Non-critical fractional conservation laws in domains with boundary

  • Received: 01 May 2015 Revised: 01 July 2015
  • 35B30, 35L65, 35L82, 35S10, 35S30.

  • We study bounded solutions for a multidimensional conservation law coupled with a power s(0,1) of the Dirichlet laplacian acting in a domain. If s1/2 then the study centers on the concept of entropy solutions for which existence and uniqueness are proved to hold. If s>1/2 then the focus is rather on the C-regularity of weak solutions. This kind of results is known in RN but perhaps not so much in domains. The extension given here relies on an abstract spectral approach, which would also allow many other types of nonlocal operators.

    Citation: Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary[J]. Networks and Heterogeneous Media, 2016, 11(2): 251-262. doi: 10.3934/nhm.2016.11.251

    Related Papers:

    [1] Matthieu Brassart . Non-critical fractional conservation laws in domains with boundary. Networks and Heterogeneous Media, 2016, 11(2): 251-262. doi: 10.3934/nhm.2016.11.251
    [2] . Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda . Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2(1): 127-157. doi: 10.3934/nhm.2007.2.127
    [3] Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029
    [4] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617
    [5] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [6] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
    [7] Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024
    [8] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [9] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
    [10] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
  • We study bounded solutions for a multidimensional conservation law coupled with a power s(0,1) of the Dirichlet laplacian acting in a domain. If s1/2 then the study centers on the concept of entropy solutions for which existence and uniqueness are proved to hold. If s>1/2 then the focus is rather on the C-regularity of weak solutions. This kind of results is known in RN but perhaps not so much in domains. The extension given here relies on an abstract spectral approach, which would also allow many other types of nonlocal operators.


    [1] N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ., 7 (2007), 145-175. doi: 10.1007/s00028-006-0253-z
    [2] N. Alibaud and B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 997-1016. doi: 10.1016/j.anihpc.2010.01.008
    [3] N. Alibaud and M. Brassart, Entropy solutions to fractional conservation laws in domains, In preparation, 2015.
    [4] N. Alibaud and M. Brassart, Parabolicity for fractional conservation laws in domains, In preparation, 2015.
    [5] N. Alibaud, J. Droniou and J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ., 4 (2007), 479-499. doi: 10.1142/S0219891607001227
    [6] P.L. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag, 1967.
    [7] C. Bardos, A. Leroux and J. C. Nedelec, First-order quasilinear equations with boundary conditions, Comm. in Part. Diff. Eq., 4 (1979), 1017-1034. doi: 10.1080/03605307908820117
    [8] C. H. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 471-501. doi: 10.1016/j.anihpc.2009.11.008
    [9] C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Discrete and Continuous Dynamical Systems, 27 (2010), 847-861. doi: 10.3934/dcds.2010.27.847
    [10] S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413-441. doi: 10.1016/j.anihpc.2011.02.006
    [11] H. Dong and D. Du, Finite time singularities and global well-posedness for fractal Burgers' equations, Indiana Univ. Math, 58 (2009), 807-821. doi: 10.1512/iumj.2009.58.3505
    [12] J. Droniou, Th. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521. doi: 10.1007/s00028-003-0503-1
    [13] J. Endal and E. R. Jakobsen, L1 contraction for bounded (nonintegrable) solutions of degenerate parabolic equations, SIAM J. Math. Anal., 46 (2014), 3957-3982. doi: 10.1137/140966599
    [14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer, 1981.
    [15] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Mathematicae, 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3
    [16] S. N. Kruzhkov, First order quasilinear equations with several independent variables, Math. Sb. (N.S.), 81 (1970), 228-255.
    [17] C. Miao and G. Wu, Global well-posedness for the critical Burgers equation in critical Besov spaces, J. Diff. Eq., 247 (2009), 1673-1693. doi: 10.1016/j.jde.2009.03.028
    [18] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1
    [19] K. Yosida, Functional Analysis, 4th edition, Springer-Verlag, 1974.
  • This article has been cited by:

    1. Boris Andreianov, Matthieu Brassart, Uniqueness of entropy solutions to fractional conservation laws with “fully infinite” speed of propagation, 2020, 268, 00220396, 3903, 10.1016/j.jde.2019.10.008
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3634) PDF downloads(154) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog