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Abstract. In this paper we present a suitable mathematical model to describe
the behaviour of a hybrid electrolyte-oxide-semiconductor (EOS) device, that

could be considered for application to neuro-prothesis and bio-devices. In par-

ticular, we discuss the existence and uniqueness of solutions also including
the effects of the size exclusion in narrow structures such as ionic channels or

nanopores. The result is proved using a fixed point argument on the whole

domain.
Our results provide information about the charge distribution and the po-

tential behaviour on the device domain, and can represent a suitable framework

for the development of stable numerical tools for innovative nanodevice mod-
elling.

1. Introduction. In recent decades we have witnessed an increase in our knowl-
edge in the fields of biology and applied physics. We are now able to produce
devices with nano-metrical dimensions and to interface them with complex biologi-
cal structures, such as cell membranes. The applications of these new technologies
range from computer science, to medicine and robotics. Research on the interface
between brain and electrical devices started in 1924, when Berger first succeeded in
recording human brain activity. Nowadays we are able to interface both peripheral
and central nervous systems with biomedical devices, and this is now widely con-
sidered as a valid therapeutic opportunity in many pathological situations, such as
spinal cord injury, epilepsy, Parkinson’s disease along with others (see[20]).

Many of the hybrid devices taken into consideration in the previous discussion
require the study of the interface between a semiconductor, either organic or inor-
ganic, and an electrolyte solution. We call electrolyte each compound which reacts
forming ions in water or in any other suitable solvent, and electrolyte solution the
corresponding solution. The electrochemical properties of the electrolyte solution
depend on the dissolved material, which is usually salt, as in our case. The simplest
case is the so called 1 : 1 solution, where a salt (NaCl for example) is decomposed
into two ions with unitary charge, one positive and one negative.

The characteristics and the performance of a two-way communication between
semiconductor chips and biological structures have been studied extensively in re-
cent years. See, for example, [2], [32], [36] and [37].
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The properties of a hybrid chip composed of a neuron from a rat brain and tran-
sistors in silicon have been discussed by Fromherz in [15]. In particular he describes
the interface between individual cultured neurons and silicon microstructures, from
an electronic point of view. In [16] and in [17] the author extends his study to
include the electrical coupling of ion channels and silicon chips. The feasibility of
totally implantable devices in the brain is discussed in [12], [28], and [31] (see also
[20] and [29] for a complete review). In order to reduce the impact of these devices
on the patients’ quality of life, it is crucial to reduce their dimensions until the range
of few micrometers, maintaining optimal performance.

We remark that the electrolyte-semiconductor interface technology is also ap-
plicable to ultra-integrate chemical sensors. In [6] the authors discuss, from a
theoretical point of view, an electrolyte gate AlGaN/GaN field effect transistors,
whereas in [9] a more complex case of a silicon-on-insulator sensor for charged pro-
teins detection is examined. Other similar applications are investigated in [7], [30],
[34] and [39]. A mathematical and computational description of bio-sensors is dis-
cussed, for example, in [4], [5], [22], [23], [24], and [33]. Finally in [21] an hybrid
semiconductor-electrolyte system is used to model solar cell. Recently many models
have been proposed to describe the behaviour of a system of charged particles. For
example in [25] the authors study the behaviour of a mixture of gases containing
an arbitrary number of particles. Whereas in [14] the authors present a new model
for an electrolyte solution accounting for a thermodynamically consistent coupling
between mechanic and diffusion process.

On the other hand, to our knowledge, a mathematical model describing the
interaction of nano-sized semiconductors and electrolyte solutions is not currently
available, although it could have many interesting applications.

As a first approach to this set of complex problems, we consider a very simple
device, the so–called EOS capacitor (Fig. 1). It consists of an electrolyte solution
(ΩE) and a doped semiconductor layer (ΩS), separated by a thin layer of oxide (ΩO).
The interface electrolyte-oxide and oxide-semiconductor are labelled with ∂ΩEO and
∂ΩOS , respectively, whereas, for each of the three sub–domains (electrolyte, oxide
and semiconductor), the boundary of the domain is labelled with ∂ΩE , ∂ΩO and
∂ΩS , respectively. See [35] or [39] for a general review, and [38] for the details
about the insulator-electrolyte interface. If we compare the EOS capacitor to the

Figure 1. Electrolyte Oxide Semiconductor device EOS: general case

more well known MOS (metal–oxide–semiconductor), the main difference is that,
in our case, it is the electrolyte solution which acts as a conductor. The external
voltage is applied to the device, by means of a standard metallic contact, on the
right-hand side (semiconductor), and by an electrode immersed in the solution, on
the left-hand side (electrolyte solution).
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The transport of ions in a neutrally charged solute is described by the so called
Poisson–Nernst–Planck equations (PNP). This model was used to describe the be-
haviour of ions under an external applied potential (see for example [10], [11], and
[19]).

Although the ions present in the electrolyte solution have, in general, different
chemical and physical properties, here we are only considering an electrolyte so-
lution 1:1. Similar results can also be obtained assuming different classes of ions.
However, the mathematical computations involved in those cases become very com-
plex.Under the previous assumptions, the Poisson–Nernst–Planck system, in steady
state conditions, reads

divJ+ = qR, divJ− = −qR,
J− = −qµ−

(
ρ−∇V − KBT

q ∇ρ−
)
,

J+ = −qµ+

(
ρ+∇V + KBT

q ∇ρ+

)
,

div (ε0εE∇V ) = q (ρ− − ρ+ − CE).

(P-DD)

To be precise, the last equation is usually called Poisson’s Equation and it describes
the behaviour of the electrical potential V .

Here ρ± are the densities of positive and negative ions in the solution. More-
over, µ±, R, ε0, εE , CE are the mobilities, the generation and recombination rates,
the electrical permeability of free space, the relative electrical permeability of the
electrolyte, and the permanent charge density (where CE = 0 if there are no fixed
charges in ΩE), respectively. Finally J± are the current densities, and q, KB , T
are the electron charges, the Boltzmann constant and the (constant) temperature,
respectively.

The charge distribution in a semiconductor can be described using the Drift Dif-
fusion system (DD) coupled to the Poisson’s equation, which is formally equivalent
to the Poisson-Nernst-Planck system described above (P-DD). For a complete re-
view about the mathematical problem and industrial application of these models,
see, for example, [26] and [27].

It is well known that the DD system is not able to describe the behaviour of ultra-
integrated devices, where quantum effects become non-negligible. The characteristic
dimensions of the bio-device are often in the order of a few micrometers, and then
the quantum effects can influence the dynamic of the system. To include these
phenomena, it is necessary to add a correction term to the electrostatic potential,
called Bohm potential

B(s) =
~2

6qm∗
∆
√
s√
s
,

where ~ and m∗ are the reduced Planck’s constant and the equivalent electron mass
respectively. The so modified DD system is called quantum drift-diffusion (QDD)
system.

In this paper we consider the steady state QDD system in the following form
divJn = qR, divJp = −qR,
Jn = −qµn

(
n∇(V +B(n))− KBT

q ∇n
)
,

Jp = −qµp
(
p∇(V +B(p)) + KBT

q ∇p
)
,

div (ε0εS∇V ) = q(n− p− CS),

(P-QDD)

where µn, µp, Jn, Jp, n, p, εS , CS , B are the electron mobility, the holes mobility,
the electron current density, the holes current density, the electron density, the
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holes density, the semiconductor permeability, the doping profile in ΩS and the
Bohm potential, respectively.

From the mathematical point of view we study two systems of ordinary dif-
ferential equations, one describing the electrolyte behaviour and the second one
describing the quantum semiconductor, coupled by using a suitable set of interface
conditions. The existence and uniqueness of the solutions follow by standard fixed
point arguments.

Here the outline of the paper follows. In Section 2 we introduce a mathematical
model to describe the behaviour of an EOS device. We account for the effect of the
size exclusion in the domain of the electrolyte and discuss a suitable set of transmis-
sion conditions linking the three domains. Section 3 is devoted to the mathematical
analysis of the model, in particular we prove the existence and uniqueness of solu-
tions for our model. Finally, in Section 4 we test the model numerically, in order to
quantify the effects of the size exclusion on the charge density and on the electrical
potential behaviour.

2. EOS capacitor: Mathematical model. In this section we examine the sys-
tem of equations applied in this paper in further detail. Systems (P-DD) and
(P-QDD) (modelling the electrolyte solution and the semiconductor, respectively)
are simplified in order to allow a mathematical treatment of the EOS capacitor.
First of all, we limit our analysis to the steady state regime and we assume that
the oxide is a perfect insulator and there is no charge flow through it, which means
Ji = Jn = Jp = 0, i = ±. Moreover, we consider a unipolar n-type semiconductor,
leaving out the contribution of the holes. Qbviously all the results presented in this
paper remain valid for a p-type semiconductor.

Under these approximations P-DD and P-QDD become respectively
ρ−∇V − KBT

q ∇ρ− = 0,

ρ+∇V + KBT
q ∇ρ+ = 0,

div(ε0εE∇V ) = q(ρ− − ρ+ − CE)

and {
n∇

(
V + ~2

6qm∗
∆
√
n√
n

)
− KBT

q ∇n = 0,

div(ε0εS∇V ) = q(n− p+ CS).

Here and in what follows ρ± is defined in ΩE , V on the whole domain Ω and n
in ΩS .

The oxide can be simply described using the Poisson’s equation, that is

div(ε0εO∇V ) = 0, (1)

where the left-hand side is equal to zero due to the absence of both free and fixed
charges.

The equations above can be written in dimensionless form, introducing a suitable
set of reference variables

Vs = V/Vth, ns = n/max(CS), CSs = CS/max(CS), (2)

ρ±s = ρ±/ρ, CEs = CE/ρ, xs = x/L,

where L is the total device length, ρ̄ is the concentration of ions in the electrolyte
solution at equilibrium and the label s indicates the dimensionless quantities.
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In view of (2), we obtain −∇ (Vs − ln ρ−s) = 0
−∇ (Vs + ln ρ+s) = 0
λ2div(αεE∇Vs) = (ρ−s − ρ+s − CEs),

(P-DDs)

{
∇ (Vs +Bs − lnns) = 0
λ2div(εS∇Vs) = (ns − CSs),

(P-QDDs)

λ2div(εO∇Vs) = 0, (3)

where

Vth =
KBT

q
, λ2 =

Vthε0
qL2 max(CS)

, α =
max(CS)

ρ
,

Bs(n) = η2 ∆
√
n√
n

where η2 =
~2

6qm∗L2Vth
.

Here η is the scaled Planck’s constant and (P-DDs) is written in conservative form.
From now on:

(A1) We divide the domain Ω ⊂ R into three parts, ΩE , ΩO, ΩS , which are the
electrolyte, the oxide and the semiconductor domain, respectively.

(A2) ε(x) ∈ L∞(ΩE ∪ΩO ∪ΩS)∩L2(ΩE ∪ΩO ∪ΩS) is a step function and C(x)∈
L∞(ΩE ∪ ΩO ∪ ΩS) ∩ L2(ΩE ∪ ΩO ∪ ΩS) and are defined as follows

ε(x) = εE , C(x) = 0 for all x ∈ ΩE ,

ε(x) = εO, C(x) = 0 for all x ∈ ΩO,

ε(x) = εS , C(x) = CS(x) > 0 for all x ∈ ΩS .

2.1. Boundary and interface conditions. From now on all the variables taken
under consideration will be assumed as already scaled, although we will omit the
index s for simplicity.

In this subsection we are going to briefly summarize the boundary and interface
conditions for our hybrid system. In order to understand the way in which the
geometrical properties of ΩE influence the dynamic of the system, we consider two
different configurations:

I. The electrolyte domain is supposed to be quite large in comparison with the
total volume occupied by the ions. This condition is verified, for example, in
the EOS capacitor, which is the main component of the EOSFET transistor.

II. The electrolyte domain is a narrow channel (nano-pore), and the size exclusion
effects must be included. This case models the theoretical behaviour of a single
(open) ionic channel.

In both cases we can assume that the bulk equilibrium condition holds at least in a
point xB ∈ ΩE . This condition is achieved for a large enough distance from both the
charged surfaces (reference electrode and oxide-electrolyte interface) [39]. On the
other hand it seems reasonable to assume that the system reaches its equilibrium
condition in the external bath in the case of nano-pore device. Thus we assume
that there exists xB such that

ρ±|xB
= 1, V|xB

= V .

Without loss of generality we set V = 0 as reference potential. If the electrode
has zero potential, the bulk equilibrium condition is archived on ∂ΩE . Otherwise,
if V|∂ΩE

= VE 6= 0 the behaviour of the electrical potential around the electrode
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(Gouy-Chapman layer) can be computed exactly by solving the system P-DDs with
the following boundary condition:

V|∂ΩE
= VE , V|xB

= 0, ρ±|xB
= 1. (4)

We remark that the original theory due to Gouy-Chapman, despite being extremely
simple and fairly realistic, overestimates the value of the interface charge densities.
Therefore the Stern layer must be taken into consideration if we want to obtain
more realistic results. Indeed, it models the fact that the distance between ions and
the electrode surface cannot be smaller than the diameter of the ions. See [39] for
a complete review about the EOS capacitor in the classical case.

Without loss of generality, we assume that the bulk condition holds in corre-
spondence of the electrode (VE = 0), and we remark that all the other cases can be
reduced to this one as described above.

Thus, we can prescribe the values of the electrical charge density and the value of
the electrical potential on the boundary of the domain. We refer to these quantities
as physical boundary conditions:

ρ±|∂ΩE
= 1, V|∂ΩE

= 0, n|∂ΩS
= 1, V|∂ΩS

= VS . (5)

Moreover, the quantum effects are considered negligible on the metallic contacts:
B|∂ΩS

≈ 0. Finally, we have to prescribe the interface conditions. We assume that
the electric potential and the normal component of the electric displacement vector
ε(x)∇V are continuous on both the interfaces:

[V ]|∂ΩEO
= [V ]|∂ΩOS

= 0, [ε(x)∇V ]|∂ΩEO
= [ε(x)∇V ]|∂ΩOS

= 0, (6)

where [X]|x=x0
indicates the jump of the function X at x = x0.

The last interface condition required for this purpose is

n|∂ΩSO
= nO. (7)

From the theoretical viewpoint, it should be n|∂ΩSO
= 0, since the electrons cannot

penetrate into the oxide, due to the presence of the quantum barrier. However, to
avoid numerical instabilities, we consider 0 < n|∂ΩSO

= nO << 1 as suggested in
[13]. This parameter can be read as a measure of free carrier transport through the
oxide barrier (tunnel effect).

2.2. From the physical problem to the mathematical model. In this sec-
tion we rewrite (P-DDs) and (P-QDDs) in a more compact way to simplify the
mathematical analysis, which will be the subject of the next section.

In view of the boundary conditions previously introduced, the first two equations
in (P-DDs) and the first one in (P-QDDs) can be integrated over ΩE and ΩS ,
respectively. In this way we obtain:

V − ln ρ− = 0,

V + ln ρ+ = 0,

V + η2 ∆
√
n√
n
− lnn = VS ,

(8)

that is 
ρ−(x) = eV ,

ρ+(x) = e−V ,

n(x) = e(V−VS)+B .

(9)

The first two equations in (9) are the well known Boltzmann distributions.



EOS CAPACITOR SIZE EXCLUSION 609

By substituting them into the Poisson’s equation in (P-DDs), and making some
simple calculations, we obtain

λ2div(αεE∇V ) = 2 sinh(V ), (10)

which is usually called Boltzmann-Poisson equation.
For small applied potentials, the Debye-Huchel approximation holds, and (10)

assumes the linearized form (see [39])

λ2div(αεE∇V ) = 2V. (11)

A more general case of (10) includes the size exclusion effect, for ionic flow through
a narrow structure such as a nano-channel:

λ2div(αεE∇V ) =
2 sinh(V )

1 + 2 cosh(V )
. (12)

See [11] and its list of references for details about its derivation.
However, for small applied potentials, we have

λ2div(αεE∇V ) =
2

3
V, (13)

which is again in the form (11).
From now on, just to simplify the notation, we assume εE = αεE and refer to

equations (10), (11), (12) and (13) as

λ2div(εE∇V ) = f(V ), (14)

where

f(V ) =


2 sinh(V ) without size exclusion,

2 sinh(V )

1 + 2 cosh(V )
with size exclusion,

κ2V for small applied potential.

(15)

In the last line we assume κ2 = 2, without the size exclusion, and κ2 = 2/3 other-
wise.

Solving (14), we obtain the behaviour of the electrical potential V . The charge
densities can be also determinated by using the first two equations in (9).

Considering the Poisson’s equation in (P-QDDs), (3), and (14), we get
λ2div(εS∇V ) = n− C in ΩS ,

λ2div(εO∇V ) = 0 in ΩO,

λ2div(εE∇V ) = f(V ) in ΩE .

(16)

We can solve the system above associating the following boundary and interface
conditions

V|∂ΩE
= 0, V|∂ΩS

= VS , [V ]|∂ΩEO
= [V ]|∂ΩOS

= 0,

[ε(x)∇V ]|∂ΩEO
=[ε(x)∇V ]|∂ΩOS

= 0.

The electrons behaviour in the semiconductor domain is described by the first equa-
tion in (P-QDDs). Until now, we have used the isothermal form of the enthalpy,
namely h(s) = ln s (for any positive defined function s), in order to get a more
readable physical derivation and to underline the relationship between (P-QDDs)
and (P-DDs). In fact, in that case, it is possible, at least formally, to write a
Boltzmann-like distribution also for electrons in a quantum system, as shown in the
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last equation of (9). However, from the mathematical point of view, a more gen-
eral enthalpy function seems more appropriate. To this end, we introduce a more
general form for the enthalpy h(s), that is

(A3)

h(s) =


ln(s) γ = 1 (isothermal case),
γ

γ − 1
γγ−1 γ > 1 (isentropic case).

(17)

Finally, in order to simplify the mathematical approach in the next section, we
introduce the new variable w =

√
n, and from now on we prefer switching to the

new unknowns (w, V ), instead of (n, V ). We remark that, by definition, the charge
density n(x) is a non negative function, therefore w is well defined and non–negative.

The first equation of (P-QDDs) and the correspondent boundary condition can
be rewritten as {

η2∆w = w(h(w2)− (V − VS)) in ΩS ,

w|∂ΩOS
= wOS , w∂ΩS

= 1,
(18)

where wOS =
√
nOS .

Limiting our analysis to the one-dimensional case, from (18), we get the following
description of the charge concentration (see Fig. 2 for the notation):

η2wxx = w(h(w2)− (V − VS)) in ΩS ,

w(xOS) = wOS , w(xS) = wS in ΩS ,

w = 0 in ΩO.

(19)

The last equation in (19) models the zero-charge distribution in the oxide layer.
Analogously, by using (16), for the electrical potential, we have:

λ2εSVxx = w2 − C in ΩS ,

λ2εOVxx = 0 in ΩO,

λ2εEVxx = f(V ) in ΩE ,

V (0) = 0, V (xS) = VS ,

[V ]xEO
= [V ]xOS

= 0, [εVx]xEO
= [εVx]xOS

= 0.

(20)

We would like to remark that the 1-D case can be derived directly from the general
3-D system, by integration with respect to x and assuming constant device cross
sections. Despite their simplicity, these results can be directly correlated with the
measured quantities, such as the surface charge distributions at the interfaces. In
our opinion this model may represent a good starting point for the development of
more complex multidimensional models.

3. Existence of solution to the hybrid electrolyte-semiconductor system.
In this section we discuss the existence and the uniqueness of solutions for the
electrolyte-oxide-semiconductor problem (19) and (20). We consider a bounded 1-
D domain, as in Fig. 2. Basically, we are going to use the same approach proposed
in [18].

We start with the following lemma, where we discuss some a priori estimates,
which will be used to establish the existence of solutions (Theorem 3.3).

Lemma 3.1. Let (A1)-(A2)-(A3) hold, let (w, V ) ∈ (H1(ΩS), H1(Ω)) be solu-
tions to the truncated problems (21)-(22):
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Figure 2. Electrolyte-Oxide-Semiconductor Capacitor.

Charge concentration
η2wxx = wK(h(w2

K)− (V − VS)) in ΩS ,

w = 0 in ΩO,

w(xOS) = wOS w(xS) = wS ,

(21)

Electrical Potentials

λ2εSVxx = wwK − C in ΩS ,

λ2εOVxx = 0 in ΩO,

λ2εEVxx = f(V ) in ΩE ,

V (0) = 0, V (xS) = VS ,

[V ]xEO
= [V ]xOS

= 0, [εVx]xEO
= [εVx]xOS

= 0,

(22)

where wK = max(0,min(w,K)), and wOS , wS > 0 and 0 < λ, η << 1. Then, there
exists K0 > 0 such that for all K ≥ K0 we have

‖w‖H1(ΩS) + ‖V ‖H1(Ω) ≤ c,

where the constant c depends only on the parameters of the problem.

Proof. Let us assume w0 a regular function which verifes the boundary and the
interface conditions for w, for example the linear interpolation

w0 =
wS − wOS
xS − xOS

(x− xOS) + wOS .

By multiplying the first equation in (21) by (w − w0) and integrating on ΩS , after
some manipulations, we get

η2

∫
ΩS

w2
xdx = η2wS − wOS

xS − xOS

∫
ΩS

wxdx−
∫

ΩS

wwKh(w2
K)dx
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+

∫
ΩS

w0wKh(w2
K)dx+

∫
ΩS

(V − VS)wwKdx

−
∫

ΩS

(V − VS)w0wKdx (23)

≤ η2

2

∫
ΩS

w2
xdx+

η2

2

(
wS − wOS
xS − xOS

)2

−
∫

ΩS

wwKh(w2
K)dx+ ‖w0‖L∞

∫
ΩS

|wKh(w2
K)|dx

+

∫
ΩS

(V − VS)wwKdx−
∫

ΩS

(V − VS)w0wKdx.

Now we take V0 as a given regular function, with compact support in Ω (verifying
the interface conditions (22)5) and multiply the sum of the first, the second and
the third equations in (22) by (V −V0). In view of the boundary condition and the
transmission conditions at the interface, after integrating on Ω, we get:

λ2εm

∫
Ω

V 2
x dx ≤ εM

∫
Ω

|V0x||Vx|dx+

∫
ΩS

V0wKwdx−
∫

ΩS

V wwKdx (24)

+

∫
ΩS

C(V − V0) dx−
∫

ΩE

f(V )(V − V0)dx

where εm = min {εS , εO, εE} and εM = max {εS , εO, εE}. Using the Cauchy-
Schwarz inequality (with a suitable parameter) to estimate the first term on the
right hand side of the equation (24), we obtain

3λ2εm
4

∫
Ω

V 2
x dx ≤

∫
ΩS

V0wKwdx−
∫

ΩS

V wwKdx (25)

+

∫
ΩS

C(V − V0) dx−
∫

ΩE

f(V )(V − V0)dx+ c.

From this point onwards c and ci are constants independent from η and K.
We are now going to discuss in details the last integral in the inequality above.

In fact, the behaviour of the function f(V ) depends strictly on the geometrical
properties of ΩE and on the applied potential, as explained in the previous section
and summarized in (15).

Let’s denote I∗ =
∫

Ωi
f(V )(V − V0) dx for i = E,O, S.

1. When f(V ) = 2 sinh(V ), we have:

I∗ =−
∫

ΩE

2 sinh(V )(V − V0)dx

=− 2

∫
ΩE

(sinh(V )− sinh(V0))(V − V0)dx

− 2

∫
ΩE

sinh(V0)(V − V0)dx

≤ −2

∫
ΩE

sinh(V0)(V − V0)dx,

where we observe that (sinh(y)−sinh(y0))(y−y0) ≥ 0, for all y ∈ R. By using
the Cauchy-Schwarz inequality (with parameter) and the Poincaré inequality,
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we get:

I∗ ≤
λ2εm

8

∫
ΩE

(V − V0)2
xdx+ c (26)

≤λ
2εm
4

∫
ΩE

V 2
x dx+ c ≤ λ2εm

4

∫
Ω

V 2
x dx+ c

2. Our second case assumes f(V ) = sinh(V )
1
2 +cosh(V )

. Observing that |f(y)| < 1 for all

y ∈ R, we get

I∗ = −
∫

ΩE

sinh(V )
1
2 + cosh(V )

(V − V0)dx ≤ λ2εm
8cP

∫
ΩE

(V − V0)2dx+ c,

where c depends on the maximum of the function f(V ) and cP is an ad hoc
Poincaré constant. Lastly, working as in (26), we get

−
∫

ΩE

sinh(V )
1
2 + cosh(V )

(V − V0)dx ≤ λ2εm
4

∫
Ω

V 2
x dx+ c.

3. Our third case considers a small applied potential. Then f(V ) = κ2V , corre-
sponding to the last case in (15). In this case we have

I∗ = −κ2

∫
ΩE

V (V − V0)dx ≤ −κ
2

2

∫
ΩE

V 2dx+
κ2

2

∫
ΩE

V 2
0 dx ≤ c.

By adding (23) and (25), in view of the computations above and after some manip-
ulations, we get

λ2εm
2

∫
Ω

V 2
x dx+

η2

2

∫
ΩS

w2
xdx ≤ −

∫
ΩS

wwKh(w2
K)dx

+ ‖w0‖L∞
∫

ΩS

|wKh(w2
K)|dx+ ‖V0 − VS‖L∞

∫
ΩS

|wwK |dx (27)

−
∫

ΩS

(V − VS)w0wKdx+

∫
ΩS

C(V − V0)dx+ c,

which holds for each function f(V ) in (15).
The last two terms in (27) can be estimated, using the Poincaré inequality, as

follows:

−
∫

ΩS

(V − VS)w0wKdx+

∫
ΩS

C(V − V0)dx =∫
ΩS

(V − V0)(C − w0wK)dx−
∫

ΩS

(V0 − VS)w0wKdx

≤ λ2εm
8cP

∫
ΩS

(V − V0)2dx+ c1

∫
ΩS

w2
Kdx+ c2 (28)

≤ λ2εm
4

∫
Ω

V 2
x dx+ c1

∫
ΩS

w2
Kdx+ c2

≤ λ2εm
4

∫
Ω

V 2
x dx+ c1

∫
ΩS

wwKdx+ c2

where cP is, as usual, the Poincaré constant.
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Subsequently, taking into account (28), the estimate (27) reduces to

λ2εm
4

∫
Ω

V 2
x dx+

η2

2

∫
ΩS

w2
xdx (29)

≤ −
∫

ΩS

wwKh(w2
K)dx+ β

∫
ΩS

|wKh(w2
K)|dx+ β

∫
ΩS

wwKdx+ c

where

β = max(‖w0‖L∞ , ‖V0 − VS‖L∞ + c1).

Following the same arguments as in [18], there exist K0 > 0 and M0 > 0 such that,
for all K ≥ K0, we have

−
∫

ΩS

wwKh(w2
K)dx+ β

∫
ΩS

|wKh(w2
K)|dx+ β

∫
ΩS

wwKdx ≤M0.

From (29) there exist cΩ, cV , c > 0 depending on the boundary values, on ε(x) and
on the doping profile C(x) such that∫

ΩS

w2
x dx ≤ cw,

∫
Ω

V 2
x dx ≤ cV , (30)

and

‖w‖H1(ΩS) + ‖V ‖H1(Ω) ≤ c. (31)

In order to construct our fixed point procedure, we need the following elementary
result.

Lemma 3.2. Let f, f1, f2 ∈ L2(R) and v ∈ H1([a, b]) for any a, b ∈ R. Then there
exists a unique function u ∈ H1([a, b]) such that{

uxx(x) = f(v(x))

u(a) = f1(v(a)), ux(b) = f2(v(b)).

Proof. Clearly u is given by

u(x) = f1(v(a)) + f2(vb)(x− a)−
∫ x

a

(∫ b

s

v(y)dy

)
ds.

By using the a priori estimate discussed above, we prove the existence of a
unique solution to our problem. In the following theorem we discuss the existence
of solutions applying the Leray-Schauder fixed-point theorem.

Theorem 3.3. Let (A1)-(A2)-(A3) hold. Then, the boundary value problems
(19)-(20) admit at least one solution (w, V ) such that w ∈ H2(ΩS) ∩ L∞(ΩS) and
V ∈ H1(Ω) ∩ L∞(Ω). Moreover, there exist three constants V± and ω+ such that

V− ≤ V ≤ V+, ∀x ∈ Ω and 0 ≤ w ≤ w+, ∀x ∈ ΩS . (32)

Proof. We start defining the map T : M −→M , where

M := {(u, U) ∈ L2(ΩS)× L2(Ω)},

that will be shown to verify the assumptions of Leray-Schauder fixed point theorem.
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For each (u, U) ∈ L2(ΩS)× L2(Ω), let V ∈ H1(Ω) be the unique solution to the
following linearized system

λ2εEVxx = σf(U) in ΩE ,

λ2εOVxx = 0 in ΩO,

λ2εSVxx = σ(uuK − C) in ΩS ,

V (0) = 0, V (xS) = σVS ,

[V ]xEO
= [V ]xOS

= 0, [εVx]xEO
= [εVx]xOS

= 0,

(33)

where, from now on, we take σ ∈ [0, 1]. To construct this solution, since all the
functions f(U) in (33)1 are in L2(ΩE), we can apply Lemma 3.2 in each sub-domain,
namely [0, xEO], [xEO, xOS ] and [xOS , xS ]. Clearly also the right hand side term in
(33)3 belongs to L2(ΩS), due to the assumption (A2). The values of the function
V on the boundary of each sub-domain can be assigned, for the given functions
(U, u), according to (33)5.

We introduce the function D(x), called electrical displacement, which can not
jump at the interfaces, where its value is

D = εEVx(xEO) = εOVx(xEO) = εOV (xOS) = εSVx(xOS).

From (19) and (20) it is not difficult to show that V (xEO), V (xOS) and D verify
the following conditions

−εEV (xEO) + LED − IE + εEVE = 0,

−εOV (xEO) + εOV (xOS)− LOD = 0,

−εSV (xOS)− LSD − IS + εSVS = 0,

(34)

where LE = xEO, LO = xOS − xEO, LS = xS − xOS , and

IE =
1

λ2

∫ xEO

0

(∫ xEO

x

f(U) ds

)
dx, IS =

1

λ2

∫ xS

xOS

(∫ x

xOS

u2 − C(s) ds

)
dx.

The unique solution of the linear system (34) can be expressed in the form

V (xEO) =A1 +B1IE + C1IS ,

V (xOS) =A2 +B2IE + C2IS , (35)

D =A3 +B3IE + C3IS ,

where Ai, Bi, Ci, i = 1, 2, 3 are constants. Moreover, by the previous estimates,
we can find two constants K1, K2 such that

|IE | < (LE)2K1 and |IS | < (LS)2K2.

This allows us to define three closed and bounded intervals [V −EO, V
+
EO],[V −OS , V

+
OS ],

[D−, D+] such that

V (xEO) ∈ [V −EO, V
+
EO], V (xOS) ∈ [V −OS , V

+
OS ], andD ∈ [D−, D+].

The values of the electric potential at the interfaces x = xEO and x = xOS are
initially chosen arbitrarily in [V −EO, V

+
EO] and [V −OS , V

+
OS ], respectively. The global

solution V , defined on whole domain Ω, can be easily obtained linking the three
solutions computed separately in each domain. The interface conditions are in this
case automatically verified.
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Once we have V , we obtain w ∈ H1(ΩS) as the unique solution of{
η2wxx = σuK(h(u2

K)− (V − VS)) in ΩS ,

w(xOS) = σwOS , w(xS) = σwS .
(36)

Here uK is defined as in Lemma 3.1. Then T maps L2(Ω)× L2(ΩS) into itself and
it is well defined.

Now we have to check that T is continuous and compact. The continuity derives
from the continuity of the right hand side of the problems (33) and (36). Concerning
the compactness of T , take (u, U) ∈ B, where B is a bounded set of M . For
(ω, V ) = T (u, U) we can obtain the estimate

‖w‖H1(ΩS) + ‖V ‖H1(Ω) ≤ c, (37)

likewise for (31).
This tells us that T (B) is a bounded subset of H1(ΩS)×H1(Ω) and then it is a

pre-compact set in L2(ΩS)×L2(Ω). Moreover, for σ = 0 we have T ((u, U)) = (0, 0)
and for (w, V ) ∈M such that (w, V ) = T (w, V ) we have

‖w‖H1(ΩS) + ‖V ‖H1(Ω) ≤ c1, (38)

obtained similarly to (31), where c1 does not depend on σ ∈ [0, 1] and K.
Finally, we can apply the Leray-Schauder fixed-point theorem to get a weak

solution to problem (22)-(21). The uniqueness of this solution will be proved in
Theorem 3.4. Once (w, V ) = T (u, U) has been obtained, we can update the values
of IE and IS and then the value of the electric potential at the interfaces by means
of (35). The same procedure is applied to the electrical displacement D, taking the
initial guess in [D−, D+].

This allows us to define a continuous application T1 : M1 →M1, where

M1 = [V −EO, V
+
EO]× [V −OS , V

+
OS ]× [D−, D+]

and T1(U(xEO), U(xOS), D(U)) = (V (xEO), V (xOS), D(V )). Then one can apply
to the map T1 the Schauder’s fixed point theorem to obtain the final value of V and
Vx at the interfaces.

In order to find the solution of the original problems (19)-(20) we have to show
that w ∈ L∞(Ω). This simply follows from the immersion H1(a, b) ↪→ L∞(a, b).
In the same way, (32)1 follows directly from (38). It remains to show that w ≥ 0.
Proceeding as in [18], we multiply (21) by w− = min(0, w) ∈ H1(ΩS), and integrate
by parts getting∫

ΩS

|w−x |2 dx = −
∫

ΩS

w−wKH(wK)2 dx+

∫
ΩS

(V − VS)wKw dx = 0,

which according to the definition of wK , implies w ≥ 0.
Finally w ∈ H2(ΩS) from (19), in view of the estimates above.

In the following theorem we present the uniqueness result.

Theorem 3.4. Under the assumptions (A1)-(A2)-(A3), there exists η0 such that
for all η ≥ η0 the problem (19)-(20) admits a unique solution.

Proof. Concerning the bound of the charge density, it is possible to show that for
all x ∈ ΩS the following inequalities hold:

• (B1)

0 < w ≤ w ≤ w, if γ = 1,
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• (B2)

0 < w ≤ w, if γ > 1,

where w and w are constants not depending on η. See [18] (page 52 and the
following) for the complete proof.

To get the uniqueness of the solution, we work by contradiction. We discuss the
details of isothermal case, where h(s) = ln(s). We assume there exist (w1, V1) and
(w2, V2) solving the problems (19)-(20). Subtracting the system solved by (w1, V1)
and (w2, V2) we get:{

η2(w1 − w2)xx = 2w1 lnw1 − 2w2 lnw2 − (w1V1 − w2V2) in ΩS ,

(w1 − w2)(xOS) = 0, (w1 − w2)(xS) = 0,
(39)



λ2εS(V1 − V2)xx = (w2
1 − w2

2) in ΩS ,

λ2εE(V1 − V2)xx = f(V1)− f(V2) in ΩE ,

λ2εO(V1 − V2)xx = 0 in ΩO,

(V1 − V2)(xE) = 0, (V1 − V2)(xS) = 0,

[V1 − V2]xEO
= [V1 − V2]xOS

= 0,

[ε(V1 − V2)x]xEO
= [ε(V1 − V2)x]xOS

= 0.

(40)

We multiply the first equation in (39) by (w1 − w2) and obtain

η2

∫
ΩS

(w1 − w2)2
x dx =− 2

∫
ΩS

(w1 lnw1 − w2 lnw2)(w1 − w2) dx

+

∫
ΩS

(w1V1 − w2V2)(w1 − w2) dx

=− 2

∫
ΩS

(w1 lnw1 − w1 lnw2)(w1 − w2) dx (41)

− 2

∫
ΩS

(w1 lnw2 − w2 lnw2)(w1 − w2) dx

+

∫
ΩS

(w1V1 − w2V2)(w1 − w2) dx

It is not difficult to show that

(w1V1 − w2V2)(w1 − w2) =
1

2
(V1 + V2)(w1 − w2)2 +

1

2
(V1 − V2)(w2

1 − w2
2),

therefore, one has

η2

∫
ΩS

(w1 − w2)2
x dx ≤− 2

∫
ΩS

w1(lnw1 − lnw2)(w1 − w2) dx

+ (c+ c1)

∫
ΩS

(w1 − w2)2 dx (42)

+

∫
ΩS

(V1 − V2)(w2
1 − w2

2) dx.

As a consequence of L∞ bounds for V and (H1), one has

‖V1‖L∞(ΩS) + ‖V2‖L∞(ΩS) ≤ 2c, ‖w‖L∞(ΩS) ≤ c.
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Moreover, the sum of the Poisson’s equations after multiplication by (V1−V2) gives
us

λ2εS

∫
ΩS

(V1 − V2)2
x dx+ λ2εO

∫
ΩO

(V1 − V2)2
x dx+ λ2εE

∫
ΩE

(V1 − V2)2
x dx =

−
∫

ΩS

(w2
1 − w2

2)(V1 − V2) dx−
∫

ΩE

(f(V1)− f(V2))(V1 − V2) dx. (43)

By summing (42) and (43), in view of the monotonicity of the functions ln(w) and
f(V ), we get

η2

∫
ΩS

(w1 − w2)2
x dx+ λ2εm

∫
Ω

(V1 − V2)2
x dx ≤ c

∫
ΩS

(w1 − w2)2 dx.

The uniqueness follows for η2 large enough, by using the Poincaré inequality.
Finally, we observe that in the isentropic case, that is h(s) = γ

γ−1s
γ−1 and γ > 1,

the uniqueness can be proved in the same way, since

−(s1h(s2
1)− s2h(s2

2))(s1 − s2) ≤ 0, for all s1, s2 ∈ R.

4. Numerical simulations. Recently some new models describing devices based
on interfacing nano-sized semiconductors and electrolyte solutions have been devel-
oped (see for example [8], [7] and reference therein). Here the PNP is used in its
standard form without size exclusion effects.

The main purpose of this section is to understand how (and if) the size exclusion
in the electrolyte domain modifies the electrons distribution and the behaviour of
the electrical potential. Then, before testing our model on more complex devices,
for which experimental results are available, we start with a simple toy model.

The numerical simulations presented in this section are produced by COLNEW,
a SCILAB function for boundary value problems which use collocation at Gaussian
points [3] (see also [1], where the old package called COLSYS is described). In
[18] COLSYS has been shown to provide good results in approximating quantum
hydrodynamical equations.

We consider the same simplified domain introduced in the theoretical section, but
the approach used to get solutions is a little bit different from the one presented in
Theorem 3.3 in order to simplify the numerical approach. Indeed, in this section
we solve the three problems each in its own domain, while, in the Theorem 3.3, first
we solve globally the equations for the potential and then the electron density is
evaluated in ΩS .

The potential V and the function w =
√
n are the solutions of the following

boundary value problems

Boundary value problem in ΩS

η2wxx = w(h(w2)− (V − VS)) with w(xOS) = wOS w(xS) = wS = 1,

λ2(ε(x)Vx)x = w2 − C(x) with V (xOS) = VOS V (xS) = VS . (44)

Boundary value problem in ΩE

λ2αεEVxx = f(V ) with V (xE) = 0, V (xEO) = VEO, (45)

whereas the potential in the oxide domain is given by

V (x) = V (xEO) + (x− xEO)
V (xOS)− V (xEO)

xOS − xEO
, x ∈ ΩO. (46)
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Systems (44) and (45) are solved by using COLNEW starting with two initial guesses
V 0(xEO) and V 0(xOS). The value of the potential on ΩO is given by (46).

This provides the values of V on whole domain and of w in ΩS .
Then we can compute the new values V 1(xEO) and V 1(xOS) by using (34) and

iterate the process until convergence of the interface potentials V (xEO) and V (xOS).
In particular, we assume that the convergence is achieved if:

|V k(xEO)− V k−1(xEO)|+ |V k(xOS)− V k−1(xOS)| < 10−5,

where k indicates the iteration step.
The convergence of this iteration can be proved using a similar approach as in

Theorem 3.3.
For the simulation, we assume CS = 1017m−3, L = 20nm, ε0 = 8.851̇0−12 F/m,

T = 300K, εO = 3.9, εS = 11.9, εE = 80, m∗ = 10−31Kg, ~ = 6.6 · 10−34 J/s
and q = 1.6 · 10−19 C. The scaled electron concentration at the interface between
semiconductor and oxide is taken w2

OS = 0.001.
It seems reasonable that the ions confinement effects are important when studying

high ions concentration ρ̄ in the electrolyte domain. Thus, in order to quantify the
effect of the size exclusion, we consider different values of the parameter α = CS/ρ̄.
Obviously the value of ρ̄ is uniquely determined by α and CS .

Assuming α = 1 and VS = −0.6V (corresponding to the scaled value VSs =
−23.076923), the presence of the size exclusion does not modify the electrical po-
tential and the charge density behaviour, as summarized in Fig. 3 and Fig. 4.

To observe the effects of the size exclusion, we reduce the value of the parameter
α until 10−7. As a consequence, the electrical potential decreases at the interface
electrolyte-oxide (Fig. 5). At the interface between oxide and semiconductor, the
potential does not change remarkably (V (xOS) = −0.1355491V and V (xOS) =
−0.1325997V with and without size exclusion, respectively), but the effects of the
size exclusion on the electron concentration at the interface are evident as shown
in Fig. 6. On the contrary, the effects on the potential on whole domain are not
remarkable for this experimental parameters (Fig. 7). Finally we reduce the value
of the applied potential until VS = −0.06V (corresponding to the scaled value
VSs = −2.3076923). In this case we expect that both the ions and the electrons are
very close to the equilibrium conditions and the size exclusion effects does not play
any role as showed in Fig. 8 and Fig. 9.

5. Conclusion and future works. In this paper we have proposed a mathemati-
cal model to describe an EOS capacitor working in a quantum regime. The quantum
effects are introduced, as usual, by means of the Bohm potential. We have proved
the existence of a unique solution in the 1D steady state case and we have discussed
how the presence of a narrow channel in the domain ΩE influences the behaviour
of the device. The model has been validated on a test device, by using COLNEW
and a simple algorithm based on a fixed point argument, discussed in the theoret-
ical part. Our simulations show that, as expected, the effects of the size exclusion
depend on the value ρ̄, which is the ions concentration at equilibrium. ρ̄ is the main
parameter to consider in order to control the behaviour of the device, at least in
the 1D approximation.

We point out that we do not take into consideration the electrons penetration in
the oxide and electrolyte domain, although this effect can strongly modify the be-
haviour of the system. To include such phenomena, a more general time dependent
model has to be developed.
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In conclusion, we remark that, only the single channel case has been examined
here. In the more complex (and probably more realistic) case the electrolyte moves
in a porous or nanoporous media. To describe this case, many other effects must be
considered, such as the properties of nanoporous structure, the interaction between
ions and the internal side of the nanoporous surfaces and the reduction of the
porosity due to the presence of ions. However, the model presented in this paper
seems to the authors a good starting point for developing a more complex model,
which could be able to describe exhaustively most of the modern bio-devices.

Figure 3. Electrical potential distribution in the whole device,
assuming VS = −0.6V and α = 1. The effect of the size exclu-
sion is not visible in these experimental conditions. And potentials
obtained, with and without size exclusion, are exactly overlapping.
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Figure 4. Charge density distribution in ΩS , assuming VS =
−0.6V and α = 1. Both cases with (dot line) and without (solid
line) size exclusion are considered. Also the charges densities, ob-
tained with and without size exclusion, are exactly overlapping.

Figure 5. Electrical potential distribution in the elctrolyte do-
main, assuming V = −0.6V and α = 10−7. Both cases with
(dot line) and without (solid line) size exclusion are considered.
The effect of the size exclusion becomes remarkable, at least in the
elctrolyte domain.



622 FEDERICA DI MICHELE, BRUNO RUBINO AND ROSELLA SAMPALMIERI

Figure 6. Charge density distribution in the semiconductor do-
main, assuming V = −0.6V and α = 10−7. Both cases with (dot
line) and without (solid line) size exclusion are considered. The
holes distribution in the semiconductor domain is neglected. Due
to the size exclusion, the electron concentration in the quantum
domain increases remarkably.

Figure 7. Electrical potential distribution on whole domain, as-
suming V = −0.6V and α = 10−7. Both cases with (dot line) and
without (solid line) size exclusion are considered. The effect of the
size exclusion on the potential is negligible in this case.
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Figure 8. Charge density distribution in the semiconductor do-
main, assuming V = −0.06V and α = 10−7. Both cases with (dot
line) and without (solid line) size exclusion are considered. For a
small applied potential the size exclusion effect does not play any
role.

Figure 9. Electrical potential distribution in the semiconductor
domain, assuming V = −0.06V and α = 10−7. Both cases with
(dot line) and without (solid line) size exclusion are considered.
For a small applied potential the size exclusion effect does not play
any role.
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