a new hybrid quantum model for semiconductors with discontinuous pressure functional and relaxation time, 2019, 24, 1081-2865, 2096, 10.1177/1081286518814289
    3. Federica Di Michele, Ming Mei, Bruno Rubino, Rosella Sampalmieri, Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics, 2017, 263, 00220396, 1843, 10.1016/j.jde.2017.03.032
    4. Federica Di Michele, Bruno Rubino, Rosella Sampalmieri, Kateryna Stiepanova, Stationary solutions to a hybrid viscous hydrodynamic model with classical boundaries, 2024, 6, 2640-3501, 705, 10.3934/mine.2024027
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4590) PDF downloads(225) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog